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Abstract

Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes

including humans and economically important fish and insects. Surviving and flourishing

inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary inno-

vation. Genome sequence analyses show that microsporidia have lost most of the genes

needed for making primary metabolites, such as amino acids and nucleotides, and also

that they have only a limited capacity for making adenosine triphosphate (ATP). Since

microsporidia cannot grow and replicate without the enormous amounts of energy and

nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have

evolved ways of stealing these substrates from the infected host cell. Providing they can do

this, genome analyses suggest that microsporidia have the enzyme repertoire needed to

use and regenerate the imported nucleotides efficiently. Recent functional studies suggest

that a critical innovation for adapting to intracellular life was the acquisition by lateral gene

transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all

microsporidian genomes. These proteins are expressed on the parasite surface and allow

microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from

their host. However, it remains unclear how other essential metabolites, such as pyrimidine

nucleotides, are acquired. Transcriptomic and experimental studies suggest that micro-

sporidia might manipulate host cell metabolism and cell biological processes to promote

nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this

review, we summarise recent genomic and functional data relating to how microsporidia

exploit their hosts for energy and building blocks needed for growth and nucleic acid metab-

olism and we identify some remaining outstanding questions.

Introduction

Microsporidia are fungi-related eukaryotic parasites with over 1,400 reported species that
infect a wide range of hosts including humans, mammals, and insects [1,2]. They are all strict
obligate intracellular parasites and can only complete their life cycle within an infected eukary-
otic host cell. The life cycle (S1 Fig) of a typical microsporidia begins with the germination of a
resistant spore that physically injects the sporoplasm into the host cell through a polar tube [1].
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The parasite cell (meront) grows and multiplies within the host cell cytoplasm through several
rounds of division and differentiates into a spore, which exits the host cell, typically through
host cell lysis, to complete the cycle (S1 Fig).
Microsporidian genomes have some of the smallest coding capacities among eukaryotes [3]

and analyses reveal that they have lost many of the biosynthetic genes needed for making basic
metabolites, such as the nucleotides required for making DNA and RNA, amino acids for mak-
ing proteins, and lipids for makingmembranes [4]. Genome analyses also show that all micro-
sporidia have lost the pathways for oxidative phosphorylation and the tricarboxylic acid (TCA)
cycle [5,6] and Enterocytozoon bieneusi, a major pathogen of immunocompromised patients,
has also lost glycolysis [7]. So the capacity for independent biosynthesis of ATP appears to be
very limited in microsporidia. Since a typical cell requires enormous amounts of ATP (107

ATP molecules per second) to grow and divide [8], actively growing microsporidiamust
impose a very high demand for ATP on infected host cells. In this review, we summarise what
is currently known about the transport proteins and mechanisms (summarised in Fig 1) that
are used to acquire the ATP and other nucleotides needed to support the intracellular growth
and replication of this enormously successful group of eukaryotic parasites.

Nucleotide metabolism and availability within the host cell

Nucleotides are the building blocks of DNA and RNA that are essential to all life. In free-living
species, the eight major purine or pyrimidine nucleoside triphosphates (Box 1) can either be
synthesised de novo from amino acids or recycled (salvaged) from the rapid turnover of RNA
using pathways that are conserved among prokaryotes and eukaryotes [9,10]. While nucleotide
synthesis is located in the cytoplasm, nucleotides can freely diffuse into the eukaryotic nucleus
[11], possibly explaining how somemicrosporidia can complete their lifecycle in the host
nucleus [12,13].
Nucleotide concentrations in mammalian cells have been well documented [11], with ribo-

nucleoside triphosphates (NTPs), particularly ATP (Box 1) [11], at highest concentrations. The
concentrations of di- and monophosphate forms of nucleotides, of nucleosides, and of nucleo-
bases are all less than<5μM compared to*3000 μM for ATP [11] (Box 1). The deoxyribonu-
cleotides (dNTP) that are the building blocks of DNA are also at considerably lower
concentrations in a cell than the correspondingNTPs, possibly explaining why microsporidia
have retained the ability to synthesise their own dNTPs [4] providing they have a source of
NTPs from the host cell. Tight control over dNTP synthesis is also critical to cell viability [14]
as discussed below.

Nucleotide biosynthesis pathways and the microsporidia

Making nucleotides de novo from amino acids is energy expensive and is estimated at around
50 ATP per nucleotide when the costs of co-factors and substrates are included [15]. Micro-
sporidian genomes lack the enzymes needed for the de novo synthesis of nucleotides [4,6] (Figs
2 and 3) including phosphoribosyl pyrophosphate (PRPP) synthase [4], which makes the sub-
strate PRPP that is required for the activation of ribose-5-phosphate for both purine and
pyrimidine de novo pathways [16,17]. The loss of this biosynthetic function alone means de
novo synthesis is not possible. Other key enzymes are also absent [18] (Fig 3), including IMP
cyclohydrolase that makes inosinemonophosphate (IMP)—the first purine nucleotide in the
de novo pathway—and UMP synthase [18], which makes the first pyrimidine nucleotide, uri-
dine monophosphate (UMP). These enzymes are also missing in obligate intracellular bacteria
[18] (Figs 2 and 3), indicating that de novo nucleotide synthesis is also not possible in these
organisms. However, upon obtaining nucleotides from the host, microsporidia and these
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Fig 1. Nucleotide acquisition and metabolism in host cells and microsporidia. Schematic illustration showing nucleotide metabolism in

a typical microsporidian parasite within an infected host cell. Host cells can make nucleotides via de novo biosynthesis and regenerate ATP

by oxidative phosphorylation—these pathways are absent in microsporidia [5]. Host purine nucleotides can be stolen using microsporidia

NTT transporters and then efficiently used and recycled by the parasites [18]. Key: (a) E. cuniculi physically tethers mitochondria using an

unidentified protein [49]. (b) Only EcNTT3 of E. cuniculi has been found in the mitosome [38]. (c) Nematocida may secrete a hexokinase into

the host cell to stimulate host nucleotide production [6]. (d) Nucleoside kinases are apparently absent from some microsporidian genomes but

are present in Trachipleistophora hominis [18]. (e) Thymidine kinase is present in some microsporidia but not all [18]. (f) The microsporidian

RNA degradation pathway is shown in S2 Fig.

doi:10.1371/journal.ppat.1005870.g001
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bacterial pathogens have retained the core suite of enzymes for metabolising and recycling
nucleotides (Fig 2B) [18].

Inter-converting purine nucleotides. In free-living species, the first purine nucleotide pro-
duced by de novo synthesis is IMP, which requires hydrolysis of six ATP, and can then be con-
verted to either AMP or guanosinemonophosphate (GMP), which requires hydrolysis of an
additional ATP. Genome analyses [4,6,18] suggest that microsporidia lack the enzymes for inter-
converting IMP to AMP or GMP, or for inter-converting between guanosine and adenosine
nucleotides [4,6,18], suggesting that theymust import both types of purine nucleotide. In addi-
tion, the apparent lack of a GMP synthase or adenylosuccinate synthase in the genome sequences
of microsporidia [4] also suggests that import of inosine nucleotides (IMP/IDP/ITP) would be
fruitless as they cannot be utilised.Microsporidia have, however, retained all of the necessary
enzymes for converting between the three phosphorylation states of guanosine and adenosine
nucleotides, including the broad-spectrumnucleoside diphosphate kinase (NDK/YNK in yeast),
which is highly expressed during infection and in the spore stage of the microsporidianTrachi-
pleistophora hominis [19,20], suggesting an important role in parasite metabolism.

Inter-converting pyrimidinenucleotides. The first pyrimidine nucleotide produced by
the de novo pathway in free-living species is UMP, which can be stepwise converted into the

Box 1. Facts and Figures: Nucleotides, nucleosides, and their
cellular concentrations and bacterial and microsporidian NTTs

ATP demand in cells: It is estimated that 50 ATP are used to make one nucleotide from
scratch when the ATP needed to make all of the required co-factors and substrates is also
included [7,14]. Around 107 ATP per second is used in a typical cell [7,14]

Nucleotides:There are four major types of nucleotide triphosphates that make up
RNA (ATP, GTP, CTP, UTP) and four that make DNA (dATP, dGTP, dCTP, dTTP).
When DNA and RNA are degraded, the nucleosidemonophosphate is released which
can be recycled.
Nucleotides are made of 3 components:

• Purine (adenine, guanine) or pyrimidine (cytosine, uracil or thymine) base

• A ribose or deoxyribose sugar

• One to three phosphate groups

Nucleosides (adenosine, guanosine, cytidine, uridine, thymidine): Similar to nucle-
otides but do not have the phosphate groups.

Intracellular concentrations:Mean nucleotide concentrations in a mammalian cell
[10]: ATP (3000 μM), GTP (500 μM), UTP (600 μM), CTP (300 μM).
Deoxyribonucleotide (dNTP) and nucleoside concentrations: 4–40 μM.
Nucleotide transporter (NTTs) affinities:Apparent Km (ATP) of NTTs from the

microsporidian E. cuniculi NTTs [37] are: EcNTT1 = 11.4 μM, EcNTT1= 19.8 μM,
EcNTT1= 24.2 μM, EcNTT1= 2.6 μM. Apparent Km (ATP) of bacterial NTTs are: Pro-
tochlamydia amoeabophila �PamNTT1 = 95 μM, PamNTT2 = 437 μM,
PamNTT5 = 360 μM; Chlamydia trachomatis: Npt1Ct = 48 μM, Npt2Ct = 1158 μM;
RpTLC = 100 μM [40–43].
� Note, the apparent Km (ATP) for PamNTT1 in liposomes was 17–100 μM, depend-

ing on intra-liposomal nucleotide concentration [43]).
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Fig 2. Nucleotide biosynthesis in microsporidia. (A) Nucleotide biosynthetic enzymes found in the genomes of yeast, Escherichia coli,

Microsporidia, and intracellular pathogenic bacteria for purine (red) and pyrimidine (green) metabolism according to the KEGG database

[60] are shown along with respective EC numbers (see S3 Fig). Sc = Saccharomyces cerevisiae; Th = Trachipleistophora hominis; Ec =

Encephalitozoon cuniculi; Ct = Chlamydia trachomatis; Rr = Rickettsia rickettsii. (B) Purine and pyrimidine pathways retained in

microsporidia genomes (black arrows) enable recycling of all of the major nucleotides based on available genome data [18]. Some

exceptions to the general rule can be found in (a) T. hominis or (b) N. ceranae, as described in the text.

doi:10.1371/journal.ppat.1005870.g002
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pyrimidine triphosphates dTTP, UTP, or CTP (Fig 1). Analysis of microsporidian genomes
suggests that some species are unable to convert CTP and its derivatives to UTP as they lack
the relevant deaminase enzymes [18], suggesting that they need to import UTP from the host.
Somemicrosporidians have retained the enzyme CTP synthase enabling them to make CTP
from imported UTP as a route towards synthesising cytidine derivatives [4,6]. However, this
step is energy expensive and, therefore, an ability to steal host CTP would be beneficial; hence,
some intracellular Chlamydia possess a CTP synthase and can also import CTP from the host
cell [21]. Microsporidia have generally retained all of the enzymes [18] needed to make dTTP
fromUTP, as describedbelow. In summary, if UTP can be stolen from the host, microsporidia
appear to have the necessary enzymes to synthesise the other pyrimidines.

Synthesis of dNTPs. Maintaining the correct cellular concentrations of the deoxyribonu-
cleotides (dNTPs) that are needed to make DNA is critical as an imbalance can be highly muta-
genic [14,22–24]. Control over cellular dNTP concentrations is exerted at the level of the
broad-spectrumenzyme ribonucleotide reductase, which is tightly regulated by the dNTPs
themselves [12]. The need to exert tight control over dNTP concentrations may explain why
microsporidia [4,18], along with the obligate intracellular bacteriaChlamydia [25] and Rickett-
sia [18], have retained their own ribonucleotide reductase and, hence, do not depend on the
relatively low levels of dNTPs in the host cytoplasm [11].
Unlike the other dNTPs, dTTPmust be synthesised from dUMP and requires the enzyme

thymidylate synthase that is found in some, but not all, microsporidia [18]. The apparent

Fig 3. Key metabolic steps lost by microsporidia and intracellular bacteria. Several key enzymes and the associated pathways

are shown that have been lost during microsporidian evolution (green square). The implications for the parasites are shown to the right.

With the exception of PRPP synthase, all enzymes have been lost by obligate intracellular bacterial pathogens (green square).

Exceptions: (a) nucleoside kinases are retained in T. hominis

doi:10.1371/journal.ppat.1005870.g003
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absence of thymidylate synthase inNosema ceranae (and potentially other microsporidians
that lack this enzyme), suggests they must make or acquire dTTP by other means. Indeed, sev-
eral species of microsporidia, includingN. ceranae and Encephalitozoon cuniculi [26], have
acquired the enzyme thymidine kinase by lateral gene transfer from bacteria and this would
allow them to phosphorylate thymidine imported from the host cell [26].

Microsporidia and the recycling of nucleotides

The continual turnover of RNA, which releases the nucleosidemonophosphates, represents a
major, ready-made source of nucleotides [27]. The enzymes needed to regenerate nucleoside
triphosphates following nucleic acid degradation have been retained by microsporidia [4] and
include dedicatedmonophosphate kinases and the broad-spectrumnucleoside diphosphate
kinase (NDK/YNK in yeast) (Fig 1) [4,18]. While nucleoside triphosphate regeneration
involves some energy-expensive steps, it still represents a more economical source of nucleo-
tides compared to de novo nucleotide synthesis.
In eukaryotic cells, RNA degradation occurs by two main pathways [28] (S2 Fig), both of

which are initiated by the deadenylation of RNA by enzymes including the Ccr4 complex. The
machinery for both RNA degradation pathways is present in microsporidia (S2 Fig) including
the Ccr4 complex [4]; the decapping enzymes Dcp1 and Dcp2 [29]; the exonuclease Rat1,
which is involved in 5’ to 3’ degradation; and the exosomal complex needed for 3’ to 5’ degra-
dation, including the exosomal protein Dis3, which acts as the main catalytic component of the
exosome complex in yeast [27,30].
In comparison to other organisms, there are some important salvage enzymes missing from

microsporidian genomes (Fig 2) [31]. For example, microsporidia appear to lack [18] the vari-
ous enzymes for conversion of nucleobases to nucleotides, suggesting that they cannot use
nucleobases as starting points for nucleotide synthesis. In addition, the ribose-phosphatemoi-
ety of nucleotides that represents a potential carbon or energy source [31] is unlikely to be recy-
cled in microsporidia as it must be converted to intermediates for glycolysis [16]—a pathway
that appears to be most active in the spore stage of microsporidia [19,32] or has been lost alto-
gether [7].
Genome analysis suggests that microsporidia have retained the broad-spectrumenzyme 5'-

nucleotidase that converts nucleotides to nucleosides, a known regulatory function of this
enzyme, thus maintaining an optimal nucleotide balance required for normal cell physiology
[24,33]. By contrast, somemicrosporidia are unable to convert nucleosides to nucleotides [18]
as they lack the necessary kinases, and this raises doubt about whether these species could uti-
lise nucleosides imported from the host. By contrast, T. hominis has retained several nucleoside
kinases [18] that would enable it to utilise nucleosides stolen from the host or generated inter-
nally by the activity of the 5'-nucleotidase.

How do microsporidia acquire the energy and nucleotides they need?

Nucleotides cannot be transported physiologically across plasma membranes without specific
transporters [34, 35]. In mammalian cells, extracellular nucleotides are generally converted to
nucleosides that can then be imported by members of the equilibrative nucleoside transporter
(ENT) family [34]. Members of the ENT family are found in some parasites, but, so far, are not
found in microsporidia [4,35]. Instead, microsporidia use a family of nucleotide transporters
(NTTs) that are also found in phylogenetically diverse intracellular bacterial pathogens, such
as Chlamydia and Rickettsia [36], to import nucleotides directly from the host cell cytoplasm.
Phylogenetic analyses [18,37,38] suggest that a single NTT gene was probably acquired by

horizontal transfer from bacteria into the microsporidian common ancestor. This was followed

PLOS Pathogens | DOI:10.1371/journal.ppat.1005870 November 17, 2016 7 / 13



by lineage-specific gene duplications to generate the multiple copies of NTT genes found in
contemporary microsporidian genomes [4,6,18]. For example, the microsporidiaT. hominis, E.
cuniculi, and E. bieneusi have four NTTs while Spraguea lophii has six [39]. NTT gene duplica-
tions may provide the parasites with the startingmaterials for NTT functional diversification,
differential NTT expression throughout the life cycle, or a gene dosage effect to increase the
amount of NTTs beingmade.
MicrosporidianNTTs have been found to be highly and differentially expressed during the

different stages of the microsporidia life cycle [6,20] including spores [19]. In E. cuniculi, one
of its four NTTs is localised to its highly reducedmitochondrion (called a mitosome [40]),
whereas the other three NTTs are located at the parasite cell surface [38]. By contrast, all four
NTTs of T. hominis are located at the cell surface [18], suggesting that the location of NTT
transporters at the host–parasite interface is a general strategy used by microsporidia to exploit
host cells [18,38].
The lack of axenic culture systems and the strict obligate intracellular lifestyle of micro-

sporidia has impeded attempts to genetically manipulate these parasites [41], and all of the
published functional work with microsporidianNTTs has employed heterologous expression
in engineered E. coli strains (Box 1) [18,38]. This work has shown that the four NTTs in E.
cuniculi and T. hominis can all transport ATP [18,38] and, hence, they can, in principal, be
used to steal vital energy from the infected host cell. The T. hominis NTTs can also transport
other purine nucleotides (ADP, GTP, and guanosine diphosphate [GDP]) that are needed for
DNA and RNA biosynthesis, but not pyrimidine nucleotides [18]. Dose response data sug-
gests that the four E. cuniculi NTTs [38] have a high affinity for ATP, with apparent Km val-
ues considerably lower than that of bacterial NTTs [42–44] (Box 1), and well below host
cytosolic ATP concentrations [11]—implying a high level of ATP transport could occur dur-
ing infection.
The lack of transport of pyrimidine nucleotides by T. hominis NTTs expressed in E. coli

raises the question of how T. hominis obtains the pyrimidines needed to make DNA and
RNA. As discussed above, it appears that all major pyrimidine nucleotides can generally be
synthesised if UTP is available, but no UTP transport was detected by the T. hominis NTTs
[18]. It is not yet clear if an inability to transport pyrimidine nucleotides is a general feature
of microsporidianNTTs because transport of radiolabelled pyrimidine nucleotides has only
been tested for T. hominis [18,38]. Substrate competition experiments with the E. cuniculi
NTTs suggest that ATP transport is not reduced by cold competitor pyrimidine nucleotides
and, hence, pyrimidine transport appears unlikely [38]. However, since some bacterial NTTs
can transport both purine and pyrimidine nucleotides [45] as well as NAD [46], it would not
be too surprising if microsporidianNTTs in different species have also evolved to transport
different substrates, including pyrimidine nucleotides. The extraordinary possibilities of
NTT-mediated transport were recently demonstrated when a diatom NTTwas used to
import unnatural nucleotides into an engineeredE. coli strain to create a semisynthetic
organism with an expanded genetic alphabet [47].
It has been suggested [6] that homologues of the bacterial-likeNupG transporters that are

conserved on all microsporidian genomes [4] might, as in E. coli, transport purine and pyrimi-
dine nucleosides including adenosine and uridine [48]. However, there is currently no func-
tional data for microsporidiaNupG-like transporters and genome analysis suggest that some
microsporidiawould also be unable to convert imported nucleosides into nucleotides as they
lack the necessary nucleoside kinases [18] (Figs 2 and 3). In common with other parasites,
microsporidia possess genes for a number of transporter families and hypothetical transporters
[4,19,35] whose locations and functions are currently unknown. Given the minimal nature of
microsporidian primarymetabolism, it would not be surprising if some of these putative
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transport proteins also played roles in providing the metabolites needed for parasite growth,
DNA biosynthesis, and RNA biosynthesis.

Manipulating the host cell to support nucleotide acquisition

While NTTs confer an ability to steal nucleotides, the absolute dependence on host nucleotides
could potentially act as an Achilles’ heel for microsporidia if the host was able to limit their
availability. Recent work now suggests that microsporidia have evolved strategies to manipulate
host cells and to ensure that a ready supply of host nucleotides is maintained.
Stimulating nucleotide metabolism in the host is one obvious strategy to increase the avail-

able pools of energy and nucleotides for import and there is some preliminary data that hints
at how microsporidia could possibly do this. RNAseq analysis of the microsporidianNemato-
cida parisii during infection of the nematode Caenorhabditis elegans demonstrated the upregu-
lation of a microsporidian hexokinase during early infection, despite low expression of other
glycolytic enzymes, suggesting it may have an alternative role [6]. The presence of a signal pep-
tide in this hexokinase, which was not found in the other glycolytic enzymes in this species [6],
raised the possibility that it might be secreted into the host. The presence of a functional secre-
tion signal was supported when the protein was expressed in yeast [6]. Hexokinase catalyses
the phosphorylation of glucose to glucose-6-phosphate that can be used to synthesise PRPP
and other nucleotide biosynthetic precursors. Thus, secretion of a microsporidian hexokinase
could, in principal, stimulate host nucleotide production [6]
Mitochondria are rich sources of ATP and the microsporidian E. cuniculi forms an intimate

association with host mitochondria [49,50], possibly to maximise the surface area in contact
between parasite and organelle. Mitochondria appear to be physically attached to the E. cuni-
culi parasitophorous vacuole [49] suggesting that it may be porous to ATP or has associated
transport proteins to permit ATP passage [51]. Association with host mitochondria has also
been reported for intracellular bacterial parasites including Legionella [52] and Chlamydia
[53], as well as the microbial eukaryoteToxoplasma [54], which secretes a protein calledMAF1
to tether mitochondria to the parasite surface [54]. Homologues of MAF1 are not present in
the E. cuniculi genome [49], but electronmicroscopy images suggest that E. cuniculi does use
electron-dense proteinaceous structures to tether mitochondria and that it also influences the
location of mitochondrial ATP-gating channels in the outer mitochondrial membrane [49].
Whether microsporidia can also increase ATP production by host mitochondria is not known,
but no changes in mitochondrial activity were detected during infection by E. cuniculi [49,50].
Interestingly, however, comparing the transcriptome of T. hominis-infected mammalian host
cells with non-infected controls did suggest that host-energymetabolism and mitochondrial
biogenesis were both induced upon infection [20].

Future perspectives

Comparative genomics data suggests that microsporidians cannot make their own nucleotides
and must, therefore, import them from infected host cells. Given the central and non-redun-
dant role of nucleotide import and metabolism in the parasite life cycle, this makes it a logical
therapeutic target, especially against enzymes and transporters that are not found in host spe-
cies. These would include the bacterial-derivedNTT nucleotide transporters that appear to be
so critical for microsporidia growth and replication, which are not found in vertebrates. Since
NTT transporters are also used by important bacterial pathogens like Chlamydia and Rickettsia
to exploit the eukaryotic host cells that they infect, finding effective therapeutic agents that act
against NTTs would have applied interest beyondmicrosporidia, although the presence of
multiple copies of such transporters in Microsporidia and their overlapping substrate ranges
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may complicate or hinder such approaches. Functional work on the other transporters present
in microsporidian genomes to establish which are surface-located and which substrates they
transport will also be important for filling the many gaps in our understanding of microspori-
dia–host interdependencies, including the acquisition of pyrimidine nucleotides needed for
parasite DNA and RNA biosynthesis. Experimental work is essential to identify substrate speci-
ficities given the highly derived nature of microsporidiaDNA and protein sequences and the
resultant difficulty in reliably predicting protein function based upon low sequence similarity
to characterised proteins frommodel organisms.
The mechanism of transport used by microsporidianNTTs has not been determined.NTT

transporters in bacteria can function as ATP/ADP exchangers [42,45] to provide energy, or as
proton-driven symporters to provide net import of nucleotides for DNA and RNA synthesis
[42,45]. It is currently unclear if microsporidianNTTs also use different transport mechanisms,
but given the demands imposed by parasite growth and replication, we think it very likely that
both symporters and exchangers have also evolved duringmicrosporidiaNTT evolution.
Understanding how NTTs function in detail would obviously be aided by the availability of a
high-resolution structure for one or more NTT proteins, but unfortunately none are yet avail-
able. In particular, the levels of expression of microsporidianNTT proteins in E. coli are very
low so providing enough protein for structural and comprehensive liposome studies [45] will
require systematic investigation of different strategies to improve protein yields and the evalua-
tion of eukaryotic [55], as well as prokaryotic expression systems.
Bacterial intracellular pathogens are known to utilise diverse effector proteins to manipulate

the metabolism of the host cells that they infect [56,57]. It is very likely that microsporidia also
use a variety of strategies and secreted proteins to manipulate host cellular processes, including
energy and nucleotide metabolism. At present, it is difficult to investigate these phenomena
effectively because of the lack of tools for reproducible genetic manipulation of well described
microsporidianmodel species. However, some progress has recently beenmade using RNAi on
the honeybeemicrosporidian parasite N. ceranae [58,59]. If the promise of these initial experi-
ments can be confirmed and extended to more tractablemodel species, it might finally be pos-
sible to test hypotheses of microsporidian protein function and their potential role(s) in
microsporidia–host interactions at the molecular level.

Supporting Information

S1 Fig. The lifecycleof a microsporidian.A typical life cycle begins with the germination of a
spore, which discharges a polar tube that pierces the host cell plasma membrane enabling
transfer of the parasite sporoplasm into the host cytoplasm. The parasite cell (meront) grows
and divides, sometimes within a parasitophorous vacuole (not shown), and after several rounds
of division, differentiates back into spores, which are released following host cell lysis. The life
cycle of T. hominis during infection of cultured cells, is around 3–4 days.
(PDF)

S2 Fig. RNA degradationpathways in microsporidia enable recycling of nucleotides.RNA
(mRNA and rRNA) is a rich source of nucleotides that can be continually recycled in the cell.
Genome analysis [4] suggest microsporidia have retained components needed for RNA degra-
dation via 2 main pathways (a) 3’>5’ degradation involving the exosomal complex (b) 5’>3’
degradation involving decapping enzymes and Rat1. All enzymes depicted here are conserved
in at least 9 microsporidian genomes [4].
(PDF)
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S3 Fig. Enzymes involved in purine and pyrimidinenucleotide biosynthesis and their EC
numbers as given in Fig 2A in the main text.
(PDF)
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