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Long-term growth of temperate 
broadleaved forests no longer 
benefits soil C accumulation
Yu-he Ji1,*, Ke Guo2,*, Shi-bo Fang1,*, Xiao-niu Xu3, Zhi-gao Wang4 & Shu-dong Wang5

It is widely recognized that the long-term growth of forests benefits biomass carbon (C) sequestration, 
but it is not known whether the long-term growth of forests would also benefit soil C sequestration. 
We selected 79 representative soil profiles and investigated the influence of the forest stand age on 
the soil C dynamics of three soil layers (0–10, 10–20 and 20–30 cm) in temperate broadleaved forests in 
East China. The results suggest that the soil C density in temperature broadleaved forests significantly 
changes with the stand age, following a convex parabolic curve. At an early stand age, the soil C density 
usually increases, reaching its peak value at a pre-mature stand age (approximately 50 years old). At 
later stand ages, the soil C density usually decreases. Therefore, our results reveal a turning point in 
the soil C density at a pre-mature stand age. The long-term growth of temperate broadleaved forests 
after pre-mature stand age no longer benefits soil C accumulation, probably promotes topsoil C loss. In 
addition, we found that the soil C density in the upper soil layer usually changes with the forest stand 
development more significantly than that in deeper soil layers.

Soil carbon (C) in forests has attracted much attention in recent years because its stability contributes to the mit-
igation of climate change1,2. It was discovered that the soil C pool in temperate forests appears to be stable under 
disturbances, such as logging, wind storms, and invasive species3,4. It is widely recognized that the soil C pool in 
forests varies dynamically with the stand age5,6, but there are disagreements on how this occurs, leaving forest 
managers with uncertainty on how to best update forests for optimal C sequestration in the soil.

Rothstein et al. (2004) observed a weak decline in the surface soil C content with the stand age in Michigan 
jack pine forests7. On the contrary, Fonseca et al. (2011) discovered that the soil C increased by 1.1 Mg ha−1 
yr−1 (1 Mg =​ 106g) over the stand age range of 4~20 years in secondary tropical forests in Costa Rica8. Chen 
et al. (2013) discovered that the soil C pool in a Chinese fir plantation declined at young stand ages and then 
re-accumulated C at the stand ages of 16 ~ 21 years9. Shi & Cui (2010) argued, by summarizing 70 publications, 
that the highest soil C accumulation rate occurred at stand ages of 10–20 years old10. By summarizing more than 
100 publications, Yang et al. (2011) argued that the soil C pool did not undergo significant changes during forest 
stand development in most studies11. Therefore, it remains uncertain how the soil C changes in the long-term 
growth process of forests.

In China, secondary forests have expanded due to reforestation over the past half century. Seven national-scale 
forest investigations have been performed since the 1950 s, but focused only on the timber volume and forest 
C biomass, without considering the soil C12. National-scale soil investigations have also been performed, but 
unfortunately, they focused on the soil C in different soil types rather than for vegetation types13–14. Some studies 
estimated the soil C pool in Chinese forests based on process-based BIOME models15, but could not resolve the 
complicated relationship between the soil C and forest stand age. Thus, it is necessary to elucidate how the soil C 
changes with the forest stand age to provide scientific evidence for forest management.
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In this paper, we investigated 79 representative soil profiles in temperate broadleaved forests in eastern China. 
The objectives were to uncover the relationship between the soil C sequestration and the stand age of temperate 
broadleaved forests to improve forest management.

Results
Change trend of soil C density with stand age.  Regardless of the broadleaved tree species, we use the 
actual forest stand age as the independent variable to examine how the soil C density changes in three soil lay-
ers (0–10, 10–20, 20–30 cm) in temperate broadleaved forests. When the three soil layers were taken as a unit, 
the results show that the soil C density is significantly correlated with the forest stand age. The soil C density 
changes with the stand age following a convex parabolic curve (R2 =​ 0.3273), not a straight line. The soil C density 
increases at a young stand age, reaches its maximum carbon storage at an average age of approximately 50 years, 
and then gradually declines with the increasing stand age (Fig. 1). Therefore, the results indicate that there exists 
a turning point of soil C density in temperate broadleaved forests during stand age development. The soil acts as 
a C sink following forest establishment, but switches to a C source at approximately 50 years old, implying that 
the long-term growth of temperate broadleaved forests after 50 years no longer benefits soil C accumulation, but 
rather contributes to C loss from the soil.

When comparing the three soil layers, a significant change in the soil C density with the forest stand age 
following a parabolic curve was observed (R2 =​ 0.4309) in the upper soil layer (0–10 cm). In the soil layer of 
10–20 cm, the soil C density also varied in a parabolic curve with the forest stand age (R2 =​ 0.2346), but the peak 
of the parabolic curve became lower. In the deeper soil layer of 20–30 cm, the peak of the parabolic curve disap-
peared (R2 =​ 0.0193), as the soil C density changed only slightly compared to in the upper soil layers (Fig. 2). As 
a result, the soil C in the upper layers is more sensitive to the forest stand age than that in the lower soil layers.

Average change rate of soil C density with stand age class.  To quantify the soil C dynamics with 
the stand age class, we divided the entire growth sequence of temperate broadleaved forests into five stand age 
classes (young, middle, pre-mature, mature and over-mature) (Table 1). When the three soil layers (0–10, 10–20, 
20–30 cm) were taken into account as a whole, the results suggest that the soil C density reaches its peak value 
(approximately 85.6 Mg C/ha) at the pre-mature stand age. On average, the soil C density increased at a rate of 

Figure 1.  Soil C density change with actual stand age in soil layers (0–30 cm) in temperate broadleaved 
forests in Anhui Province, East China. 

Figure 2.  Soil C density change with actual stand age in three soil layers (0–10, 10–20, 20–30 cm) in 
temperate broadleaved forests in Anhui Province, East China. 
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0.813 Mg C/ha per year prior to the pre-mature stand age. Subsequently, it declined at a rate of 0.74 Mg C/ha 
per year after the pre-mature stand age and to 56.0 Mg C/ha at the over-mature stand age (average 91 years old). 
Therefore, the quantitative results indicate that the pre-mature stand age (average 52 years old) is a turning point 
in the soil C dynamics. The soil C accumulated at a rate of 0.813 Mg C/ha per year before the turning point and 
then exhibited a loss of 0.74 Mg C/ha per year after the turning point (Fig. 3).

Comparing the three soil layers, the upper soil layer (0–10 cm) showed the most significant change in soil C 
density, with an increase of 0.643 Mg C/ha per year from young to pre-mature and a decrease of 0.398 Mg C/ha 
per year from pre-mature to over-mature. The middle soil layer (10–20 cm) showed an increase of 0.268 Mg C/ha  
per year from young to pre-mature and a decrease of 0.253 Mg C/ha per year from pre-mature to over-mature. 
The deepest soil layer (20–30 cm) showed a slightly fluctuating soil C density without any significant change over 
the entire growth sequence.

Discussion
Our results demonstrate that the soil C density in temperate broadleaved forest changes with the stand age fol-
lowing a convex parabolic curve, and there exists a turning point with a single peak in the soil C accumulation 
at approximately 50 years old (Figs 1, 2 and 3). However, the results only show a general (significant single-peak 
curve) change trend of soil C density, but omits minor changes along the successional process since the data is not 
enough to identify the minor changes. The soil C density probably changes following a multi-peak curve with no 
more than one turning point during the entire forest stand age, as some studies reported that the soil C initially 
decreased or increased slowly for the first decade after afforestation and then began to accumulate quickly with 
the stand age. The multi-peak curve of soil C density usually exist under the precondition of afforestation. For 
example, Paul et al. (2002) synthesised available world-wide information on changes in soil C after afforestation, 
and argued that soil C in surface soil (<​10 or <​30 cm depth) initially declines during the first 5 years after estab-
lishing a plantation but recovers by the age of 30 years16. The initial decline of soil C in Paul et al. (2002) came 
from the average data in the 43 published or unpublished studies, so the decline is not significant since the data 
are highly variable, with soil C either increasing or decreasing in young (<​10 year) forest stands. Li et al. (2011) 
observed the total mineral soil C initially appeared to decline at the early stand age, but recovered by the stand age 
of 35 years for coniferous plantation forest with Korean Pine (Pinus koraiensis). It is a pity that the natural change 
of soil C is not credible after 35-year-old stand because the soil C suffered from disturbance greatly from human, 
such as thinning treatment to the35- and 51-year-old stands17. Hiltbrunner et al. (2013) examined the effects of 
afforestation with Norway spruce (Picea abies L.) in a grazed subalpine pasture in Switzerland on soil organic 
carbon (SOC), and discovered that soil C stock decreased after tree establishment, reaching a minimum 40–45 
years after afforestation, and increased thereafter18. Barcena et al. (2014) analyzed the changes in SOC stocks 

Period of 
stand age 

Stand age 
classes

Average 
stand 

age

Number 
of soil 

profiles

Soil C density 
of 0–10 cm 
(Mg C/ha)

Soil C density 
of 10–20 cm 
(Mg C/ha)

Soil C density 
of 20–30 cm 
(Mg C/ha)

Young (0–20] 12 18 21.0 ±​ 12.5 16.3 ±​ 10.6 15.8 ±​ 11.1

Middle (20–40] 33 26 42.0 ±​ 11.5 24.3 ±​ 8.2 12.7 ±​ 4.4

Pre-mature (40–60] 52 20 46.7 ±​ 13.0 27.0 ±​ 11.1 13.3 ±​ 3.7

Mature (60–80] 74 11 37.5 ±​ 7.7 22.9 ±​ 7.0 14.6 ±​ 7.2

Over mature (80–100] 91 3 30.8 ±​ 7.4 16.9 ±​ 0.9 8.4 ±​ 1.1

Table 1.   Soil C density at a depth of 0–30 cm in temperate broadleaved forests. Note: stand ages refer to the 
standards of the “Forest Resource Statistics of China” (Zhang et al.13).

Figure 3.  Soil C dynamics with stand age class in three soil layers (0–10, 10–20, 20–30 cm) in temperate 
broadleaved forests. 
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at the 0–30 cm soil layer following afforestation in Northern Europe by a meta-analysis, revealed that SOC loss 
generally for barren, cropland, heathland and grass-land at the initial phase following afforestation (0–30 years). 
The detectable gains in SOC stocks appear in later stages (>​30 years), especially for afforestation of croplands19. 
Yu et al.20 investigated the soil C in four Chinese fir (Cunninghamia lanceolata Hook) plantations (Chinese fir was 
planted in clear-cut sites in natural broad-leaved forest) in Jiangxi Province, south China, discovered that soil C 
density at the depth of 0–20 cm declined before 16 years, but increased after 16 years, since soil C density declined 
from 35.98 Mg·ha−1 in the 7-year plantation to 30.12 Mg·ha−1 in the 16-year plantation, and then increased after 
16 years old20. Therefore, we can speculate that soil C density probably changes following a multi-peak curve, and 
another turning point of the soil C density may exist in the early decades of afforestation, besides the large turning 
point at approximately 50 years old (Fig. 4).

In the later stage of forest development, many reports indicate that old forests are expected to maintain their 
biomass accumulation for a long time through the development of a multilayer canopy structure21, but this does 
not mean that the soil C can continue to increase as long as the biomass accumulates. Our results show that 
old-growth forest could not sustain the soil C increase due to the decreasing soil C density after the pre-mature 
stand age (average stand age 50 years old). However, there seems to be some controversy on this point. It is con-
ventionally accepted that the soil C levels in old-growth forests are in a steady state21–22. However, Zhou et al. 
(2006) reported that soils in the top 20-cm soil layer in preserved old-growth forests (age >​ 400 years) in southern 
China accumulated C significantly at an unexpectedly high rate from 1979 to 200323. Li & Liu (2014) argued that 
an old forest (38–56 y) was able to continuously accumulate C in the soil in China’s Loess Plateau, even when the 
biomass significantly decreased24.

These different opinions could be partly attributed to the different definitions of “old forest” with tree spe-
cies and environment spatial variability, as there is currently no recognized definition. For example, a stand age 
of 38–56 years old in the study of Li & Liu (2014) was regarded as old forest24, equivalent to the pre-mature 
stands age (40–60 years old) in our study. It is likely that tree species and environment spatial variability are 
the leading causes of the different opinions, as different environments and tree species can affect the carbon 
accumulation-and-release processes11,25–27. The synergistic effects of many factors should be further explored to 
uncover the complex mechanism of soil C dynamics28–31.

Conclusions
Our results show that soil C in temperature broadleaved forests significantly changes with stand age. Generally, 
it exhibits a change trend in the shape of a convex parabolic curve with stand age, regardless of the tree species. 
At the early stage of forest development, the soil C density usually increases, and it reaches its peak value at 
the pre-mature stand age (approximately 50 years old). At later stages of forest development, the soil C density 
usually decreases. This phenomenon provides strong evidence that there is a turning point of the soil C density 
in temperate broadleaved forests at the pre-mature stand age, when the soil switches from being a net C sink to 
a net C source. Therefore, we drew the conclusion that the long-term growth of temperate broadleaved forests 
after pre-mature stand age no longer benefits soil C accumulation. Our study also confirmed that the soil C in the 
upper layers is more sensitive to forest stand age than that of the lower soil layers, as the soil C density in the upper 
soil layers usually changes significantly with the forest stand development.

Materials and Methods
Study area.  The study area covers approximately 139,000 km2 in the Anhui Province (114°51′​–119°36′​E, 
29°26′​–34°37′​N) of East China (Fig. 5). The Asian monsoon circulation creates a temperate continental monsoon 
climate with an annual average temperature of 14–17 °C and an annual precipitation of 800–1800 mm. The soil 
type is yellow brown soil32. Three mountain ranges (Dabie, Jiuhua and Huang Mountains) lie in the southwestern 

Figure 4.  Multi-peak curve of topsoil C density change with forest stand age according to our study and 
other studies. 
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and southern regions (Fig. 5) and are covered with temperate and subtropical forests. The dominant forest types 
are temperate deciduous broadleaved forests, coniferous forests, and mixed forests.

In recent decades, large-scale deforestation has been curbed, and reforestation projects have been carried out, 
providing an opportunity to resume normal forest development33. Forest managers also allow people to update 
some forests to obtain timber for money. Therefore, the study area contains various forests with stand ages rang-
ing from 0 to 100 years. However, it is unclear what updating schedule for the forest is the most favourable for soil 
C sequestration.

Sampling sites (plots).  To avoid the effect of the spatial heterogeneity of sampling sites on SOC, we did our 
utmost to select coincident sampling sites (plots) in vegetation composition, soil type, and the same development 
process. All the sampling sites must have typical temperate broadleaved forest which is determined by climatic 
zones, though there are other forests, such as coniferous forests, conifer and broadleaf mixed forests. To avoid of 
human disturbance, all the sampling sites were selected in protecting natural forests to ensure a natural growth 
process. Young broadleaved forests being selected should have similar land use process because SOC in young 
forests suffer more effect from previous land use. We didn’t consider the young forests which land use type had 
been changed greatly by human. Thus, almost all forest vegetation in sampling sites belongs to secondary succes-
sional vegetation under the protection of human beings.

We selected the typical forests for every stand ages (young, middle, pre-mature, mature, over-mature) accord-
ing to the natural succession of temperate broadleaved forest, so there is a slightly inconsistent in vegetation (spe-
cies) composition for different stand age due to the natural succession. The vegetation composition for different 
stand ages is listed as follows (Table 2).

The soil in study area is classified as yellow brown soil zone according to “Map of Soil Regionalization of 
China”34. The sampling sites in our study ensured a typical yellow brown soil, and other soil types were avoided.

Generally, the sampling sites are coincident approximately in vegetation composition, soil type and develop-
ment process, in spite of existing spatial heterogeneity more or less.

Soil sampling.  To examine the dynamics of the soil C with stand age, 79 soil profiles of sampling sites were 
investigated in representative temperate broadleaved forests in September of both 2011 and 2012 (Fig. 5). The 
actual stand age of each forest type was recorded by visiting farmers and forest management staff. The investiga-
tion focused on soil carbon density in the 0–30 cm soil layer, since soil carbon in the layer accounts for the major-
ity of the soil profile 0–100 cm, and is sensitive to forest stand ages more than that in deeper soil layers. Vertical 
soil profiles were dug in the sampling plots, and soil samples were collected from three soil layers (0–10, 10–20, 
20–30 cm) using a ring knife (volume of 100 cm3) for measuring the soil bulk density and a spade for measuring 
the soil C content. Soil samples from the surface soil layer (0–10 cm) included the forest floor (O horizons, i.e., 
the organic horizon), but surface litter was not included in the calculation of the soil C. In addition, the relevant 
environmental information for each sampling plot was recorded, such as the geographical location with latitude 
and longitude, forest type and stand age.

Data analysis.  The soil samples collected with the ring knife were used to measure the soil bulk density by 
the drying method in the laboratory. The soil samples collected with the spade were air-dried, ground using a 
mortar, and passed through a 2-mm sieve to remove all roots and stones. Finally, chemical analyses were per-
formed to measure the soil C concentration by dry combustion using an elemental analyser (vario MACRO cube, 
Elementar, Germany).

Figure 5.  Location of study area and sampling plots of 79 representative soil profiles in temperate 
broadleaved forests in Anhui Province, East China (The map was generated using ArcGIS for Desktop 10.2, 
http://www.esri.com/software/arcgis). 

http://www.esri.com/software/arcgis
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For these soil profiles, we calculated the soil C density (D) of the three soil layers of 0–10, 10–20 and 20–30 cm 
using Equation (1),

∑= × ×=D D H C( ), (1)i
n

i i i1

where D is the soil C density (105 g C/ha.), Di is the bulk density (g/cm3), Hi is the soil depth (cm), Ci is the soil C 
concentration (‰), and i represents the three soil layers.
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Young forest Middle age forest Pre-mature forest Mature and over mature forest

Tree layer
Quercusglandulifera var. brevipetiolata, 
Pistaciachinensis,Broussonetiapapyrifera, 
Sorbushemsleyi

Quercusglandulifera var. brevipetiolata, 
Cyclobalanopsisglauca, Qercusacutissima, 
Castanopsiseyrei, Castanopsissclerophlla, 
Fraxinusinsularis

Quercusglandulifera var. brevipetiolata, 
Cyclobalanopsisglauca,Qercusacutissima, 
Castanopsiseyrei, Castanopsissclerophlla, 
Platycaryastrobilacea

Quercusglandulifera 
var. brevipetiolata, 
Cyclobalanopsisglauca, 
Qercusacutissima, Castanopsiseyrei

Shrub layer
Rhododendron simsii, Lespedeza viatorum, 
Linderareflexa, Zanthoxylumarmatum, 
RhizomaSmilacis 

Rhododendron simsii, Lespedeza bicolor, 
Lorpetalumchinense, Linderaglauca, 
Glochidionpuberum,Camellia fraternal, 
Rhamnusglobosa

Rhododendron simsii, Lespedeza 
Formosa,Lorpetalumchinense, 
Camelliafraterna

Pleioblastusamarus, Camellia 
fraternal, Linderaglauca

Herb layer

Dryopterischinensis, 
Carextristachya,Oplismenusundulatifolius, 
Arthraxonhispidus, Commelinabengalensis, 
Carpesiumabrotanoides, Artemisia 
lavandulaefolia, Leonurus japonicas,  
Viola concordifolia

Dryopterischinensis, 
Woodwardia japonica, 
Carextristachya,Oplismenusundulatifolius, 
Rhizomaimperata, Aster ageratoides, 
Antenoronfiliforme, Viciaamoenafisch

Dryopterischinensis, Woodwardia japonica, 
Carextristachya, Oplismenusundulatifolius, 
Lindera aggregate, Phaenospermaglobosa

Dryopterischinensis, Woodwardia 
japonica, Carexbreviculmis, 
Oplismenusundulatifolius, 
Lophatherumgracile, 
Linderaaggregata

Table 2.   The vegetation composition in sampling sites for different stand ages of temperate broadleaved 
forests in Anhui Province.
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