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Abstract

Results of medical research studies are often contradictory or cannot be reproduced. One reason is that there may not be
enough patient subjects available for observation for a long enough time period. Another reason is that patient populations
may vary considerably with respect to geographic and demographic boundaries thus limiting how broadly the results apply.
Even when similar patient populations are pooled together from multiple locations, differences in medical treatment and
record systems can limit which outcome measures can be commonly analyzed. In total, these differences in medical
research settings can lead to differing conclusions or can even prevent some studies from starting. We thus sought to create
a patient research system that could aggregate as many patient observations as possible from a large number of hospitals
in a uniform way. We call this system the ‘Shared Health Research Information Network’, with the following properties: (1)
reuse electronic health data from everyday clinical care for research purposes, (2) respect patient privacy and hospital
autonomy, (3) aggregate patient populations across many hospitals to achieve statistically significant sample sizes that can
be validated independently of a single research setting, (4) harmonize the observation facts recorded at each institution
such that queries can be made across many hospitals in parallel, (5) scale to regional and national collaborations. The
purpose of this report is to provide open source software for multi-site clinical studies and to report on early uses of this
application. At this time SHRINE implementations have been used for multi-site studies of autism co-morbidity, juvenile
idiopathic arthritis, peripartum cardiomyopathy, colorectal cancer, diabetes, and others. The wide range of study objectives
and growing adoption suggest that SHRINE may be applicable beyond the research uses and participating hospitals named
in this report.
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Introduction

Results of medical research studies are often contradictory[1,2]

or cannot be reproduced[3,4,5,6,7]. One reason is that there may

not be enough available patient subjects[8] observed over a long

enough time period[9,10]. Another reason is that patient

populations may vary considerably across geographic[11] and

demographic boundaries[12] thus limiting how broadly the results

apply. Even when similar patient populations are pooled together

from multiple locations, differences in medical treatment[13] and

record systems[14,15] can limit which outcome measures can be

commonly analyzed. In total, these differences in medical research

settings can lead to differing conclusions or can even prevent some

studies from starting.

Consider Acute Lymphoblastic Leukemia (ALL), a rare

pediatric cancer. Since each hospital only sees a few cases per

year, studies of clinical effectiveness or disease biology are only

realistically possible through multi-center analyses[16]. Now

consider type 2 diabetes, a common polygenic disease having

many risk factors[17] and comorbid diagnoses[18,19]. The

number of adults in the United States with newly diagnosed

diabetes has more than tripled since 1980 [20] affecting patient

populations at different rates[21] among states [11], ethnicities

[12], and socioeconomic positions[12]. Grouping populations of

diabetic patients according to demographics, disease risk, and

previous treatments results in many smaller sets of patients to

analyze. Thus, even for a disease reaching epidemic levels it is
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often necessary to observe multiple health care systems in parallel

to study enough patients representing the general population.

We thus sought to create a patient research system that could

aggregate as many patient observations as possible from as many

hospitals as possible. We call this system the ‘Shared Health

Research Information Network’, with the following properties: (1)

reuse electronic health data from everyday clinical care for

research purposes; (2) respect patient privacy and hospital

autonomy; (3) aggregate patient populations across many hospitals

to achieve statistically significant sample sizes that can be validated

independently of a single research setting; (4) harmonize the

observation facts recorded at each institution such that queries can

be made across many hospitals in parallel; (5) scale to regional and

national collaborations.

The purpose of this report is to provide open source

software[22] for multi-site clinical studies and to report on early

uses of this application. At this time SHRINE implementations

have been used for multi-site studies of autism co-morbidity[23],

juvenile idiopathic arthritis[24], peripartum cardiomyopathy[25],

colorectal cancer, diabetes[26], and likely others. The wide range

of study objectives and growing adoption of the software suggest

that SHRINE may be applicable beyond the research uses and

participating hospitals named in this report.

Results

SHRINE has been developed and deployed to at least six

networks in the United States serving a wide range of study

interests (Table 1). On the east coast, 5 Harvard affiliated teaching

hospitals are now able to query and analyze anonymized data on

over 6 million patients covering a 10 year period. Authorized

investigators perform Boolean searches for patient populations

matching detailed study criteria including patient demographics,

diagnoses, medications, and common lab tests. The east coast

network at Harvard has been used to conduct the largest study to

date of co-morbidities in Autism Spectrum Disorders[23]. The

Harvard network was also used to help validate a novel discovery

in peripartum cardiomyopathy[25], Many other population scale

studies are now possible for 7500+ authorized Harvard users. On

the west coast, 3 independent academic medical centers have

utilized SHRINE for an evaluation study focused on Type II

Diabetes[26]. Nationally, SHRINE has been used to link 61 health

institutions to create the largest US patient registry of pediatric

rheumatic diseases[24,27]. Another national SHRINE project is in

development spanning 9 large US institutions for studies of autism

and diabetes. In Europe, a consortium spanning 5 countries is

evaluating the use of SHRINE for use in clinical trials and

medication safety[28,29]. The research objectives, policy agree-

ments, and technical systems of each SHRINE network exhibit a

high degree of heterogeneity, suggesting that this approach is

broadly applicable for a wide range of patient studies.

Availability
SHRINE is freely available Open Source Software [22].

Methods

I. Design and Implementation
The goal of SHRINE is to query large, independent patient

populations to address problems of insufficient sample size and

sample bias. SHRINE is designed to reuse information captured

during patient care[30,31], to protect patient privacy[32], to query

heterogeneous health systems simultaneously, and to scale to

nation-wide participation[33]. SHRINE aims to serve multiple

study needs such as cohort discovery[34] and population scale

measurements[35,36].

The proof of concept system at Harvard was implemented

during Summer 2008 with a single year of patient demographic

and diagnosis data with access limited to users responsible for

building and demonstrating the system[37]. The production peer-

to-peer (P2P) system has since been developed and provides

federated user identity, asynchronous query broadcast and

aggregation, scalable network topologies, and tools for mapping

between medical concept coding systems.

II. Investigator Scenario
An Investigator at Children’s Hospital Boston is interested in

finding patients with Acute Lymphoid Leukemia (ALL) to study

the effectiveness of different chemotherapeutic agents in children

and adults (Figure 1). Because the incidence of ALL is rare, she

needs to aggregate patients from many hospitals to achieve

statistical significance. She applies for access to SHRINE, which

certifies that she is a qualified faculty member of a participating

hospital and has received query approval from the local Data

Steward. Her query for ‘Acute Lymphoid Leukemia’ (with or

without mention of remission) is then broadcasted to each one of

the participating hospitals and she is returned the aggregated

patient sets. She further refines her query to only include patients

treated with a multidrug chemotherapy regimen, as well as a

complete blood count test to confirm the ALL diagnoses. She then

requests IRB approval for access to the identified patient cohort.

Using SHRINE, she finds potentially five times as many patients

than if she looked only at a single hospital. Importantly, the

aggregated cohort contains both pediatric and adult cases

necessary to conduct this leukemia study.

III. Federated Query Sequence
From the investigator user perspective, SHRINE queries

multiple hospitals at the same time and aggregates results that

match the study criteria (Figure 1). From the system perspective,

SHRINE is a peer-to-peer (P2P) network of independently

controlled ‘peer’ databases. In SHRINE, there is no centralized

authority or centralized database – each hospital verifies their own

investigator employees, protects their own patient subjects, and

hosts their own database of observation facts.

First, the investigator must login to the hospital that employs

them. All investigator queries are digitally ‘signed-by’ their

employer in accordance with policy agreements. Second, the

investigator composes a query that conforms to the SHRINE Core

Ontology. The Core Ontology defines the standard set of medical

concepts and hierarchical relationships that can be used to

compose a query. Third, the query is broadcasted to each ‘peer’

hospital. Every hospital peer must have prior regulatory approvals

and business agreements. Fourth, each peer verifies that the

incoming query is from a trusted broadcaster and translates the

incoming query to be executed on the local patient data

repository. Fifth, each peer queries their local patient data

repository and anonymizes the query result. Finally, results are

aggregated and presented to the investigator (Figures 2 and Figure

S1).

The following sections describe how to compose a patient query

using standard medical ontologies, how to secure patient privacy,

how to prepare data mappings, how to translate federated queries,

and lastly, how to scale the network to nationwide participation.

IV. Composing a Patient Query
Patient queries are composed using concepts and relationships

defined in an ontology. The SHRINE Core Ontology supports many
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concepts recorded during patient care including diagnoses,

medications, lab tests, and demographics (Table 2). The Core

Ontology contains 13,000+ diagnosis concepts and 4,500+ drug

ingredient concepts[38].

Hierarchical relationships[38,39] are used to organize the vast

number of medical concepts into groups that are easier for an

investigator to query and analyze. Consider heart disease, the

leading cause of death in the US[40]. Heart disease has many

billable conditions recorded during care delivery – 40 codes just

for various episodes and subtypes of heart attack (Acute

Myocardial Infarction). Patients with heart disease may also use

a beta-blocker, ACE inhibitor, or other cardiovascular medication.

Using the hierarchy makes it easier to query medically related

medications and diagnoses (Figure 3). SHRINE currently supports

a subset of the patient query features available in i2b2: Boolean

concept operators (and, or, not), hierarchical paths (query

expansion), and observation constraints (dates, number of occur-

rences).

Composing a patient query is usually an iterative process that

begins with a single large patient set and proceeds by analyzing

several smaller patient sets. First, an investigator may wish to see if

there are enough cases and controls to power their study. Second,

the investigator may refine the query criteria to additionally

require study features such as co-morbid diagnoses, medication

prescriptions, and lab tests. Third, the investigator may subdivide

patient sets according to age group, gender, or other demographic

Table 1. Deployed SHRINE networks.

Location # Institutions #Patients Research Focus

SHRINE East 5 6.1 M Any

National Disease Registry 61 ,5,000 Pediatric Rheumatic Diseases

National Demo 9 1.6 M+ Autism, Diabetes

California State 5 ,11 M Diagnoses, Procedures

SHRINE West 3 4.2 M+ Diabetes Epidemiology

The Harvard implementation (SHRINE east) is non-disease specific network used by faculty and fellows. Some studies have been completed and published. The National
disease registry is the largest disease registry in the US of its kind. The National Demonstration network is being used to analyzing co-morbidities of autism spectrum
disorders and diabetes in geographically disperse US states. Lastly, HMO SHRINE was a HMORN pilot project with 12 M+ patients. HMO SHRINE is not listed here
because the pilot was completed successfully.
doi:10.1371/journal.pone.0055811.t001

Figure 1. Investigator’s perspective of the SHRINE Webclient. Group 1 defines searches for patients with Acute Lymphoid Leukemia (ALL).
Group 2 refines the search result to only those patients having one of the medications listed. The medications shown are all chemotherapeutic agents
administered during intensive phase. Group 3 further refines the result to require a lab test administered during diagnosis. Lab test values can be set
directly or flagged as ‘abnormally high/low’. In the Query Status window, patient counts are displayed with a Gaussian blur to provide additional
privacy safeguards of small patient populations. Results are shown for each hospital and the aggregated patient set size.
doi:10.1371/journal.pone.0055811.g001
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criteria. Each investigator is free to compose queries that match

their study objectives, receiving query answers in seconds that

would otherwise take days or even years to obtain.

V. Securing Patient Privacy
Hospitals are stewards of patient privacy. Striking the

balance between research benefit and disclosure risk is a

challenging responsibility for each hospital Institutional Review

Board (IRB). Given that each hospital is responsible for protecting

the privacy of their patients, it follows that each hospital should

retain the authority to approve or reject requests for access to data

on their patients. When the request comes from an investigator

employed by the hospital, it is reasonable to assume the hospital

knows who the investigator is and can verify her identity.

However, when the request is from an investigator at a different

hospital, how can the investigator be credentialed and trusted?

Technical solutions for building trust between hospital

peers. Trust agreements between collaborating SHRINE peer

Figure 2. Federate Query Sequence. The investigator logs in and composes a query in steps 1–2. SHRINE securely queries multiple hospital peers
and returns aggregated results in steps 3–6. The process of securing and translating queries across multiple hospitals is invisible to the investigator
user. Lastly, the investigator reviews the results and logs out in steps 7–8.
doi:10.1371/journal.pone.0055811.g002

Table 2. SHRINE Core Ontology.

CATEGORY CODING SYSTEM HIERARCHY

Diagnoses ICD-9-CM CCS2

Medications RxNorm NDF-RT

Lab Tests LOINC

Demographics

Gender HL7 Administrative Gender

Language ISO 639-1

Marital Status HL7 Marital Status

Race and Ethnicity CDC Race & Ethnicity Code Sets

Religion HL7 Religious Affiliation

Left column: categories supported in the core ontology include diagnoses,
medications, lab tests, and demographics. Middle column: coding system used
for each category. The demographics category uses multiple coding systems to
handle the relevant sub-categories such as gender and language. Right column:
hierarchy used to group medically related concepts. Standard hierarchies were
adopted where possible, which was the case for diagnoses and medications.
doi:10.1371/journal.pone.0055811.t002

Figure 3. Query Expansion in the Core Ontology. Selected
Example: ‘Cardiovascular medications’ is selected and the child contents
are shown. At runtime, the query is expanded to include every concept
in the cardiovascular medication group, recursively.
doi:10.1371/journal.pone.0055811.g003
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institutions are formalized through mutual exchange of X509

digital certificates. SHRINE uses digital certificates to secure

HTTPS communication and to identify hospital peers[41]. When

an investigator ‘logs-on’ at their hospital, the employing hospital

certifies the employee credentials and digitally signs the identity of

the investigator. The digital signature[42] is attached to the query

criteria before the query is sent (broadcast) to every trusted peer in

the network. When the query is received the source is verified

before processing. If the signature is from an untrusted source or if

the signature is invalid due to identity tampering, then the query is

rejected. Because digital signature verification is a local operation,

hospital credentialing systems do not need to be exposed to other

institutions.

To further protect against external hacking attempts, institu-

tional firewalls at each hospital are configured to allow only IP

addresses of trusted peer institutions. To further protect against

internal privacy accidents, population statistics should be used

until the time that individual patient facts are truly necessary for

the study. The default level of data access in SHRINE is

‘anonymized’ meaning that only the size of the patient set is

returned, not a line item list of patient details. SHRINE

anonymized results are further obfuscated to protect very small

populations (,10 patients). Accidental sharing of patient numbers

poses little or no risk to patient privacy. If additional permission

has been granted by the hospital IRB, additional data access may

be provided by the hospital to authorized investigators.

Joining the Network. Prior to joining a SHRINE network,

each hospital secures institutional and regulatory approval. This

includes an IRB review (which may be expedited if the SHRINE

queries are only for aggregate numbers of patients meeting

criteria). It also requires agreement on a set of operational

principles or ‘Business Rules’ by the leadership of participating

institutions. The Business Rules (those implemented at Harvard are

provided in Supporting Information) serve as the template to secure

approvals to share clinical data between health research institu-

tions. Under these agreements, each institutional team loads

medical facts into a locally controlled data repository that resides

behind the hospital firewall.

Ethics Statement. The Institutional Review Boards (IRB) of

the Beth Israel Deaconess Medical Center, Children’s Hospital

Boston, Dana-Farber Cancer Center, and Partners Health Care

representing Massachusetts General Hospital and Brigham and

Women’s Hospital individually approved use of their data for the

SHRINE network. The human studies committee (IRB) at

Harvard Medical School in its role as fund administrator also

reviewed and approved the SHRINE network. The regulatory

committee of the Harvard CTSA (catalyst) developed a set of

policies governing usage of the SHRINE network that was

approved by the senior research vice president at each participat-

ing institution. Informed consent was not necessary as only

aggregate numbers of patient attributes derived from medical

records were provided, a usage considered non-human research by

all IRBs.

VI. Mapping Heterogeneous Medical Coding Systems in
Multi-Site Studies

Ideally, every hospital would adopt the same standard set of

medical concepts and relationships to record patient observations.

However, different hospitals often have differing clinical informa-

tion systems, medical coding practices, service specialties, and

patient populations. Different investigator users and data manag-

ers often have differing perspectives on how clinical data should be

schematically represented and semantically queried. Accounting

for these differences can quickly exhaust the human resources

available. SHRINE aims to maximize the breadth of supported

research studies without requiring significant investment in human

expert curators.

Figure 4 illustrates the mapping scenario for a typical SHRINE

participating site. First, the hospital extracts patient observations

from various clinical databases into a locally controlled patient

data repository. Second, hospital data curators construct bipartite

graphs (key value pairs) for each of the four categories of clinical

concepts defined in the Core Ontology. Each bipartite graph

relates a set of local concepts to a set of standard concepts. Figure 5

contains mapping examples for lab tests and medications. Third,

medically related concepts are grouped and their relationships are

traversed using standard medical hierarchies. Fourth, the local

hospital is now able to translate the incoming query to use local

concept codes. Figure 6 reports the coverage of supported

medication and diagnoses concepts at four Harvard hospitals.

Figure S2 provides a screenshot of the software that enables the

mapping process.

VII. Adapting Network Queries for Local Execution
SHRINE Adapters are interfaces between the SHRINE network

and the local patient data repository[43]. The Adapter translates

incoming queries so that the query can be executed locally without

changing the data in the local repository. Each participating

SHRINE peer hosts an Adapter loaded with mappings that

support query terms in the ‘Core Ontology’.

SHRINE Adapters validate, audit, translate, and anonymize

queries. First, each Adapter validates that the query is from a

trusted source by validating digital signature of the investigator

identity[42]. Second, each Adapter audits the investigator to

ensure against suspicious query activity such as excessive queries

for the same small patient cohort. Third, the Adapter translates

the query concepts into a format recognizable by the local data

repository. Fourth, the Adapter anonymizes the patient count by

applying a Guassian filter accurate to within +/23 patients of the

actual result[44]. Lastly, each Adapter responds to the originating

SHRINE Broadcaster-Aggregator.

SHRINE provides a plug-in architecture allowing any data

repository to be used so long as it accepts SHRINE messages. By

default, SHRINE is configured to use the i2b2 data repository

because it is commonly used[28,45]. Institutions that use a third

party data repository can participate in SHRINE by implementing

the open messaging interface. Both the SHRINE[22] and i2b2[46]

software packages are freely available and Open Source.

VIII. Scaling to National Participation
Groups of SHRINE hospitals (peers) can be configured in peer-

to-peer (p2p) or hub-spoke network topologies (Figure 7). In a p2p

network, every peer has a link to every other peer. In relatively

small SHRINE networks, p2p topologies can be configured with a

few links. However, the number of direct links quickly grows with

the number of peers in a fully-meshed network (Figure 8). Because

each link requires a firewall rule and webservice URL, even a

modestly sized network of 10 peers would require 45 firewall

exceptions and 10 duplicate copies of routing information. In a

network of 60 institutions, a p2p (fully meshed) network would

require 1,770 firewall rules and 60 duplicate routing tables, which

could overburden network administrators. Instead, larger deploy-

ments are more often arranged in hub-spoke topologies, as

exemplified by the quickly deployed CARRAnet registry.

Similar to TCP/IP networks, SHRINE facilitates grouping

regional peers into subnetworks and then links them together. This

is highly desirable because communication networks typically

grow according to power law[47,48] naturally leading to

SHRINE: Scalable Multi-Site Disease Studies
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community ‘hub’ formations. The hub-spoke deployment was

previously utilized for the SPIN human tissue network, linking 7

large independent medical centers into regional peer groups [33].

SHRINE peers can participate in many different studies with

many different institutions at the same time without changing the

source data. Multiple Adapter mappings can be loaded for

Figure 4. Hospital Data Mapping Scenario. First, existing clinical data are extracted into a locally controlled database for research. Second, each
local code is mapped to one or more standard concept codes, and vice versa. Third, related medical concepts are grouped using standard hierarchies
curated by medical experts. The bipartite graphs produced by this process enable bidirectional translation between concept systems. Fourth, adapt
the incoming query to use the local concept codes.
doi:10.1371/journal.pone.0055811.g004

Figure 5. Constructing Bipartite graphs to map concept systems. Left: Medications are mapped between Children’s Hospital Boston (blue)
and the RxNorm standard (green) if they share a drug ingredient. The hospital concept code for Acetaminophen is mapped to the RxNorm concept
code for Acetaminophen. Codeine also has one mapping. ‘Acetaminophen with Codeine’ has a mapping to RxNorm for each of its ingredients.
Patients recorded with the local concept ‘Acetaminophen with Codeine’ will match standard queries using any of the mapped RxNorm drug
ingredients. Right: Lab Test concepts are mapped between Children’s Hospital Boston (blue) and the LOINC standard (green). Bicarbonate and Blood
Urea Nitrogen are each mapped once. Other lab tests require a one-to-many mapping, for example, there are at least four different metabolic tests
for sodium (Na+) levels recorded in the Children’s Hospital Boston clinical systems.
doi:10.1371/journal.pone.0055811.g005

SHRINE: Scalable Multi-Site Disease Studies
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different study objectives. For example, the SHRINE Core Ontology

(Table 2) was designed to provide maximal breadth of medical

concepts commonly available in Electronic Health Record (EHR)

systems. However, the core ontology does not describe data

collected outside the EHR setting, such as patient registries or

clinical trials. In such cases, it is necessary to adopt[49] or define

ontologies suitable to how the data are collected. Because

SHRINE translates the query rather than transforming the data,

multiple study-specific views can occur simultaneously without

source data duplication or transformation.

Discussion
In this era of ‘translational’ research[50,51], there is a growing

and critical need for systems that streamline clinical data access for

research while maintaining patient privacy and safety. Concur-

rently, the need for ever-larger cohort sizes[3,31] increasingly

necessitates crossing institutional boundaries between healthcare

and research organizations that individually have insufficient

numbers of patient-subjects. In reusing the by-products of routine

care delivery, SHRINE has capitalized on low cost cohort

identification with very large yields in terms of both number of

Figure 6. Percentage of Diagnosis and Medication concepts mapped for SHRINE queries at participating Harvard affiliated
teaching hospitals. Left: Percentage of ICD9-CM diagnoses concepts mapped to at least one diagnosis concept at the hospital. Right: Percentage
of RxNorm medication concepts mapped to at least one patient medication concept at the hospital.
doi:10.1371/journal.pone.0055811.g006

Figure 7. Peer Group configurations. Top: P2P networks are shown for the deployed West and East coast SHRINE networks with 3 and 4 peers
respectively. P2P networks have n*(n-1)/2 edges. In the example p2p network with 6 peers, 6*5/2 = 15 edges are drawn. A 60 node P2P network
would have 60*59/2 = 1,770 edges. Bottom: Hub Spoke networks are drawn starting with 6 peers. As peers are added, they can attach with a single
link to an existing hub. As new hubs are formed regionally, they can be easily attached to the overall network.
doi:10.1371/journal.pone.0055811.g007

SHRINE: Scalable Multi-Site Disease Studies
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patients and number of phenotypic features. SHRINE institutions

and whole networks are increasingly being instantiated for

population scale measurement on regional and national scales.

The widespread use and wide range of investigation scenarios

served suggest that there may be broader applicability for other

clinical research uses. Since SHRINE is more a network API

rather than a final product, it is possible to envision new

applications. For example, a European public-private partnership

is evaluating the SHRINE platform to locate patient cohorts for

clinical trials. There is also a strong potential for using SHRINE to

locate human biospecimens for genomic studies[31,52,53], mon-

itor population health [35,54], and detect adverse medication

events [36,55,56].

The authors recognize several limitations in this work. Limiting

results to patient counts was essential in the building phases to

reach agreement among hospital stakeholders. Consequently,

extracting clinical details on selected patients is currently a manual

process requiring IRB approval from each hospital and technical

assistance. The next major development of SHRINE will focus on

providing HIPAA Limited Data Sets on the subset of patients that

match an IRB approved query such that the application process is

streamlined for investigators.

Mapping medical concept dictionaries do not always produce

perfect translations between concept systems. In the case of patient

demographics and diagnoses, mappings were rather straight

forward as billing standards were already in place. In the case of

medications and lab results, mappings were much more difficult.

Future work with the NCBO[49] aims to improve and increasingly

automate our ability to map between coding systems.

Important study variables, such as smoking status[57,58], co-

morbidities[59], and family disease history[60] are often missing

from the coded record and more likely to appear in physician

notes. These variables can often be extracted[61,62] using Natural

Language Processing (NLP). A previous version of the SHRINE

federated query protocol worked in this way[33] by searching

pathology reports for human tissues[52] that matched coded

clinical criteria[63]. However, at the time of this writing, NLP

processing is not directly integrated into the SHRINE software.

The adoption of enterprise-wide NLP processing tools such as

cTAKES[62] may enable deeper and automatic extraction of data

contained in unstructured text.

Biases in patient populations, medical coding practices, and

records management directly influence which medical facts can be

uniformly studied and how the results are interpreted. As the

number of SHRINE participating peers and medical concepts

increase, so too does the burden on an investigator. In response,

we are exploring methods to empirically guide or ‘autosuggest’

features relevant to a particular disease study.

Figure 8. Quadratic growth in the number of edges in a communication network. Each edge incurs administrative overhead to maintain a
list of peer locations and trust relationships. Fully meshed peer-to-peer (P2P) topologies have N*(N-1)/2 edges shown in red. Edge growth of hub-
spoke topologies are shown with an average hub size of 3 (size of the first deployments of east and west coast networks). A simple hub-spoke
topology requires one additional link per hub, shown in green. A fault tolerant topology requires two additional links per hub, shown in purple. With
60 peers, the number of p2p edges is administratively infeasible with 1,770 firewall rules and trust relationships.
doi:10.1371/journal.pone.0055811.g008
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In conclusion, in an era where EHR implementation is growing

rapidly, SHRINE provides a scalable solution for querying the

informational byproducts of healthcare to conduct regional and

national disease studies. SHRINE seeks to overcome problems of

false discovery by 1) increasing the number of patients observed, 2)

validating results across many patient settings, and 3) capturing the

multitude of phenotypic characteristics observed during patient

care. SHRINE is now operational at many participating

institutions and is available open source. New institutions

interested in sharing clinical data can use the SHRINE software

and policy agreements, either in whole or in part (see Supporting

Information). Because there is no central database, regional

subnetworks and study specific collaborations are free to form

independent of any organizing body. Current uses of SHRINE are

primarily for locating patient cohorts and studying diseases at the

population scale, with the possibility for many more investigation

scenarios such as clinical trials preparation and genomic studies

involving human specimens.

Related Work. Several other research efforts have sought to

develop multi-site clinical research platforms. Each research

network is designed for a specific investigator scenario, such as

population health statistics[64], cancer informatics[65], biomedi-

cal imaging[66], and biomedical resource identification[66].

These efforts are also open source, with many years of shared

history formalizing the policy agreements and developing the

technical capabilities. Among these, SHRINE is most similar to

other distributed population query efforts[67]. Twelve distributed

population query systems (including SHRINE) are being inde-

pendently evaluated to achieve the objectives defined by the Office

of the National Coordinator, a complete comparison here is well

beyond the scope of this report.

As a general clinical data integration platform, SHRINE is

similar to other distributed query systems that use a mediated

schema[68]. Mapping mediated schemas to heterogeneous local

schemas is among the most challenging problems in computer

science (AI-complete)[69]. SHRINE query translation is essentially

synonym expansion, whereas other query mediators can fully

rewrite the query to the source system[70]. Defining concept

synonymy is often an easier problem to solve generally, suggesting

that SHRINE may be easier to implement than other systems that

provide more advanced query rewrite features.

Supporting Information

Figure S1 Federated Query Sequence. 1) Investigator starts

query with the provided user credentials and query criteria. 2–3)

Investigator credentials are certified and digitally signed. 4) Query

is broadcast to all trusted peers. 5–6) Each Adapter validates the

digitally signed identity and translates the criteria. 7) Each Adapter

queries their local Patient Data Repository. Most investigators will

only receive the patient set size (count). Some investigators

(national disease registry) can see additional data. 8–9) Results are

asynchronously aggregated. 10) Aggregated results shown to

investigator.

(TIFF)

Figure S2 Screenshot of Mapping Tool (SHRIMP). Left:

Children’s Hospital Boston Medication fragment is selected and

focused on propranolol (a beta blocker). Top Middle: concept details

including local key and name are displayed, which defines how this

medication is coded at CHB. Top Right: the local concept code for

propranolol is mapped to two core concepts: propranolol (the

brand name drug) and propranolol hydrochloride (the generic

drug). The hospital concept and the core concept refer to have the

same ingredient. Bottom: Users can quickly search the core

concepts to find mappings for the hospital concepts.

(TIFF)

Information S1 SHRINE Business Rules. This supporting

information includes a set of operating principles or ‘Business

Rules’ that were agreed upon by all institutions participating in the

Harvard network. The business rules can be used in whole or in

part to build agreement for new SHRINE networks.

(DOC)

Information S2 Technical Supporting Information. The

Technical Supporting Information describes requirements and

experiences using different data repositories and mapping different

medical coding systems. This SI also includes a list of SHRINE

query capabilities supported in the Core Ontology.

(DOCX)
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