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Heart rate variability (HRV) is the heart beat-to-beat variation under control of the

cardiovascular function of animals. Under stressed conditions, cardiac activity is generally

regulated with an upregulated sympathetic tone and withdrawal of vagal tone; thus, HRV

monitoring can be a non-invasive technique to assess stress level in animals especially

related to animal welfare. Among several stress-induced factors, heat stress is one of the

most serious causes of physiological damage to animals. The aim of this study was to

assess the effects of heat stress on HRV in small ruminants under free-moving conditions.

In three experimental periods (June, August, and October), inter-beat intervals in sheep

and goats (three for each) in two consecutive days were measured. HRV parameters

were calculated from the inter-beat interval data by three types of analyses: time domain,

frequency domain, and non-linear analyses. The temperature–humidity index (THI) was

used as an indicator of heat stress, and vectorial dynamic body acceleration (VeDBA) was

calculated to quantify the physical activity of the animals tested. First, we investigated

correlations of THI and VeDBA with HRV parameters; subsequently, THI was divided

into five categories according to the values obtained (≤65, 65–70, 70–75, 75–80, and

>80), and the effects of the THI categories on HRV parameters were investigated with

and without correcting for the effects of physical activity based on the VeDBA. The

results indicated that HRV significantly decreased with increasing THI and VeDBA. For

non-linear HRV parameters that were corrected for the effects of physical activity, it was

suggested that there would be a threshold of THI around 80 that strongly affected HRV;

high heat stress can affect the autonomic balance of animals non-linearly by inducing the

sympathetic nervous system. In conclusion, to assess psychophysiological conditions of

unrestrained animals by HRV analysis, the confounding effect of physical activity on HRV

should be minimized for a more precise interpretation of the results.
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INTRODUCTION

Heart rate variability (HRV) has been used as a sensitive indicator
of the functional regulatory characteristics of the autonomic
nervous system (1, 2). Inter-beat interval fluctuation expressed
as HRV reflects the sympathetic and parasympathetic activity
of the autonomic nervous system, and healthy cardiac function
is characterized by irregular time intervals between consecutive
heart beats (2). A decrease in HRV can be caused by an increase
in sympathetic activity and/or withdrawal of parasympathetic
activity, and HRV is a particularly good indicator for the non-
invasive assessment of autonomic nervous system activity in
response to various internal and external stressors.

Several studies have investigated HRV in animals: farm

animals (2), companion animals (3, 4), monkeys (5), seabirds (6),

etc. In particular, monitoring HRV in animals has recently gained
attention as a non-invasive technique of assessing stress levels of
animals related to animal welfare (7). For example, numerous
studies have investigated internal and external psychological
and physiological factors that affect the HRV of dairy cattle:
temperament and reactivity to humans (8–10), bell noise (11),
palpation (12, 13), insect harassment (14), seasonality (15),
milking system (16, 17), pregnancy and calving (18–21), and
diseases such as lameness (22), diarrhea (14), and bovine
spongiform encephalopathy (23). However, physical activity
(movement) influences HRV, and it can cloud the regulation
linked to cognitive, emotional, social, and health process (24, 25).
In fact, HRV is greatly affected by the behavior of animals, and
some studies have focused on the effects of behavior on HRV,
such as body posture (9), step behavior (17), and behavioral
types (26). When the effects of psychophysiological changes on
HRV of animals have to be evaluated, particularly under free-
moving conditions, the quantified physical activity level of the
target animals should also be considered as a key element that
influences HRV (27).

Heat stress is a serious cause of physiological damage on
animals and consequently affects their production (28–31). Many
previous studies on heat stress for animals have focused on
its negative effects on productivity (32–36) and physiological
reactions related to hormonal and immune responses (37–
40). For example, in dairy cattle, as milk production increases,
metabolic heat production rises with the metabolism of large
amounts of nutrients, which makes the high-producing cows
more vulnerable to high ambient temperatures and humidity
than animals that are less active metabolically (28). Also, heat
stress compromises productivity in small ruminants, increasing
maintenance energy requirement (41). For investigating such
effects of heat stress on animals, thermoregulatory function
traits such as respiration rate, rectal temperature, and heart
rate were widely evaluated as physiological indicators of heat
stress (34). However, although the effects of shading on HRV in
cattle under extreme heat loads have recently been investigated
(42, 43), no studies have analyzed the effects of heat stress
on the autonomic nervous system of animals in detail using a
variety of HRV analyses, in particular by considering the effect
of physical activity. Regarding the variety of HRV analyses,
not only conventional time domain and frequency domain

indices but also non-linear indices have been used as reliable
markers of sympathetic and vagal activation in HRV analysis
(1). Quantifications in different domains of HRV analysis
can focus on different characteristics of HRV: quantity of
variance (time domain), periodic processes due to autonomic
regulation (frequency domain), and chaotic phenomena in the
regulation of cardiac activity (non-linear); and HRV parameters
derived from such different domains can complement each
other (16). Therefore, evaluation of different HRV parameters
can be adequate to judge different quantitative and qualitative
stress loads in animals (14). In order to successfully manage
healthy animals, HRV assessment using a variety of parameters
in multiple domains appears to be required, which provides
quantitative and objective assessments of the effect of heat
stress on the autonomic nervous system activity under free-
moving conditions.

The aim of the present study was to assess the effects of heat
stress on HRV in small ruminants using three types of analyses:
time domain, frequency domain, and non-linear analyses. To
elucidate the physiological interrelationships between heat stress
and HRV under free-moving conditions, the effects of heat
stress on HRV were evaluated with and without correcting
for the confounding effect of physical activity on HRV by
simultaneously measuring the dynamic body acceleration of
the animals.

MATERIALS AND METHODS

Animals and Experimental Periods
All of the data were obtained from experiments conducted at
Kyoto University, Japan (35◦02′N, 135◦47′E). Three castrated
Corriedale sheep that are 2.5 years old and three castrated
Japanese Saanen goats that are 9 years old were used. The
experiments were conducted in three periods: June (early
summer), August (midsummer), and October (early autumn)
in 2015. Data collection was carried out for all sheep and
goats simultaneously, and the data were collected consecutively
for about 2 days per animal in each period. The body
weights (kg) of the animals were measured on the first
day of each respective period: 34.3 ± 4.9, 34.9 ± 5.4,
and 35.0 ± 2.5 kg for the sheep and 73.9 ± 3.9, 76.1
± 2.2, and 72.8 ± 4.4 kg for the goats. The sheep and
goats were separately managed into two pens (each species
per pen: ∼10 m2 per pen) in an open-sided, metal-roofed
animal shelter. The sheep was shorn in the spring following
conventional management. The animals were fed twice a
day (9:30 and 15:30), and the amount of feed offered was
2% of their body weight per day (Italian ryegrass: alfalfa
hay cube: concentrate = 10:3:3) as the amount required for
maintenance. Mineral blocks and water were freely available.
All of the animal experiments were approved by the Animal
Experiment Committee of Kyoto University (permit number:
27-56). All of the procedures for equipping the animals with
data loggers were performed as quickly as possible to minimize
the animals’ discomfort. All animals were housed for use in
future researches.
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Data Collection
Inter-beat interval data (ms) were obtained using heart rate
monitors (RS800CX and H2 heart rate sensors, Polar Electro
Ltd., Finland). Each heart rate monitor consisted of a transmitter
with two electrodes and a logger. The electrodes were placed
on the animal’s right shoulder and left anterior thorax and
attached with a homemade chest belt (44). The electrode sites
of animals were roughly shaved and covered with a conductive
gel to optimize electrode contact. In addition, three-dimensional
accelerations were simultaneously recorded using acceleration
data loggers (USB Accelerometer X6-1A and X6-2A, Gulf Coast
Data Concepts, Waveland, MS, USA). The acceleration logger
was attached to the back of the animals when the heart rate
monitor was attached. Accelerations were recorded at 10Hz, with
a 16-bit resolution. The positions of the heart rate monitor and
acceleration logger are shown in Figure 1.

During each experiment, ambient temperature and relative
humidity per minute were measured using a thermo-hydro data
logger (TR-72wf-H, T&D Corporation, Japan). The logger was
placed in the animal shelter.

In addition, respiration rate and rectal temperature,
traditional physiological indices, were measured on the last
day of each experimental period. Respiration rate was measured
visually by counting thoracoabdominal movements for 30 s twice
by each of three observers on the last day of each experimental
period at a distance of ∼1m between animals and observers.
Then, the doubled value of the average of six counting values by
the three observers was taken as the respiration rate per minute
for each animal in each period. The observation was carried out
for the target animals in standing position. Rectal temperature
was measured once for each animal at the end of each experiment
(before evening feeding) by a digital thermometer (MC-170,
Omron Healthcare Co., Ltd., Japan).

Temperature–Humidity Index
The effect of heat is aggravated when heat stress is accompanied
with high ambient humidity (34). Therefore, the THI was used
as an indicator of heat stress in the present study, which was
calculated from the average values of ambient temperature and

FIGURE 1 | Positions of heart rate (HR) transmitter, electrodes for the HR

monitor, and the accelerometer.

relative humidity in 5min using the following equation (45):

THI = 0.8× temperature+ (humidity/100)

×(temperature− 14.4)+ 46.4.

Effect of Physical Activity on HRV
A change in physical activity levels is thought to be one of
the main modulators of HRV (46). Because cardiac activity is
affected by variations in the respiration rate via sympathetic and
parasympathetic nerves (47), HRV is greatly influenced by the
change in respiration caused by physical activity. Therefore, to
improve the precision of HRV evaluation under free-moving
conditions, the effect of physical activity on HRV should be
considered. One of the possible methods to consider the effect
is to delete the sections of the heart inter-beat interval data
with excessive movement before the HRV analysis (48–50), but
there have been no general ways for separating the effect of
changes in quantified physical activity levels on HRV from the
influence of other regulatory processes (24). Therefore, in this
study, the vectorial dynamic body acceleration (VeDBA), which
can be a proxy for the activity-specific energy requirements of
animals (25, 51, 52), was used to remove the confounding effect
of physical activity on HRV based on the method by Oishi et al.
(27). To calculate VeDBA, triaxial acceleration values obtained by
the acceleration loggers were used in the following equation:

VeDBA =

√

(D2
x + D2

y + D2
z),

where Ax, Ay, and Az are triaxial dynamic body accelerations
calculated by subtracting static accelerations from raw
accelerations (53). Initially, the VeDBA values were transformed
into natural logarithms for normalization, which were then
averaged in 5min to correspond with the respective HRV data
and used for the analysis.

HRV Analysis
Kubios HRV 2.2 software (Kubios Ltd., Finland) (54) was used
to calculate HRV parameters from inter-beat interval data. All
of the HRV parameters for both animal species were calculated
by 5-min windows according to the Task Force of the European
Society of Cardiology, North American Society of Pacing and
Electrophysiology (55). A total of 9,963 adjacent 5-min windows
were obtained for the analysis. Artifacts were removed from
the data using a threshold-based artifact correction algorithm
built-in in this software with a medium correction level (54).
Moreover, data that included 5-min-averaged inter-beat interval
values outside the 3-sigma range of individual datasets were also
removed. The proportion of data removed was 1.13%. A total of
9,850 5-min intervals, with an average of 547.2 intervals (45.6 h)
per animal in each period, were included in the analysis. For
each animal, the intervals were almost evenly distributed across
each period.

In the present study, the mean heart rate per 5min (HR) and
the following six HRV parameters were calculated using three
domain analyses: time domain parameters (SDNN and RMSSD)
from time domain analysis, frequency domain parameters (HF
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and LF/HF) from frequency domain analysis, and non-linear
domain parameters (Lmax and %DET) from non-linear domain
analysis. These parameters are defined in Table 1.

Time domain analysis is the simplest form of HRV analysis.
Time domain parameters reflect various aspects of the statistical
variability of inter-beat intervals and are often used to interpret
HRV characteristics. The standard deviation of inter-beat
intervals (SDNN) is a good predictor of overall variability
influenced by both sympathetic and parasympathetic activity,
and the root mean square of successive inter-beat interval
differences (RMSSD) is the primary time domain measure
used to estimate the high-frequency beat-to-beat variation that
represents vagal tone activity (2).

Frequency domain analysis is the procedure of decomposing a
waveform of inter-beat intervals by range of the frequency using
fast Fourier transformation (FFT). In this analysis, the waveform
of inter-beat intervals is regarded as a synthesized waveform, and
the power spectra of the waveform are calculated to estimate
the HRV. An increase in high-frequency (HF) components is
generally caused by increasing HRV, and HF has been used to
describe the function of vagal tone (56). In addition, the ratio
of the power spectra of low-frequency (LF) components to HF
(LF/HF) is utilized for describing the sympathovagal balance of
the autonomic nervous system (57). The ranges of the HF and
LF components for the tested animals were set to be 0.20–0.40
and 0.04–0.20Hz, respectively, as recommended by von Borell et
al. (2).

Non-linear domain analysis elucidates the chaotic behavior of
HRV using non-linearity indicators. A great deal of information
can be extracted from physiological signals by describing
their dynamic behavior, and non-linearity is the representative
indicator of such complex dynamical systems (58). Recurrence
quantification analysis (RQA) is a method of non-linear HRV
analysis that was developed by Eckmann et al. (59), which has
been used to detect hidden and complex characteristics of HRV
(60). In the present study, the length of the longest line of

TABLE 1 | Definitions of HRV parameters.

Parametera Definition (unit)

Time domain

SDNN Standard deviation of inter-beat intervals (ms)

RMSSD Square root of the mean squared differences of successive

inter-beat intervals (ms)

Frequency domain

HF Normalized power of the high-frequency band (n.u.): 0.2–0.4 Hz

LF/HF Ratio of the normalized power of the low-frequency (LF) band

(n.u.) (0.04–0.2Hz) to HF

Non-linear

Lmax The length of the longest line of recurrent points (beats)

%DET Percentage of recurrent points that appear in sequence (%)

HRV, heart rate variability.
a In general, animals with low HRV exhibit high sympathetic activity, which can be

associated with an increased risk of stress. SDNN, RMSSD, and HF are positively related

to HRV, whereas the other parameters are negatively related to HRV.

recurrence points (Lmax) and the percentage of determinism
(%DET) were used as the quantitative parameters of RQA. These
parameters reflect the richness of the deterministic structure of
inter-beat intervals in a time series, and an increase in these
parameters indicates a decrease in HRV (61). The evaluation of
non-linear parameters with time domain and frequency domain
parameters is a useful method of analyzing HRV for the accurate
interpretation of the autonomic nervous system function
(14, 16).

Statistical Analysis
Ambient temperature, relative humidity, and THI were analyzed
by one-way analysis of variance (ANOVA), with period (June,
August, and October) included as a fixed effect. Respiration rate
and rectal temperature were analyzed by two-way ANOVA, with
period (June, August, and October) and species (sheep and goats)
included as fixed effects.

Regarding HRV, Pearson’s correlation coefficients of mean
HR and HRV parameters with THI and VeDBA were firstly
calculated. In addition, the THI was divided into five categories
(≤65, 65–70, 70–75, 75–80, and >80), and the effects of the THI
category on mean HR and HRV parameters were analyzed using
the following linear mixed model:

Yijkl = µ + catTHIi + Speciesj + Animalk(j) + eijkl,

where Yijkl is the value of the mean HR and HRV parameters
(SDNN, RMSSD, HF, LF/HF, Lmax, and %DET) per 5min, µ

is the overall mean, catTHIi (i = 1–5) is the fixed effect of
the THI category, Speciesj (j = 1 or 2) is the fixed effect of
species, Animalk(j) (k = 1–6) is the random effect of individual
animals nested within species, and eijkl is the error. Furthermore,
based on the method by Oishi et al. (27), the above statistical
model was transformed into the following model in order to
include the effect of quantified physical activity on mean HR and
HRV parameters:

Yijkl = µ + catTHIi + Speciesj + Animalk(j) + β(VeDBA)ijkl

+eijkl,

where β (VeDBA)ijkl is the covariate effect of VeDBA per 5 min.
Differences were analyzed using the least squares means

with the Tukey–Kramer post-hoc test (62) and were considered
significant at P < 0.05. Correlation coefficients were calculated
using PROCCORR, and the other analyses were performed using
PROCMIXED in SAS 9.3 (SAS Institute) (63).

RESULTS

Respiration Rate and Rectal Temperature
and Changes in Environmental Conditions
The least square means of ambient temperature, relative
humidity, and THI during each experimental period are shown
in Table 2. The ambient temperature and THI in August were
the highest, and those in October were the lowest (P < 0.05).
The relative humidity in June was higher than that in August or
October (P < 0.05).
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TABLE 2 | Ambient temperature, relative humidity, and THI during the experimental periods.

Index June August October

Temperature (◦C) 22.6 ± 0.05b (18.5–31.7) 29.1 ± 0.06a (24.7–36.4) 18.4 ± 0.06c (13.1–26.1)

Humidity (%) 71.7 ± 0.19a (37.2–83.6) 58.9 ± 0.23b (36.0–74.3) 58.8 ± 0.22b (30.5–82.0)

THI 70.1 ± 0.06b (64.5–78.3) 78.0 ± 0.07a (73.1–83.7) 63.0 ± 0.06c (55.8–70.8)

THI, temperature–humidity index. Values are least squares means ± standard errors and ranges. Different letters indicate a significant difference between periods (P < 0.05).

TABLE 3 | Respiration rates and rectal temperatures of the tested animals.

Species Month Respiration rate

(/min)

Rectal

temperature (◦C)

Goat June 14.57 39.10

August 57.63 39.23

October 16.93 38.60

Sheep June 39.10 39.47

August 84.53 39.70

October 41.17 39.23

SEM 14.37 0.26

Effect of species P = 0.053 (Goat <

Sheep)

P < 0.05 (Goat <

Sheep)

Effect of period P < 0.05 (June and

October < August)

n.s.

Values are least squares means. No significant interaction effects were found. SEM,

standard error of the mean; n.s., not significant.

The least square means of respiration rate and rectal
temperature are shown in Table 3. The respiration rate in August
was the highest (P < 0.05), and the respiration rate in sheep
tended to be higher than that in goats (P = 0.053). The rectal
temperature of sheep was higher than that of goats (P < 0.05),
but no significant effect of period was found.

Effects of Heat Stress on HRV
Pearson’s correlation coefficients between HRV parameters and
THI and between HRV parameters and VeDBA are shown in
Table 4. Both the THI and VeDBA were significantly correlated
with the mean HR and all HRV parameters (P < 0.05).
From the results of the coefficients, both the THI and VeDBA
were negatively correlated with HRV, i.e., positively correlated
with LF/HF and the non-linear parameters and negatively
correlated with the other HRV parameters. For most of the HRV
parameters, HRVwasmore strongly correlated with VeDBA than
with THI.

Results of the changes in themeanHR andHRV parameters in
the THI categories by analyzing the models with and without the
effect of VeDBA are illustrated in Figure 2 (mean HR and time
domain parameters) and Figure 3 (frequency domain and non-
linear parameters). Regardless of whether the effect of physical
activity was included in the model, the fixed effect of species was
not significant for the mean HR and HRV parameters, except
for the two frequency domain parameters; HF in goats was
significantly higher than that in sheep, and LF/HF in goats was

significantly lower than that in sheep (P < 0.05). The fixed effect
of the THI category was significant for the mean HR and all HRV
parameters (P < 0.05). When the effect of physical activity was
included, the covariate of VeDBA was significant for the mean
HR and all HRV parameters (P < 0.05).

Regarding the mean HR and time domain parameters, when
the effect of physical activity was not included, the mean
HR gradually increased when the THI was ≤65 to >80, the
SDNN decreased when the THI was ≤65 to 70–75 (but did
not significantly change from 70–75 to >80), and the RMSSD
decreased step by step from THI ≤ 65 to >80 (Figure 2A).
Similar results were obtained when the effect of physical activity
was included, although differences between 70–75 and 75–80 in
mean HR, SDNN, and RMSSD were not significant (Figure 2B).
Regarding the frequency domain parameters, when the effect
of physical activity was not included, HF decreased and LF/HF
increased from 65–70 to >80 (Figure 3A). However, when
including VeDBA, HF and LF/HF had maximum and minimum
values, respectively, in 65–70 (Figure 3B). With regard to the
non-linear HRV parameters, the two non-linear parameters
increased from THI ≤ 65 to 65–70, slightly changed from 65–
70 to 75–80, and increased again from 75–80 to>80 (Figure 3A).
Surprisingly, when the effect of physical activity was included, the
non-linear HRV parameters only increased from 75–80 to >80
(Figure 3B), indicating that there was a threshold level between
the physiological states of the two THI categories.

DISCUSSION

Monitoring HRV has been used as a non-invasive method of
investigating characteristics of the autonomic nervous system. In
the present study, HRV was characterized using three domain
parameters in order to reveal the general features of HRV in
ruminants under heat-stress conditions.

Correlations of Heat Stress and Physical
Activity With HRV
The two time domain HRV parameters (SDNN and RMSSD)
were significantly, negatively correlated with the THI (Table 4).
As for the frequency domain parameters, HF was negatively
correlated with the THI, whereas LF/HF was positively correlated
with it. Therefore, HRV parameters which represent vagal tone
function in the two domains (RMSSD and HF) decreased
under high-THI conditions, which might be in agreement
with the previous study (43) showing that RMSSD of calves
decreased under highly heat-stressed daytime. As for the non-
linear parameters, Lmax and %DET were significantly, positively
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TABLE 4 | Pearson’s correlation coefficients of mean HR and HRV parameters with THI and VeDBA.

Index Mean HR SDNN RMSSD HF LF/HF Lmax %DET

THI 0.352 −0.120 −0.235 −0.211 0.190 0.195 0.179

VeDBA 0.514 0.062 −0.274 −0.414 0.328 0.460 0.449

All coefficients are significant at P < 0.05.

THI, temperature–humidity index; VeDBA, natural logarithmically transformed vectorial dynamic body acceleration (g); HR, heart rate (bpm); HRV, heart rate variability; SDNN, standard

deviation of inter-beat intervals (ms); RMSSD, square root of the mean squared differences of successive inter-beat intervals (ms); HF, normalized power of the high-frequency band

(n.u.); LF/HF, ratio of the normalized power of the low-frequency (LF) band to HF; Lmax , the length of the longest line of recurrent points (beats); %DET, percentage of recurrent points

that appear in sequence (%).

correlated with the THI, which reflected a change toward a
decrease in HRV by increasing sympathetic nervous system
activity and a more periodic heart rate under stress. Hence, all of
the HRV parameters showed that HRV decreased with increasing
THI. However, it is noticed that the correlation between THI
and HRV was significant but considerably weak, which might be
due to the existence of thermoneutral range for tested animals
during the experimental periods. In addition, despite the fact that
the animals were housed in an animal shelter and their physical
activity levels were low, VeDBA was significantly correlated with
all HRV parameters (Table 4), which was in accordance with
our previous study (27). Furthermore, the absolute values of the
correlation coefficients between VeDBA and the HRV parameters
were mostly higher than those between the THI and the HRV
parameters. These results suggest that animals’ physical activity
influences HRV and that the relationship between physical
activity and HRV may be stronger than that between the THI
and HRV. Therefore, we can conclude that correcting for the
confounding effect of physical activity is necessary to evaluate the
effect of heat stress on HRV more precisely.

Effects of Heat Stress and Physical Activity
on the Three Domains of HRV Parameters
It was supposed that heat stress can interfere non-linearly
with the physiological function of animals, although a weak
linear correlation between the THI and HRV was found. In
the present study, therefore, the THI was divided into five
categories (levels) in the statistical model, and the effect of
the THI categories on HRV was analyzed with and without
correcting for the effect of physical activity (Figures 2, 3). First,
regardless of whether VeDBA was included as a covariate in the
statistical models, the effect of species was significant only for
HF and LF/HF. Frequency domain parameters can be modified
when the autonomic nervous system responds to changes in
the respiration rate (64). In the present study, the respiration
rate of sheep tended to be higher than that of goats (Table 3).
Machando et al. (65) suggested a physiological susceptibility to
heat in sheep with higher respiration rates when compared with
goats. However, Johnson (66) reported that sheep and goats
showed similar changes in respiration rate when the animals
were shorn to the same hair length before the experiment.
Hence, the result of differences in respiration rate in the present
study might be due the effect of the regrown hair of sheep
during the three experimental periods. Besides, the younger age
and smaller body weight of sheep compared with goats also
might be causes of this result. Thus, with the inclusion of such

several differences between the two small ruminant species, the
difference in respiration rate between the species was expressed
as the effect of species on the frequency domain parameters of
HRV. As for the effect of THI categories on the HRV parameters,
when the effect of physical activity on HRV was not included,
most of the HRV parameters showed that HRV decreased with
increasing THI. However, when the effect of physical activity on
HRV was included, we found specific changes with changes in
THI category, which highlighted the characteristics of the three
domains of analysis.

The HRV parameters in the time domain analysis (SDNN and
RMSSD) decreased with increases in the THI categories in both
analyses, with and without the inclusion of VeDBA. This finding
is in accordance with those from our previous study, indicating
that these time domain parameters do not strongly correspond
with short-term changes in physical activity (27). In contrast,
changes in the frequency domain parameters (HF and LF/HF)
differed by the inclusion of the effect of physical activity; they
formed curved patterns. It is possible that changes in respiration
rate caused by an increase in THI affected the frequency domain
parameters, even after correcting for the effect of physical activity.
As already indicated, frequency domain HRV parameters can be
strongly affected by respiration rate, and it is therefore crucial
to control breathing in order to accurately interpret HRV when
frequency domain parameters are used (67, 68). In fact, the
respiratory frequency measured in the present study ranged
widely between 0.24 and 1.41Hz, while the setting HF range for
the frequency domain analysis was limited to 0.20–0.40Hz as
generally suggested for sheep and goats (2). For the HF to have
a bell-shaped distribution in the frequency domain analysis, any
deviation of the respiratory frequency from the HF range simply
masked the effect of respiration on the frequency domain HRV
parameters, particularly at lower and higher HR conditions that
corresponded to lower and higher THI categories. It is though
that HF is one of the major parameters of cardiac vagal activity
which is strongly linked with a range of self-control such as
cognitive performance, emotion and stress regulation, health,
and social interactions (69, 70). However, since controlling the
breathing of animals is almost impossible, the frequency domain
parameters are of limited use for evaluating autonomic regulation
in freely-moving animals.

In comparison with the other two domains of HRV analysis,
the non-linear domain parameters (Lmax and %DET) showed
characteristic changes in the present study; they increased with
the THI categories without correcting for the effect of physical
activity, but only increased from 75–80 to 80< when including
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FIGURE 2 | Changes in mean HR and time domain HRV parameters (SDNN and RMSSD) by THI category, (A) without and (B) with the effect of physical activity

quantified by VeDBA. The bars represent least square means, and error bars show standard errors. Values with different letters differ significantly (P < 0.05). HR, heart

rate (bpm); HRV, heart rate variability; SDNN, standard deviation of inter-beat intervals (ms); RMSSD, square root of the mean squared differences of successive

inter-beat intervals (ms); THI, temperature–humidity index; VeDBA, natural logarithmically transformed vectorial dynamic body acceleration (g).

the effect of physical activity. This result indicated that there
was a THI threshold level of around 80 affecting the HRV
parameters. Although the insusceptibility of non-linear HRV
parameters to respiration is still in debate, it has been suggested
that the non-linear complexity and determinism of HRV do
not arise as a consequence of a respiration input into the

cardiovascular oscillator (71, 72). The results of the present study
suggest that, as long as animals breathe merely for gas exchange
required for the metabolism, respiration does not induce non-
linear HRV. However, if the breathing pattern is changed for
some reason other than basal metabolism, the respiratory pattern
may interfere with the central cardiovascular oscillator. Since one
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FIGURE 3 | Changes in frequency and non-linear domain parameters by THI category, (A) without and (B) with the effect of physical activity quantified by VeDBA. HF

and LF/HF are frequency domain parameters (gray bars), and Lmax and %DET are non-linear parameters (white bars). The bars represent least square means, and

error bars show standard errors. Values with different letters differ significantly (P < 0.05). HRV, heart rate variability; HF, normalized power of the high-frequency band

(n.u.); LF/HF, ratio of the normalized power of the low-frequency (LF) band to HF; Lmax, the length of the longest line of recurrent points (beats); %DET, percentage of

recurrent points that appear in sequence (%); THI, temperature–humidity index; VeDBA, natural logarithmically transformed vectorial dynamic body acceleration (g).
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possible predictive marker of alterations in central autonomic
regulation that may precede metabolic stress is a non-linear
domain component of HRV, as suggested by Hoffmann et al.
(73), we can conclude that it is beneficial to use non-linear HRV
parameters as physiological heat-stress indicators.

It should be noted that the present study used only six
individuals from two small ruminant species, which was one
of the limitations of the present study. However, the fixed
effects of THI category and species were properly analyzed
with considering the effect of individuals in each species, since
the effect of individual differences was treated as a random
effect nested within the species in the statistical model with
enough data for each animal. The results showed that the
effect of species was not significant for HRV parameters except
for frequency domain parameters, which indicated that the
finding in particular for non-linear HRV parameters could be
correctly evaluated. However, in order to strengthen the validity
of the analysis and the conclusions for the effect of THI on
HRV parameters and also to clarify the difference in the effect
between the two small ruminant species in more detail, further
studies using experimental designs with more animals would
be required.

Heat Dissipation and Heart Rate
Regulation
Many of the physiological responses under heat load are
evoked to maintain the core temperature constant. For this
purpose, heat dissipation from animal body is promoted by
vasodilation, panting, and sweating. In the present study,
moderate tachycardia was observed as the THI increased, which
might be in accordance with the interpretation that increases
in the heart rate under heat load is evoked due to increases
in blood circulation to transfer heat from the core to the
periphery (34).

The initial response that maintains the core temperature
under heat stress is vasodilation (74), which results from
the withdrawal of sympathetic nervous activity that governs
the vessel tone (sensible heat dissipation). As the heat
load increases, latent heat dissipation is gradually induced.
Cholinergic sympathetic activity that regulates activity of
sweat glands also acts as an active local vasodilator (75)
that synergistically dissipates heat. Both responses to external
heat stress, vasodilation and sweating, are regulated by the
thermoregulatory center in the preoptic area. However, in the
case of panting, the modified breathing pattern interferes with
systemic circulation, and directly changes the heart rate via
cardio-pulmonary baroreceptors. This mechanismmaymake the
regulation of heart rate more complex and chaotic.

Ambient temperature and humidity are critical factors that
affect the efficacy of both sensible and latent heat dissipation,
and the THI is a useful index that indicates the heat-
stress level in homeothermic animals. If body temperature
cannot be maintained by the responses discussed so far
because of rigid heat load, heat production is suppressed by
reducing feed intake, which results in reduced production
(76). However, in the present study, the rectal temperatures

of the animals tested did not significantly differ among the
three experimental periods (Table 3). Moreover, a decrease
in feed intake was not observed for the tested animals. In
dairy cows, Kadzere et al. (32) reported that THI values >

78 might cause extreme distress, with lactating cows being
unable to maintain their thermoregulatory mechanisms or
normal body temperatures. Lemerle and Goddard (77) reported
that homeostatic mechanisms could prevent a rise in rectal
temperature until the THI reaches 80, which might also be
applied for the small ruminants in the present study. Therefore,
although some degree of disorder of thermoregulatory control
shown as the change in non-linear HRV parameters might occur
over 80 of THI, the tested animals could mostly cope with heat
stress by promoting heat dissipation until the THI reached the
threshold value.

CONCLUSIONS

The present study revealed the effects of heat stress on HRV of
sheep and goats. Under high THI conditions, HRV of the animals
was decreased which might be due to the increase of sympathetic
nervous system activity on heart rate regulation. From the
evaluation of non-linear HRV parameters with correction for
the effect of physical activity, this study could suggest the
existence of a threshold value of THI around 80 for HRV. The
threshold value might indicate a limit that the external stress
imposes physiological non-linear heart rate regulation for the
heat dissipation in order to maintain core temperature constant.

In recent years, increased interest has been paid to HRV
measurement as a non-invasive technique to assess stress in
animals in particular related to animal welfare. The results
of the present study indicated both heat stress and physical
activity levels affected HRV. Therefore, in order to investigate
the effects of psychophysiological stress factors on HRV of
unrestrained animals, the confounding effect of physical activity
on HRV should be taken into consideration. Moreover, the use
of multiple domains of HRV parameters, in particular non-linear
parameters, should be recommended for investigating different
characteristics of the effect of stressors on HRV.
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