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Interspecific mutualisms consist of partners trading services that yield common benefits to both species.
Until now, understanding how the payoffs from mutualistic cooperation are allocated among the
participants has been problematic. Two hypotheses have been proposed to resolve this problem. The Red
Queen effect argues that faster-evolving species are favoured in co-evolutionary processes because they are
able to obtain a larger share of benefits. Conversely, the Red King effect argues that the slower-evolving
species gains a larger share of benefits. The model we propose shows that the allocations for a common
benefit vary when the effect of a reward mechanism is included in the model. The outcome is a shift from the
Red Queen effect to the Red King effect and vice versa. In addition, our model shows that either an
asymmetry in payoff or an asymmetry in the number of cooperative partners causes a shift between the Red
Queen effect and the Red King effect. Even in situations where the evolutionary rates are equal between the
two species, asymmetries in rewards and in participant number lead to an uneven allocation of benefits
among the partners.

I
n mutualistic interactions between two species, both species benefit from cooperation. These interactions are
ubiquitous in nature. Several well-studied theories have been proposed to explain the evolution and main-
tenance of mutualisms1–5. For example, the reciprocity selection theory views the beneficial exchange between

species from a market perspective. This theory argues that the cooperative species gain a direct or an indirect
benefit. Consequently, choosing a strategy of cooperation increases the fitness of both mutualistic species6,7. The
kin selection theory explains that if, for example, symbiont virulence is transmitted vertically, then related
symbionts increase their inclusive fitness by decreasing their total virulence, or even by cooperating with their
host, due to the genes they share with other symbiotic individuals8,9. The authors of the sanction theory argue that
hosts display sanctioning behaviours against exploiters or cheaters to maintain the stability of the mutualism10–13.
Finally, the predator interference theory considers the case of predation within mutualistic interactions.
Predation prevents the population increase of exploiters and favours the maintenance of the mutualism14,15.

The above theories have focused almost exclusively on how interspecific cooperation can persist over evolu-
tionary time. They have also focused on why mutualistic interactions are conserved, as we would normally expect
natural selection to favour exploiters. Cheaters disrupt the mutualistic stability when trying to gain excessive
benefits and thereby decrease their contribution to the cooperative relationship16. However, although cooperation
is maintained between two species by the mechanisms suggested above, how the resulting benefits are allocated to
the cooperative species has not yet been extensively studied.

How mutualistic benefits are allocated between interacting species has puzzled empirical scientists for a long
time. For example, in mutualistic interactions between a cleaner wrasse Labroides dimidiatus and its large client
fish, the cleaner wrasse removes ectoparasites on the client fish, taking them as food, and the client fish enjoys a
reduced parasite load17,18. As reported by Bergstrom and Lachmann (2003), in an idealised interaction where
there is no potential for cleaners to feed on live tissue or for clients to prey on cleaners19, the actual allocation of
benefits between a cleaner wrasse and its client fish is relatively straightforward20. The allocation of benefits,
however, is not as clear in other mutualisms, including ants and lycaenid butterfly caterpillars21, plant and
pollinators22, or symbioses between insects and gut microbes23.

To date, two hypotheses have been proposed to address this issue. The Red Queen effect argues that the faster-
evolving species should show an advantage in the co-evolutionary process. This effect describes the antagonistic
co-evolution between two species over a common ecological resource, for example, between predator and prey or
between host and parasite24. In 1999, Herre et al. noted that the Red Queen effect can also effectively describe
mutualisms because these types of interactions are also an ongoing arms race4. By contrast, another school of
thought argues that a slower rate of evolution should confer a more favourable outcome when two species
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compete for the benefits of a mutualism25–27. This effect has been
called the Red King effect20. These two hypotheses are based on the
assumption that the cooperative species do not produce any reward,
even though such reward mechanisms have been widely
observed28–31 (e.g., in the obligate interspecific cooperation between
figs and fig wasps, the fig host can reward the cooperative pollinators
indirectly by increasing the offspring development ratio32,33).

The theoretical models of the Red King and Red Queen hypotheses
also assume that the distributions of payoffs between species are
equal. However, almost all well-documented mutualisms–such as
yucca plants and yucca moths34,35, legumes and nitrogen-fixing bac-
teria10, and figs and fig wasps33–have shown that the hosts and sym-
bionts have highly asymmetric payoffs. In principle, the host can
therefore always set the rules of the game between mutualistic spe-
cies. Consistent with this principle, hosts of different mutualisms
were recently shown to discriminatively sanction non-cooperative
actors and reward cooperative actors to maintain the mutualistic
interaction10,13. Another more extreme phenomenon is when the
host completely represses the population of symbionts36. Thus, we
argue that the reward mechanism and other asymmetric factors (e.g.,
asymmetric payoffs and asymmetry in the number of players) play a
fundamental role in the evolution of mutualisms. In this study, by
using a multiplayer game model, we explicitly considered the role of
reward mechanisms and asymmetric factors in coevolved mutual-
isms, and we analysed their effects on the allocation of mutualistic
benefits.

Results
Model. In this model, we assume that individuals of species 1 and 2
are selected at random from the population and form groups of size
d1 and d2, respectively. The members of the two species engage in
pairwise or multiplayer repeated interactions. The interactions
between the two species/groups are shown in Figure 1. At every
turn, every individual needs to decide whether to cooperate or to
defect. These interactions can thus be depicted by a two-population
role-asymmetric game37,38. The relative payoff matrix is shown in
Table 1. In this matrix, the row players belong to one of the species
and the column players belong to the other species. For example, a
cooperative individual of species 1 obtains a payoff of BC1,C2 when
playing against a cooperative individual of species 2, whereas a
cooperative individual of species 2 obtains a payoff of BC2,C1 . Here,
BDi,CjwBCi,CjwBCi,DjwBDi,Dj for i, j 5 1, 2 and i ? j. This rank order

of payoffs corresponds to the snowdrift game. For a classical, single-
species, pairwise snowdrift game, there exists a mixed evolutionary
stable state at which the proportion of cooperative individuals is 1 2

c/(2b 2 c). However, for a snowdrift game between two species, this
coexistence point is unstable because each species would be better off
defecting. Two equilibria arise in which neither player can do better
by changing their strategies: one player from species 1 cooperates,
and the other from species 2 defects (or vice versa).

The above approach can be extended to multiplayer games. In this
case, the payoff we report below (Table 2) is often adopted (reported
from Souza et al. 2009)39. Here, the cost c is shared between coopera-
tive individuals. In addition, it is possible that a particular threshold
needs to be met for the mutualistic benefits to materialise. For
example, client fishes have been observed to choose cleaning stations
with two cleaners over lone cleaners17. Similarly, in observations of
the interactions between ants and caterpillars, a particular number of
ants are required to rescue a caterpillar from its predator. It has also
been shown that the quantity of secretions of a lycaenid larva is
correlated to the number of attending ants40. Generalising from these
examples, we assume that the number of cooperative individuals k is
at least equal to M and that the benefit b is acquired in turn. For
different species, the payoff setup has different values: bi, ci, and Mi

with 1 # Mi # di 1 1 and bi . ci (i 5 1,2).

Multiplayer snowdrift games with reward mechanism and asym-
metric factors. The pairwise and multiplayer games considered above
do not take into account any reward mechanisms. Such mechanisms,
however, have been widely observed in natural mutualistic systems41.
In addition, previous models may be oversimplified when accounting
for these naturally occurring interactions, implying that cooperative
individuals interact symmetrically. We argue, instead, that the
interactions between cooperative individuals may more often be
asymmetric33,38,42–44. To address these limitations, we need a new
payoff setup. Another element should also be considered:
discrimination between cooperative individuals and defectors is
often not possible in many commonly studied mutualisms45,46.

For these reasons, we use a collective reward mechanism for a
multiplayer snowdrift game in a single species, as proposed by Ji
et al. (2010)47. In their model, the authors allowed cooperative indi-
viduals to manifest the fruit of their joint effort earlier on by receiving
an additional reward w 1{1=k

� �
. This term gives an estimate of the

size of the reward as a function of the number of cooperative indi-
viduals k47. The parameter w represents the intensity of the reward.

Figure 1 | The interactions between species 1 and 2 in mutualisms. We assume that d1 5 5, d2 5 6. Species 1 plays in a seven-player game. In this first

game, we choose one player of species 1 (the blue faces) to interact with six players of species 2 (the red faces). Species 2 plays a six-player game.

In this second game, one player of species 2 joins and interacts with all the players of species 1. Generally, for a d1 1 1 players’ game for species 2, we choose

one individual from species 2 to interact with d1 individuals of species 1. For a d2 1 1 players’ game for species 1, we pick one individual from species 1 to

interact with d2 individuals of species 2. We do not consider intraspecific interactions within groups. It is possible to incorporate even more complexity by

considering these interactions within the same species. By doing this, however, the model becomes very convoluted and beyond the scope of this paper.

Figure 1 was produced with Microsoft Word. Other figures were obtained with Maple 15.
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This collective reward usually originates from an external pool of
resources (as, e.g., in human societies48), or it might take the form of
synergistic effects in some biological systems (where the benefits will
increase with the increasing number of cooperative individuals)49,50. By
definition, a collective reward is imposed on all players either because
there is no way to detect the behaviour of individual partners (or its
effects) or because the differences between cooperative and non-coop-
erative individuals are too small to be detected (as in the legume–rhi-
zobium mutualism51). Under these assumptions, we can obtain the
payoffs values for a cooperative individual and a defector of species i as:
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where the parameters bi, ci, Mi and wi are different for species 1 and 2.

Local dynamics of mutualism. In our model, we study cooperative
behaviour in an infinite, well-mixed population. It is also our intent
to compute the fractions of cooperative/non-cooperative individuals
in the population. The cooperation frequencies of the players of
species 1 and species 2 are x(t) and y(t), respectively. The fitness
functions of a cooperative individual of species 1 and species 2 are
fC1 and fC2 , respectively. Based on the interactions occurring between
the species, the fitness fC1 depends on the frequency y of cooperative
players of species 2, fC1 (y). Similarly, the fitness fC2 depends on the
frequency x of cooperative players of species 1, fC2 (x). By randomly
sampling the groups39,52, we obtained the following average fitness of
a cooperative individual and a defector of species 1 and 2:
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Thus, the average payoffs for a player of species 1 and 2 are

f1(x,y)~xfC1 (y)z(1{x)fD1 (y), ð6Þ

f2(x,y)~yfC2 (x)z(1{y)fD2 (x): ð7Þ

The replicator dynamics assume that the per capita growth rate in
the population is determined by the difference between the payoff for
a particular strategy and the average payoff fi (i 5 1,2)53–55. Thus, the
evolutionary times of x(t) and y(t) are governed by

dx
dt

~rxx(fC1{f1)

�
f1

dy
dt

~ryy(fC2{f2)

�
f2
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>>>:
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where rx and ry are the evolutionary rates of the two species.
We analysed the dynamics of this game using nonlinear dynamic

theory56 and simulations (see the Methods section for more details).
Two locally stable equilibrium points (C1, D2) and (D1, C2) arise in
our model if the reward wi satisfies wi/bi , djci/bi (with i, j 5 1,2 and i
? j). The pair of equilibrium points (x,y) in each cell corresponds to
the frequency of cooperation of species 1 and 2, respectively. In
addition, the equilibrium points (C1, D2) and (D1, C2) are denoted
by E2(1,0) and E3(0,1). Thus, the equilibrium points (C1, D2) and (D1,
C2) occur where the players of one species are all cooperating and the
players of the other species are all defecting. It is important to note
that these two stable points have their own basins of attraction
(obtaining these basins of attraction has proven extremely useful
for analysis of such behaviours25,57,58). As we show in Fig. 2, the ‘grey
region’ and the ‘green region’ are the basins of attraction for (C1, D2)
and (D1, C2), respectively. In effect, the solution trajectories converge
to the point (C1, D2) if the initial strategy frequencies of each species
fall within the ‘grey region’, whereas they converge to the point (D1,
C2) if the initial strategy frequencies fall within the ‘green region’ (see
Fig. 2).

We propose a method to calculate the benefits to the players of the
two species when the stability of mutualisms can be maintained. We
begin by assuming that the threshold is Mi 5 1 (with i 5 1,2) and that
the number of players is d1 5 d2 for species 1 and 2. The size of the
‘grey region’ and the ‘green region’ is defined as S1 and S2, respect-
ively (0 , S1, S2 , 1, S1 1 S2 5 1). The players of cooperative games
will eventually adopt an ESS of (C1, D2) with probability S1 and an
ESS of (D1, C2) with probability S2. The fitness of the players of
species 1 and 2 are thus denoted by B1 5 S1?(b1 2 c1) 1 S2?b1 and
B2 5 S1?b2 1 S2?(b2 2 c2), respectively. As a result, species 1 will
obtain a larger share of returns than species 2 when B1 . B2, and

Table 1 | Payoff matrix of the pairwise snowdrift game between two species

Species 2 Species 1

C2 D2 C1 D1

Species 1 C1 BC1 ,C2 BC1 ,D2 Species 2 C2 BC2 ,C1 BC2 ,D1

D1 BD1 ,C2 BD1 ,D2 D2 BD2 ,C1 BD2 ,D1

Table 2 | Payoff values of the multiplayer snowdrift game

Payoff obtained Cooperation Defection

1 # k , M {
c

M
0

k $ M b{
c
k

b
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species 2 will obtain a larger share of returns than species 1 when B1

, B2. In addition, the two species obtain equal benefits when B1 5 B2

(for more details, see the Supplementary Information section). This
implies that, in mutualisms, the division of the benefits (surplus)
depends on the size of the basins, Si; on the benefits, bi; and on the
costs, ci (with i 5 1,2). Using economics terminology, mutualistic
benefits can be named as a ‘surplus’ generated by the mutualism20.

When the benefit bi and the cost ci of the two species are the same,
we return to the methods used in previous studies25,57. Under these
conditions, the allocations of mutualistic benefits appear to rely on
the size of the respective basins of attraction. In other words, species 1
will reap larger benefits than species 2 when the basin of attraction of
(D1, C2) is larger than (C1, D2), whereas species 2 will reap larger
benefits than species 1 when the basin of attraction of (C1, D2) is
larger than (D1, C2). Intuitively, the size of the basins might reflect the

behaviours/strategies of the individuals involved (e.g., the resilience
or the lifetime of the state). These behaviours should result from
having to adapt to a changing environment over evolutionary time.
For each individual in species 1 and 2, the size of the basins of
attraction reflects the probability of defection. Individuals with a
higher probability of defection will reap larger benefits. In addition,
for each species, the size of the basins of attraction reflects the pro-
portion of defectors. The higher the proportion of defectors, the
greater the benefit for that species.

Simulations and Discussion
The allocation of mutualistic benefits under asymmetric
evolutionary rates. Reward effect. In this section, we assume that
the benefit bi, the cost ci, the number of players di, and the reward wi

Figure 2 | The shift between the Red Queen and the Red King effect, accounting for reward mechanisms. The black solid circles are locally stable

strategies (ESSs), and the empty circles are unstable strategies (non-ESSs). The red solid circles denote inner equilibrium points that are unstable. For

equal evolutionary rates, rx 5 ry, the basins of attraction of the two equilibriums (C1, D2) and (D1, C2) are of equal size ((a), (b) and (c)), whereas the size of

these two basins is unequal when the evolutionary rates between two species are asymmetric ((d), (e) and (f)). The colours illustrate the regions leading to

the equilibria favourable to species 1 (green region leading to (D1, C2)) and species 2 (grey region leading to (C1, D2)). For a multiplayer game without a

reward mechanism (with i 5 1,2 and di 5 19, wi 5 0), the basin of attraction favourable to faster-evolving species grows substantially. However, the

internal equilibrium points shift with an increase in the collective reward (with i 5 1,2 and di 5 19, wi 5 5), as in (e). As a result, the Red King effect

eventually appears with increasing intensity of the reward, as in (f). This causes a switch from the Red Queen effect (d) to Red King effect (f). The

evolutionary rates are rx 5 1/8 and ry 5 1 in (d), (e), (f). The other parameters are fixed at bi 5 2, ci 5 1 and Mi 5 1.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8237 | DOI: 10.1038/srep08237 4



of the two species are the same. If the evolutionary rates are unequal
(i.e., species 1 with rate rx 5 ry/8), the basins of attraction of (C1, D2)
and (D1, C2) become unequal in size. In other words, the allocation of
the resulting benefits is unequal between the two species (Fig. 2d, 2e,
and 2f). If the game is run without any reward mechanism (with wi 5

0), the basin of attraction (C1, D2) is larger than the basin of attraction
(D1, C2). This implies that the faster-evolving species will receive a
larger share of the benefits (Fig. 2d). This is in line with what is
predicted by the Red Queen effect24. However, this effect can shift
to the Red King effect when we include the reward variable in the
multiplayer game. Specifically, the size of the basin of attraction of
(D1, C2) increases substantially as the reward intensity wi increases
(Fig. 2e). As a result, the slower-evolving species obtains a larger
share of the benefits (Fig. 2f). This means that the initial Red
Queen effect shifts to the Red King effect when the magnitude of
the reward is over a certain threshold value (Fig. 3c). However, this
reward mechanism does not allow the Red King effect to shift to the
Red Queen effect (Fig. 3a and 3b). Finally, we find that the size of the
reward can accentuate the Red King effect (Fig. 3b and 3c).

Next, we explore the process resulting from the shift between the
Red Queen effect and the Red King effect. From the analyses above,
we predict which species would be favoured. As explained, this
depends on the relative sizes of the two basins of attraction (C1,
D2) and (D1, C2), i.e., S1 and S2. Theoretically, it is difficult to obtain
accurate values for S1 and S2. Fortunately, when the evolutionary
game is symmetric, we can use values of x and y to measure the size
of S1 and S2 (in this case, x 5 y; further details of this method are
reported by Bergstrom and Lachmann (2003)25). Specifically, the
replicator solutions of the two species create quadrants in the state
space (0 # x, y # 1) (Fig. 2). When the internal equilibrium is x 5 y 5

0.5, the bottom-left and the top-right quadrants are of equal size. As a
result of this symmetric geometry, the basins of attraction (C1, D2)
and (D1, C2) become the same, i.e., S1 5 S2. If the equilibrium is less
than x 5 0.5, the bottom-left quadrant is smaller than the top-right
quadrant, i.e., S1 . S2 (Fig. 2d). As a result, the faster-evolving species
would be favoured, as depicted by the Red Queen effect (Fig. 3c).
Conversely, if the equilibrium is greater than x 5 0.5, the bottom-left
quadrant is larger than the top-right quadrant, i.e., S1 , S2 (Fig. 2f).
Thus, the evolutionary process will favour the slower-evolving spe-
cies, as described by the Red King effect25 (Fig. 3c). Interestingly, in a
multiplayer game with fixed bi, ci, and a fixed number of players, di,

the equilibrium x exceeds 0.5 with increasing rewards (Fig. 3c). Thus,
the Red Queen effect can shift to the Red King effect and vice versa,
depending on the intensity of the rewards. Finally, note that this

method is not valid when the evolutionary game is asymmetric
(e.g., with asymmetric payoffs or asymmetries in the number of
players) because the above geometry becomes asymmetric (with x
? y, see Fig. S9 in the electronic Supplementary Material). In this
case, we use simulations to estimate the size of S1 and S2.

Asymmetric players. Surprisingly, only recently there has been some
focus on the effect of asymmetry in the number of interacting part-
ners (i.e. d1 ? d2)33,57. We know that this phenomenon is ubiquitous
in nature. Most literature on mutualisms assumes that a single host
interacts with, and controls the fate of, multiple partners. In the fig
and fig wasps mutualism, for example, a single fig is attended by
multiple fig wasps. From the perspective of each wasp, this is a pair-
wise game, but from the perspective of the fig, this is a multiplayer
game. However, for symbioses between plants and arbuscular
mycorrhizal fungi, plant species are typically colonised by multiple
fungal species59, and fungal individuals can simultaneously interact
with multiple host plants60 or species61. For one-to-many interac-
tions, when a symbiont evolves much faster than its host–which is
often the case–the host can dominate the co-evolutionary process by
allowing the Red King effect to appear (see Fig. 4a or Fig. S9a). By
contrast, the symbiont becomes dominant in the co-evolutionary
race when we consider many-to-many interactions (e.g., the inter-
action between plants and arbuscular mycorrhizal fungi) (see Fig. 4a
or Fig. S9b). This is consistent with the more often cited Red Queen
effect. Thus, we conclude that asymmetry in the number of players
can produce different effects (i.e., the Red Queen versus Red King).
This result is consistent with those of Gokhale and Traulsen (2012).

Asymmetric payoffs. In mutualistic interactions, the interacting
players can obtain different rewards at different times (i.e.w1 ?
w2). The Red King effect can shift to the Red Queen effect by adjust-
ing reward asymmetry. Similarly, the Red Queen effect might be
reversed by adjusting reward asymmetry (Fig. 4b or Fig. S9c and
9d). In fact, the payoff matrices become asymmetric because of the
different rewards wi, benefits bi and costs ci for the two species.

In summary, the reward mechanism and the asymmetry of inter-
actions (e.g., asymmetry in payoffs or the number of players) might
determine the ultimate allocation of mutualistic benefits (the Red
Queen effect or the Red King effect). These results might provide
an explanation for why, in some mutualisms, the faster-evolving
species are dominant (e.g., in the endophytic fungi and grasses mutu-
alism, the fungi appear to reduce the host’s tendency to reproduce
sexually; sex seems to be the critical element4). In other mutualisms,

Figure 3 | The effects of a reward wi and the game size N on the internal equilibrium x*. We assume the numbers of players between species to be equal,

i.e., d1 5 d2 5 d. Thus, the game size for each species is defined by N, and N 5 d 1 1. (a) Given a relatively low reward intensity (i.e., w 5 0.8),

the internal equilibrium x* is above 0.5 in small groups (e.g., N 5 2 or N 5 3). (b) For pairwise games, the equilibrium is always above 0.5 for any reward

intensity. (c) When the size of the mutualistic group is large (i.e., N 5 8), the internal equilibrium can shift from a small value (below 0.5) to a large value

(above 0.5) with a rise in the collective reward. The other parameters are fixed at bi 5 2, ci 5 1 and Mi 5 1.
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the slower-evolving species are dominant (e.g., in the invertebrate-
algal and lichen mutualisms62,63 or the host-endosymbiont mutual-
isms64). Therefore, opposite outcomes may result from differences in
the payoffs, in the number of players, and in the reward mechanism
across species.

The allocation of mutualistic benefits under equal evolutionary
rates. Given symmetrically interacting species with equal evolutio-
nary rates, the allocation of benefits between the two species will be
equal (Fig. 4c or Fig. S9e). In the case of asymmetry, however, the
species with fewer participants will receive relatively more benefits
(Fig. 4c or Fig. S9f). In addition, the asymmetric rewards imply that
benefits are allocated unevenly. If the rewards are equal, the benefits
should also be equal (Fig. 4d or Fig. S9g). Instead, the species that gets
fewer rewards will have a stronger tendency to freeload and will receive
greater benefits without paying the related costs (Fig. 4d or Fig. S9h). In
addition, we can assume that the asymmetry in initial benefits or costs
causes an unequal allocation of resulting benefits.

Note that these specific results are suitable for the allocation of
benefits within a single species constituted by two types of players

with equal evolutionary rates. In specific instances, the resulting
benefits arising from the cooperative behaviour may be allocated
to the participants according to a set of rules (e.g., a social hierarchy).
This often happens in social animal groups, e.g., in lions and wolves
when displaying cooperative hunting behaviour.

Complex Cooperation. Different social dilemmas can arise within
the context of multiplayer games. When the thresholds Mi are
adjusted, we incur a scenario of complex cooperation. In adjusting
the thresholds Mi between two species, not only do we observe a
bistability between all cooperative individuals and all defectors
(Fig. 5a) but we also find that the cooperative individuals and the
defectors can coexist through a rock-paper-scissors dynamic (as
shown by the ‘‘white region’’ with closed orbits in Fig. 5b).
Furthermore, by accounting for an asymmetry in the thresholds
(i.e., M1 ? M2), the cooperative system follows the boxed pigs
game, in which only one side chooses to cooperate, but the other
side inevitably defects (Fig. 5c).

Finally, yet importantly, a special case is represented by those
human societies showing a division of labour. For a functioning

Figure 4 | The influence of asymmetric players or rewards on the allocation of mutualistic benefits. (1) First, we consider unequal evolutionary rates

between the two mutualistic species (rx 5 1/8, ry 5 1). (a) For a fixed number of players of species 2 (d2 5 8), the difference between S1 and S2

depends on the number of players of species 1 (d1), where S1 and S2 represent the size of the basins of attraction of the equilibrium (C1, D2) and (D1, C2),

respectively. For one-to-many interactions between the two species, S2 is larger than S1. Conversely, S1 is larger than S2 when the interactions between

species are many-to-many (e.g., d1 5 4). (b) Similarly, by adjusting the intensity of reward for species 2 (w2), the Red King effect (i.e., S2 . S1) can also

shift into the Red Queen effect (i.e., S1 . S2), and vice versa (the reward intensity on species 1 is fixed at w1 5 1). (2) For equal evolutionary rates between

two species (rx 5 ry 5 1), each player will receive equal mutualistic benefits when the number of players of the two species are symmetric (c) (e.g., di 5 8

with i 5 1,2). When the numbers of the players of the two species are asymmetric (d1 ? 8), each player will receive unequal mutualistic benefits. Similar

results can be obtained for the rewards (as in (d)). We also assume that d2 5 8 in (c) and w1 5 1 in (d). The other parameters are fixed at bi 5 2, ci 5 1 and

Mi 5 1, w1 5 w2 5 0 in (a) and (c), and d1 5 d2 5 4 in (b) and (d).
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cooperation, it is required that each player cooperates to complete
the task (Mi 5 di 1 1). In such situations, we witness an extreme
outcome: a stable state of full cooperation arises (i.e., E4(1,1) is an ESS
– the ‘pink region’ in Fig. 5d).

Conclusion
To analyse how benefits are shared between two mutualistic species,
we established a multiplayer snowdrift game model that incorpo-
rated a reward mechanism. This model demonstrates that the Red
Queen effect can shift to the Red King effect and vice versa by adjust-
ing the intensity of the rewards. When the rewards are small, the Red
Queen effect is observed; when the rewards exceed a certain thresh-
old, the Red Queen effect transforms into the Red King effect. To
make the model more realistic, we also included asymmetric payoffs
and asymmetries in the number of interacting partners. By changing

the degree of asymmetry of the reward or the number of interacting
partners, we again found that the Red Queen effect can shift to the
Red King effect. Even in situations where the evolutionary rates are
equal between the two species, the asymmetric factors (e.g., asym-
metry in the reward wi, in the benefits bi, in the costs ci or in the
different number of interacting individuals belonging to the two
species di) can create an inequality in the allocation of the resulting
benefits between the partners.

Moreover, some complex cooperative strategies might be observed
by manipulating the thresholds Mi. First, for more general thresholds
(i.e., with Mi . 1 and i 5 1,2), the cooperative individuals and the
defectors seem to coexist with oscillating frequencies. Second, when
there is an asymmetry in the thresholds (i.e., M1 ? M2), the system
falls into the dilemma of the boxed pigs game, in which only one side
chooses to cooperate and the other side chooses to defect. Third, in

Figure 5 | Complex cooperative behaviours in the snowdrift game with a reward or a general threshold. (a) If the thresholds for the two species are M1 5

1 and M2 5 1, a bistability is observed between all cooperative individuals and all defectors. (b) When M1 5 1, M2 5 3, we observe the

‘‘white regions’’ with closed orbits in the interior. The initial conditions falling within the ‘‘grey region’’ will converge to the equilibrium (C1, D2) and

those falling within the ‘‘green region’’ will converge to the equilibrium (D1, C2). (c) When M1 5 1, M2 5 6, all initial conditions lead to (D1, C2). At this

point, only one side chooses to cooperate while the other side chooses to defect. (d) In the special case of Mi 5 di11 and wi 5 0 with i 5 1,2, the

equilibrium point (C1, C2) (the ‘pink region’) is an ESS. In this case, full cooperation among players becomes possible. The other parameters are fixed at di

5 4, bi 5 2, ci 5 1,wi 5 0 with i 5 1,2, and rx 5 ry 5 1.
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the special case of all participants cooperating, a benefit is generated
such that a state of full cooperation becomes stable in the population.

Methods
The dynamics of an evolutionary snowdrift game with a reward mechanism. The
evolutionary times of x(t) and y(t) of the two species are governed by the following
replicator dynamic equations25,57

dx
dt

~rxx(fC1 (y){f1(x,y))

�
f1(x,y):F(x,y)

dy
dt

~ryy(fC2 (x){f2(x,y))

�
f2(x,y):Q(x,y)

8>>><
>>>:

: ð9Þ

From equation (9), we can obtain four boundary equilibrium points denoted as
E1(0,0), E2(1,0), E3(0,1) and E4(1,1). In addition, using simulations, we can obtain the
inner equilibrium points and denote them as: E(xi,yi) where i 5 1,2. The elements of
vector (x,y) are the frequencies of the cooperative individuals of species 1 and 2,
respectively. It is, however, difficult to obtain the analytical expressions of xi and yi for
large group sizes N because the inner equilibrium points should satisfy the following
equations with N powers

fC1 (yi){f1(xi,yi)~0

fC2 (xi){f2(xi,yi)~0

(
: ð10Þ

The stability of the nonlinear system can be determined from the analysis of
linearisation56. Thus, to analyse the evolutionary stability of the replicator dynamics
(9) with N 1 1 powers, we should first obtain the linearisation of the dynamics at
every equilibrium point. The linearisation of the replicator dynamics (9) at an equi-
librium point (x,y) becomes

dx=dt
dy=dt

 !
~

LF x,yð Þ=Lx
LF x,yð Þ=Ly

LQ x,yð Þ=Lx
LQ x,yð Þ=Ly

0
@

1
A
������

x,yð Þ~ x,yð Þ

: x

y

� �
, ð11Þ

where

LF x,yð Þ=Lx~ 1{2xð Þ fC1 {fD1ð Þf1{x 1{xð Þ fC1 {fD1ð Þ: Lf1

Lx

� 	�
f1

2
, ð12Þ

LF x,yð Þ=Ly~ x 1{xð Þ: L fC1 {fD1ð Þ
Ly

:f1{x 1{xð Þ fC1 {fD1ð Þ: Lf1

Ly

� 	�
f1

2
, ð13Þ

LQ x,yð Þ=Lx~ y 1{yð Þ: L fC2 {fD2ð Þ
Lx

f2{y 1{yð Þ fC2 {fD2ð Þ: Lf2

Lx

� 	�
f2

2
, ð14Þ

and

LQ x,yð Þ=Ly~ 1{2yð Þ fC2 {fD2ð Þf2{y 1{yð Þ fC2 {fD2ð Þ: Lf2

Ly

� 	�
f2

2
: ð15Þ

To simplify this analysis, we assume that the benefits bi, the costs ci, the rewards wi,
and the thresholds Mi (with i 5 1,2) of the two species are the same. By analysing the
property of the matrices’ eigenvalues, produced by the linearisation of the replicator
dynamics (11) at the equilibrium points, we find that:

Scenario (1) 1 # Mi , di 1 1 with i 5 1,2. The equilibrium points E1(0,0), E(x1,y1)
and E(x2,y2) are sources (unstable); the equilibrium points E2(1,0) and E3(0,1) are
locally stable, if wi/bi , djci/bi.with i,j 5 1,2 and i ? j. In addition, the equilibrium
point E4(1,1) is a sink (stable), if wi/bi . djci/bi;

Scenario (2) Mi 5 di 1 1 with i 5 1,2. The equilibrium points E1(0,0), E2(1,0) and
E3(0,1) are sources (unstable), and the equilibrium point E4(1,1) is a sink (stable).
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