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Abstract: In this paper, the evidential estimation method for the parameters of the mixed exponential
distribution is considered when a sample is obtained from Type-II progressively censored data.
Different from the traditional statistical inference methods for censored data from mixture models,
here we consider a very general form where there is some uncertain information about the
sub-class labels of units. The partially specified label information, as well as the censored data
are represented in a united frame by mass functions within the theory of belief functions. Following
that, the evidential likelihood function is derived based on the completely observed failures and
the uncertain information included in the data. Then, the optimization method using the evidential
expectation maximization algorithm (E2M) is introduced. A general form of the maximal likelihood
estimates (MLEs) in the sense of the evidential likelihood, named maximal evidential likelihood
estimates (MELEs), can be obtained. Finally, some Monte Carlo simulations are conducted. The results
show that the proposed estimation method can incorporate more information than traditional EM
algorithms, and this confirms the interest in using uncertain labels for the censored data from finite
mixture models.

Keywords: uncertain mixed exponential distribution; evidential likelihood; belief function theory;
progressive censoring

1. Background

Mixture models are of great importance in many applied sciences such as survival analysis,
pattern recognition, image analysis, economics, and so on [1,2]. In reliability analysis, there are only
one population and one type of failure in the simple case of life distributions. However, in real
applications, there may be more than one failure cause [3,4]. In this case, the response of the modeling
process can be seen as from several distinct sub-populations, and finite mixture models can be used to
represent the time of failures.

Suppose the life lengths of these n units are independent and identically distributed (i.i.d.) random
variables with probability density function (pdf) f (x; θ) and cumulative distribution function (cdf)
F(x; θ). Consider the mixture model of the form:

f (x; θ) =
m

∑
k=1

πk fk(x; λk), (1)

where θ = {λ1, . . . , λm; π1, . . . , πm}, with πj ≥ 0, j = 1, . . . , m and ∑j πj = 1. In this paper,
we focus on the case where fk(x; λk) is the exponential density, although the model we develop can be
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applied more generally. The mixed exponential distribution (MED) model with m components has its
pdf and cdf respectively as:

f (x; θ) =
m

∑
k=1

πk fk(x; λk) =
m

∑
k=1

πkλke−λkx (2)

and:

F(x; θ) = 1−
m

∑
k=1

πksk(x; λk) = 1−
m

∑
k=1

πke−λkx, (3)

where the parameters are π = (π1, . . . , πm) and λ = (λ1, . . . , λm) with:

m

∑
k=1

πk = 1, 0 < πk < 1, (4)

and:
λk > 0, k = 1, 2, . . . , m.

As we can see, the samples from mixed distributions are not precisely labeled by their origin
sub-classes; thus, the heterogeneous dataset cannot be explicitly decomposed to homogeneous
subgroups. Consequently, it brings about a barrier for estimating finite mixture models [5].

Consider a life-testing experiment where n units are placed under observation. For some reason,
such as to save time and cost, we have to terminate the experiment before all items have failed. In real
applications, the removal of units prior to failure is often pre-planned. Data obtained from such
a type of experiments are called censored data. The most common censoring schemes are termed
Type-I and Type-II censoring. In Type-I censoring, the experiment continues up to a prescribed time T.
Any failures that occur after T cannot been observed. The endpoint of the experiment T is assumed
to be independent of the failure times. In Type-II censoring, the experiment is terminated upon the
Nth failure, where N < n is prefixed. The experiments under these two kinds of test schemes have
the drawback that they do not allow removal of samples at time points other than the termination of
the experiment. However, the Type-II progressive censoring, which can be seen as a generalization of
Type-II censoring, allows removing some fixed number of units at the time of the first observed m− 1
failures and removing all the remaining at the time of the mth failure, at which time, the experiment
terminates [6]. As a result, it is efficient in time and money [7] and has become very popular in the last
few years [8–14].

The parameter estimation problems for different lifetime distributions, including the mixed
exponential distribution and some other mixed distribution models, have been widely studied under
different censoring schemes [15–17]. The most commonly adopted methods to obtain the estimations
for mixture models are simply using the expectation maximization (EM) algorithm or Bayesian
method. Lee and Scott [18] presented the EM algorithm for fitting multivariate Gaussian mixture
models to data that are truncated, censored, or truncated and censored. In [19,20], the authors
discussed the parameter estimation methods of the MED under Type-II progressively censored data
and progressively hybrid Type-II censored data, respectively. Tahir et al. [21] studied the problem of
estimating the parameters of a three-component mixture of exponential, Rayleigh and Burr Type-XII
distributions using the Type-I right censoring scheme in the Bayesian framework. The maximum
likelihood and Bayesian estimators of the parameters of a heterogeneous population represented by a
finite mixture of two Pareto distributions were discussed in [22]. Feroze and Aslam [23] introduced
the Bayesian approach for estimating the parameters of the two-component mixture of Weibull
distribution under doubly censored samples. Feroze and Aslam [24] considered the Bayesian analysis
of the three-component mixture of the Rayleigh distribution under doubly censored samples. All these
works assume that we do not have any information about the label of the sub-class at all. However, in
many applications, often, it is easy to get some imprecise and uncertain knowledge about the sub-class
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labels. For instance, in medical surveillance databases, we can find partially labeled data provided by
experts or from experience, that is, while not completely unlabeled, there is only uncertain information
about class values [5]. The above-mentioned methods cannot deal with the possible available partial
label information in the dataset from mixture models.

Zio [25] pointed out that uncertain information is a big challenge in reliability engineering.
Specifically, there indeed exits many kinds of uncertain information in reliability analysis for censored
data. First, we only know that the failure time of the censored unit belongs to the interval [t∗,+∞).
Second, as mentioned, in the finite mixture models, there may be some uncertain information about
the sub-class labels of the data. The theory of belief functions (also known as Dempster–Shafer theory
(DST)) is appealing to represent data uncertainty. As an extension of probability theory, it has many
advantages in dealing with uncertain information. Similar to the probability distribution over the
discernment frame, in DST, the basic belief assignment (BBA) defined on the power set of the frame
is used to represent the available information. Many scholars have studied how to measure the
uncertainty of BBA [26–29]. Due to the effectiveness of DST in dealing with uncertain knowledge,
it has already been widely used in many fields such as data classification/clustering [30,31], target
recognition [32], decision making [33], fault diagnosis [34,35], complex networks [36,37], and so on.

In this paper, we try to handle the uncertain information in mixed distributions under Type-II
progressive censoring using the theory of belief functions. Note that for the progressively censored
data considered in this work, the incomplete observations are not influenced by the specific values
taken by the random variables. Thus, the mechanism that causes complete failure data cases to become
incompletely reported can be ignored. Under such a kind of coarsening at random (CAR) assumption,
the statistical inference can proceed based on the so-called “face-value likelihood”, which measures
the probability of incomplete observations by its marginal probability according to the underlying
complete data distribution [38,39]. The EM algorithm is quite effective at maximizing the face-value
likelihood [38], and it has been widely used for progressively censored data [7,40]. Different from the
traditional estimation method using the EM algorithm, the proposed evidential parameter estimation
model can take not only the uncertain censored observations, but also the prior partial information
about class labels into consideration. The two kinds of uncertain information are modeled in a united
frame by mass functions in belief function theory, and then, the evidential likelihood function is
derived. The optimization method to get the optimal estimators, called maximal evidential likelihood
estimates (MELEs), is derived based on the evidential-EM (E2M) algorithm [41]. Experimental results
show that the proposed model can take advantage of the the partial information about the sub-class
labels effectively and consequently improve the performance of the estimation model.

The rest of this paper is organized as follows. In Section 2, some basic concepts and the rationale
of our method are briefly introduced. In Section 3, the evidential estimation model to get MELEs,
which can maximize the evidential likelihood function, is presented in detail. In order to show the
effectiveness of our approach, a real data application is discussed in Section 4, while some Monte Carlo
simulations are conducted in Section 5. Finally, we conclude the paper in Section 6.

2. Preliminary Knowledge

Some necessary background knowledge related to this paper will be recalled in this section.
The Type-II progressive censoring scheme is first introduced in Section 2.1. The basic knowledge
about the theory of belief functions is then presented in Section 2.2. Finally, the evidential likelihood is
recalled in Section 2.3.

2.1. Type-II Progressively Censoring Scheme

The Type-II progressive censoring scheme can be described as follows. Suppose n independent
identical items are placed on a life-test. The integer N(< n), which denotes the number of failures we
would like to observe in the experiment, is fixed before the experiment. Let R = (R1, R2, . . . , RN),
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where R1, R2, . . . , RN are also fixed integers describing the progressive censoring scheme.
They should satisfy:

R1 + R2 + · · ·+ RN + N = n.

At the time of the first failure, say T1, R1 of the remaining units are randomly removed. Similarly, at the
time of the ith failure, say Ti, Ri (i = 1, 2, . . . , N) of the remaining units are removed. At the time of
the Nth failure, say TN , the remaining RN = n− N −∑N−1

i=1 Ri items are removed, and the experiment
terminates. Therefore, in the presence of the Type-II progressive censoring scheme, the observed
failures are {T1, . . . , TN}. For further details on this censoring scheme, the readers may refer to the
excellent monograph of Balakrishnan and Aggarwala [6].

2.2. Theory of Belief Functions

The theory of belief functions is a mathematical theory that generalizes the theory of probabilities
by giving up the additivity constraint. In this theory, justified degrees of support are assessed according
to an evidential corpus, which is the set of all evidential pieces of evidence held by a source that
justifies the degrees of support assigned to some subsets.

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of reference, called the discernment frame. The c
elements in Ω are nonempty and mutually exclusive hypotheses related to a given problem. The belief
functions are defined on the power set 2Ω = {A : A ⊆ Ω}. The function m : 2Ω → [0, 1] is said to be
the basic belief assignment on 2Ω, if it satisfies:

∑
A⊆Ω

m(A) = 1. (5)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The difference from probability models is
that masses can be given to any subset of Ω instead of only to the atomic element of Ω. The credibility
and plausibility functions are defined as in Equations (6) and (7), respectively:

Bel(A) = ∑
B⊆A,B 6=∅

m(B), ∀A ⊆ Ω, (6)

Pl(A) = ∑
B∩A 6=∅

m(B), ∀A ⊆ Ω. (7)

Each quantity Bel(A) measures the total support given to A, while Pl(A) represents the potential
amount of support to A. The function pl : Ω→ [0, 1] such that pl(ω) = Pl({ω}) is called the contour
function associated with m.

According to the type of the focal elements, we can define some particular mass functions.
A categorical mass function is a normalized mass function that has a unique focal element A∗. This kind
of mass function can be defined as:

m(A) =

{
1 if A = A∗ ⊂ Ω

0 otherwise.
(8)

A vacuous mass function is a particular categorical mass function focused on Ω. It is a special
kind of categorical mass function with a unique focal element Ω. This type of mass function is defined
as follows:

m(A) =

{
1 if A = Ω

0 otherwise.
(9)

The vacuous mass function emphasizes the case of total ignorance.
A Bayesian mass function is a mass function for which all focal elements are elementary hypotheses,

i.e., the focal elements are all singletons. It is defined as follows:
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m(A) =

{
a ∈ [0, 1] if |A| = 1

0 otherwise.
(10)

As all focal elements are single points, this mass function is a probability distribution over frame Ω.
Specifically, if a Bayesian mass function is categorical, it describes that there is no uncertainty at all,
and we are completely sure about the state of the variable concerned.

If m1 and m2 are two independent mass functions defined on Ω, a new mass function can be
formed by combining m1 and m2 using Dempster’s rule directly:

(m1 ⊕m2)(A) =
1

1− k ∑
B∩C=A

m1(B)m2(C), (11)

where k is defined as
k = ∑

B∩C=∅
m1(B)m2(C). (12)

This describes the conflict between m1 and m2. When k = 1, the two masses are completely in conflict,
and they cannot be combined using Dempster’s rule.

Suppose m1 is a Bayesian mass function, and its corresponding contour function is a probability
distribution function defined by p1(ω) = m({ω}). Assume m2 is an arbitrary mass function with
contour function pl2(ω). The fused mass function of m1 and m2 by Dempster’s rule yields a Bayesian
mass function. Its corresponding contour function can be defined by [41]:

(p1 ⊕ pl2)(ω) =
1

1− k
p1(ω)pl2(ω), (13)

where k is the conflict between m1 and m2. It can be written as:

k = 1− ∑
w∈Ω

p1(ω)pl1(ω). (14)

The item ∑w∈Ω p1(ω)pl1(ω) can be regarded as the mathematical expectation of pl2 with respect to
p1. If m2 is categorical and such that m2(A) = 1, then p1 ⊕ pl2 is the probability distribution by
conditioning p1 with respect to A.

Let mX and mY be two mass functions defined on ΩX and ΩY, respectively, and PlX and PlY are
the associated plausibility functions. PlXY is the plausibility function defined on the product frame
ΩX ×ΩY. Variables X and Y are called cognitively independent if:

PlXY(A× B) = PlX(A)PlY(B), ∀A ⊆ ΩX , B ⊆ ΩY. (15)

If two variables are cognitively independent, the evidence on one variable does not affect the beliefs
on other variables. It is clear that cognitive independence reduces to stochastic independence when
mX and mY are Bayesian.

2.3. Evidential Likelihood

Let X be a random vector with probability density function pX(·; θ), where θ is an unknown
parameter. Assume that X is perfectly observed, and let x0 be a realization of X. The complete
likelihood function given x0 would be defined as:

L(θ; x0) = p(x0; θ), ∀θ ∈ Θ. (16)

If x is not precisely observed, but we only know that x ∈ A for A ⊆ ΩX, where ΩX is the set from
which X can take values. Then, the likelihood function given such imprecise data can be defined
as [41]:
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L(θ; A) = ∑
x∈A

p(x; θ), ∀θ ∈ Θ. (17)

More generally, if the observation x is not only imprecise, but also uncertain, it can be described by
a mass function m on ΩX with focal elements A1, . . . , Ar. The corresponding masses assigned to
each focal element are m(A1), . . . , m(Ar). The likelihood function given such uncertain data can be
extended as [41]:

L(θ; m) =
r

∑
i=1

m(Ai)L(θ; Ai). (18)

It can be rewritten as:

L(θ; m) =
r

∑
i=1

m(Ai) ∑
x∈Ai

p(x; θ) (19a)

= ∑
x∈ΩX

p(x; θ) ∑
Ai3x, Ai⊆ΩX

m(Ai) (19b)

= ∑
x∈ΩX

p(x; θ)pl(x) (19c)

= Eθ [pl(X)] (19d)

, L(θ; pl). (19e)

From Equation (19c), we can see that L(θ; m) depends on m through its associated contour function pl.
As a result, L(θ; m) can be denoted by L(θ; pl) indifferently. We can see that L(θ; pl) is the expectation
of pl(x) with respect to p(x; θ). It is often called the evidential likelihood function [42].

The evidential likelihood function L(θ; pl) can be seen as a special case of L(θ; A) and L(θ; x).
If pl is associated with a categorical mass function mA, then:

pl(x) =

{
1, x ∈ A ⊆ ΩX ,
0, otherwise.

Equation (19c) equals the likelihood function given the imprecise data in Equation (17). If pl is
associated with a certain mass function:

pl(x) =

{
1, X = x0,
0, otherwise.

Equation (19c) degrades to the complete likelihood defined in Equation (16).

3. Maximum Evidential Likelihood Estimates for Uncertain Progressively Censored Data

The EM algorithm is usually adopted to obtain the maximal likelihood estimates (MLEs) for the
datasets with missing information. However, it cannot deal with the partially labeled information
included in the finite mixture model. In this section, we discuss the evidential likelihood for the
uncertain progressively censored data from mixture distributions. The optimal statistical estimates
that can be obtained by maximizing the evidential likelihood function (named MELEs) are derived,
and the relation with the traditional EM model is also discussed.

3.1. Evidential Likelihood for Uncertain Progressively Censored Data

Assume that X1, X2, . . . , Xn are n independent variables that follow the mixture distribution
in the form of Equation (1). Denote their probability density function by f (x; π, λ), the probability
distribution function by F(x; π, λ) and the survival function by s(x; π, λ). Suppose n units are placed
on a life-test under the progressive censoring scheme.
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In the Type-II progressive censoring scheme, we can denote the observed failure times by
Ti, i = 1, 2, . . . , N, and use T = (t1, t2, . . . , tN) to describe the completely observed data. At the
time of the ith observed failure, we remove Ri(i = 1, 2, . . . , N) items. Denote the failure times of these
units by:

Z = {zij, i = 1, 2, . . . , N; j = 1, 2, . . . , Ri}.

It is easy to know that Z cannot be observed in the experiment.
Let B(1)

i = (b(1)i1 , b(1)i2 , . . . , b(1)im ). Each b(1)ij in B(1)
i denotes whether the completely observed failure

ti comes from the jth component of the mixture model. If Ti ∼ f j(x; θ), b(1)ij = 1. Otherwise, b(1)ij = 0.

Similarly, we can define the indicator for the unobserved data zij. Let B(2)
ij = (b(2)ij1 , b(2)ij2 , . . . , b(2)ijm),

where b(2)ijk represents whether the jth removed unit at the time ti comes from the kth component in the

mixture model. Let B(1) = {B(1)
i , i = 1, 2, . . . , N} and B(2) = {B(2)

ij , i = 1, 2, . . . , N, j = 1, 2, . . . , Ri}.
The complete variables in this life-test can be denoted by W = (X, B), where X = (T, Z) and

B = (B(1), B(2)). It is clear that the observed data in this model are T, and the hidden variables are
Z and B. Let θ = (π, λ), then the probability function of W under the Type-II progressive censoring
scheme is:

p(w; θ) =
N

∏
i=1

[
m

∏
k=1

(πk fk(ti; λk))
b(1)ik ·

Ri

∏
j=1

m

∏
k=1

(
πk fk(zij; λk)

)b(2)ijk

]
. (20)

The likelihood function based on the complete data is:

L(θ; w) = p(w; θ), (21)

As mentioned, in this life-test, the observed data are T = {ti, i = 1, 2, . . . , N}. The likelihood function
based on the observed data is:

L(θ) = C
N

∏
i=1

[ f (ti; θ)(s(ti; θ))Ri ], (22)

where C is a constant number. The maximum likelihood estimates can be obtained by maximizing
Equation (22). The EM algorithm is usually adopted to get the MLEs for the progressively censored
data [7]. As we can see, this likelihood function is based on the observed data, but it ignores some
possible uncertain information of the partial labels. In fact, there are two kinds of uncertain information
in this case. One is the failure time of the removed units during the experiment, for which we only
know their censored time. The other is the sub-class label of each unit. Here, we use the mass functions
in belief function theory to model these two types of uncertain information in a united frame. In order
to establish a united frame for the data, we can describe all the data obtained in the life-test using
different kinds of mass functions.

If X is a completely observed data and we assume that X = t∗, we can model this information
with a certain mass function. Its contour function can be defined as:

pl(X)
1 (x) =

{
1, x = t∗,

0, otherwise.
(23)

If X is the censored data at time t∗, we only know that x ∈ [t∗,+∞). We can model this uncertain
information using the following contour function:

pl(X)
2 (x) =

{
1, x ∈ [t∗,+∞),

0, otherwise.
(24)
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As mentioned before, in real applications, some uncertain information could be obtained from
the experts or from historical data. The plausibility is adopted to express the uncertain information
about the partial class labels of units. For the completely observed data ti, the plausibility about the
proposition that the unit with failure ti comes from the kth component is pl(B)

ti ,k
. For the censored data

zij, we can use pl(B)
zij ,k

.
Suppose that the failure time X and the sub-class label B are cognitively independent. Therefore,

the contour function of the complete data wi = (xi, bi) can be defined by:

pl(wi) =
m

∏
k=1

(
pl(B)

xi ,k

)bik · pl(X)(xi). (25)

where pl(B)
xi ,k

is the plausibility that xi comes from the kth sub-group and pl(X)(xi) describes the

information about the failures. For the completely observed data and censored data, pl(X)(xi) can be
defined as Equations (23) and (24), respectively.

Considering the progressive censoring scheme, given the data w = (x, b), the contour function of
x can be defined as:

pl(w) =
n

∏
i=1

pl(X)(xi)pl(B)(bi) (26a)

=
n

∏
i=1

[
m

∏
k=1

(
pl(B)

xi ,k

)bik
p(X)(xi)

]
(26b)

=
N

∏
i=1

[
m

∏
k=1

(
pl(B)

ti ,k

)b(1)ik pl(X)
1 (ti) ·

Ri

∏
j=1

m

∏
k=1

(
pl(B)

zij ,k

)b(2)ijk pl(X)
2 (zij)

]
. (26c)

The evidential likelihood for the progressively censored data can be derived as:

L(θ; pl) =
n

∏
i=1

Eα[pl(Wi)] (27a)

=
n

∏
i=1

Eα[pl(X)(Xi)pl(B)(Bi)] (27b)

=
n

∏
i=1

m

∑
k=1

πkEα[pl(X)(Xi)pl(B)(Bi)|bik = 1] (27c)

=
n

∏
i=1

m

∑
k=1

πk pl(B)
xi ,k

Eα[pl(X)(Xi)|bik = 1] (27d)

=
N

∏
i=1

m

∑
k=1

πk pl(B)
ti ,k

Eα[pl(X)
1 (ti)|b

(1)
ik = 1]

·
N

∏
i=1

Ri

∏
j=1

m

∑
k=1

πk pl(B)
zij ,k

Eα[pl(X)
2 (zij)|b

(2)
ijk = 1] (27e)

=
N

∏
i=1

[
m

∑
k=1

πk pl(B)
ti ,k

fk(ti; λk) ·
Ri

∏
j=1

m

∑
k=1

πk pl(B)
zij ,k

sk(ti; λk)

]
, (27f)

where θ = (π, λ) denotes the unknown parameters.
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Corollary 1. If there is no information about the sub-class label of each unit, we can use the vacuous mass
function on ΩB, i.e., pl(B)

xi ,k
= 1. Therefore, for the observed data and the censored data, we can get:

pl(B)
ti ,k

= 1, i = 1, 2, . . . , N; k = 1, . . . , m,

pl(B)
zij ,k

= 1, i = 1, 2, . . . , N; j = 1, 2, . . . , Ri; k = 1, . . . , m.
(28)

In this case, the evidential likelihood function defined in Equation (27f) can be rewritten as:

L(θ; pl) =
N

∏
i=1

( m

∑
k=1

πk fk(ti; λk)

)
·
(

m

∑
k=1

πksk(ti; λk)

)Ri
 . (29)

This is the same as Equation (22).

From Corollary 1, we can see that the traditional likelihood can be regarded as a special case of
the evidential likelihood for the progressively censored data when there is no prior information about
the sub-class label of each unit.

3.2. The Optimal Estimates under the Evidential Likelihood

The E2M algorithm can be evoked to derive the MELEs for the uncertain progressively censored
data from mixture models. Given the initial parameter value of θ = θ(0), the E-step and M-step are
repeated alternatively.

• E-step: Derive the Q function, which can be seen as the expectation of log L(θ; w) with respect
to p(w|pl; θ(q)).

From Equation (13), the probability mass function p(·|pl; θ(q)) can be expressed as:

p(w|pl; θ(q)) =
p1(w; θ(q))pl2(w)

∑w′∈Ω p1(w′; θ(q))pl2(w′)
=

p(w; θ(q))pl(w)

L(θ(q); pl)
. (30)

The probability function p(·|pl; θ(q)) can be seen as the Dempster combination of p(w; θ(q)) and
pl(w). The former describes the random uncertainty due to the underlying population, while the
latter reflects the epistemic uncertainty due to the partial knowledge.

According to Equation (30), the Q function at the qth iteration is:

Q(θ, θ(q)) = E[log L(θ; w)|pl; θ(q)] (31a)

=

∑
w∈ΩW

log (L(θ; w))p(w; θ(q))pl(w)

L(θ(q); pl)
, (31b)

where L(θ; w) is the likelihood function based on the complete data (see Equation (21)).
• M-step: This is the same as the traditional EM algorithm. In this step, the value of θ can be

obtained by maximizing Q(θ, θ(q)).

Theorem 1. L(θ(q); pl), q = 0, 1, 2, . . . of the evidential likelihood function obtained by the above-mentioned
E2M algorithm is not decreasing, i.e., it verifies:

L(θ(q+1); pl) ≥ L(θ(q); pl). (32)

Proof. From Equation (30), we know:
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p(w|pl; θ) =
p(w; θ)pl(w)

L(θ; pl)
=

L(θ; w)pl(w)

L(θ; pl)
. (33)

From the above equation, we can get:

L(θ; w)

L(θ; pl)
=

p(w|pl; θ)

pl(w)
, g(w|p; θ). (34)

Then, we can have:
log L(θ; pl) = log L(θ; w)− log g(w|pl; θ). (35)

Taking the expectation of both sides of the above equation with respect to p(w|pl; θ(q)), then it is easy
to get:

log L(θ; pl) = E
[
log L(θ; w)|pl; θ(q)

]
−E

[
log g(x|pl; θ)|pl; θ(q)

]
. (36)

Let
H(θ, θ(q)) = E

[
log g(x|pl; θ)|pl; θ(q)

]
, (37)

and then, we have:

log L(θ(q+1); pl)− log L(θ(q); pl)

=
(

Q(θ(q+1), θ(q))−Q(θ(q), θ(q))
)
−
(

H(θ(q+1), θ(q))− H(θ(q), θ(q))
)

. (38)

It is easy to see that Q(θ(q+1), θ(q)) ≥ Q(θ(q), θ(q)) since in the M-step, the value of θ is updated by
maximizing Q(θ, θ(q)) with respect to θ. For any θ,

H(θ, θ(q))− H(θ(q), θ(q))

= E
[

log
g(w|pl; θ)

g(w|pl; θ(q))

∣∣∣∣pl; θ(q)
]

(39a)

≤ logE
[

g(w|pl; θ)

g(w|pl; θ(q))

∣∣∣∣pl; θ(q)
]

(39b)

≤ log
∫ g(w|pl; θ)

g(w|pl; θ(q))
pl(w)g(w|pl; θ(q))dw (39c)

≤ log
∫

g(w|pl; θ)pl(w)dw (39d)

≤ log
∫

p(w|pl; θ)dw = 0, (39e)

where the inequality (39b) is obtained from Jensen’s inequality.
As we can see, the first difference in Equation (38) is nonnegative, while the second one is no

larger than zero. Thus, it is easy to get log L(θ(q+1); pl) ≥ log L(θ(q); pl), and consequently, we have
the inequality (32).

Corollary 2. When the contour function pl(w) degrades to the categorical mass function, the probability
function p(w|pl; θ(q)) degrades to the conditional probability function P(·|y, θ(q)) in EM.

3.3. The Estimation Methodology for a Mixed Exponential Distribution

The likelihood function based on the complete data w for Type-II progressively censored data
from MED is:

L(π, λ; w) =
N

∏
i=1

[
m

∏
k=1

(
πkλke−λkti

)b(1)ik ·
Ri

∏
j=1

m

∏
k=1

(
πkλke−λkzij

)b(2)ijk

]
. (40)
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The log-likelihood is:

log L(π, λ; w) =
N

∑
i=1

[
m

∑
k=1

b(1)ik (logπk + logλk − λkti) +
Ri

∑
j=1

m

∑
k=1

b(2)ijk
(
logπk + logλk − λkzij

)]
. (41)

As before, let θ = (π, λ) denote the unknown parameters of the MED model. Given the initial
parameter θ(0) = (π(0), λ(0)), the alternative iterations of the E2M algorithm are described in
the following.

• E-step: Let the parameters at the qth iteration be θ(q) = (π(q), λ(q)). The expectation of
log L(π, λ; w) with respect to p(w|pl; θ(q)) (Q function) can be defined as:

Q(θ, θ(q)) = E[log L(π, λ; w)|pl; θ(q)] (42a)

=
N

∑
i=1

{
m

∑
k=1

(logπk + logλk − λkti)E[b
(1)
ik |pl; θ(q)]+

Ri

∑
j=1

m

∑
k=1

[
(logπk + logλk)E[b

(2)
ijk |pl; θ(q)]− λkE[b

(2)
ijk zij|pl; θ(q)]

]}
. (42b)

From Equation (13), we known:

p(xi, b(1)ik = 1|pl; θ(q)) =
π
(q)
k fk

(
ti; λ

(q)
k

)
pl(B)ti ,k

pl(X) (ti)

∑m
l=1 π

(q)
l

∫
xi

fl

(
xi; λ

(q)
k

)
pl(B)xi ,l

pl(X) (xi)dxi

(43a)

=
π
(q)
k fk

(
ti; λ

(q)
k

)
pl(B)ti ,k

pl(X) (ti)

∑m
l=1 π

(q)
l fl

(
ti; λ

(q)
k

)
pl(B)ti ,l

. (43b)

As b(1)ik is a Boolean variable, it is easy to get:

E[b(1)ik |pl; θ(q)] = P(b(1)ik = 1|pl; θ(q)) =
π
(q)
k fk

(
ti; λ

(q)
k

)
pl(B)ti ,k

∑m
l=1 π

(q)
l fl

(
ti; λ

(q)
k

)
pl(B)ti ,l

, a(q)ik . (44)

Similarity, we can get:

p(zij, b(2)ijk = 1|pl; θ(q)) =
π
(q)
k fk

(
zij; λ

(q)
k

)
pl(B)zij ,k

pl(X)
(
zij
)

∑m
l=1 π

(q)
l sl

(
zij; λ

(q)
k

)
pl(B)zij ,l

. (45)

E[b(2)ijk |pl; θ(q)] = P(b(2)ijk = 1|pl; θ(q)) =
π
(q)
k sk

(
ti; λ

(q)
k

)
pl(B)zij ,k

∑m
l=1 π

(q)
l sl

(
zij; λ

(q)
l

)
pl(B)zij ,l

, e(q)ijk . (46)

For the expectation of b(2)ijk zij, we can get:

E[b(2)ijk zij|pl; θ(q)] = E[zij|b
(2)
ijk = 1, pl; θ(q)]P(b(2)ijk = 1|pl; θ(q)), (47)

where P(b(2)ijk = 1|pl; θ(q)) can be obtained by Equation (46). From Equations (45) and (46),
we can get:
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p(zij|b
(2)
ijk = 1, pl; θ(q)) =

p(zij, b(2)ijk = 1|pl; θ(q))

P(b(2)ijk = 1|pl; θ(q))
=

fk(zij; λ
(q)
k )pl(X)(zij)

sk(ti; λ
(q)
k )

. (48)

As zij ∈ [ti,+∞), we can get:

E[zij|b
(2)
ijk = 1, pl; θ(q)] =

∫ ∞

ti

zij
fk(zij; λ

(q)
k )

sk(ti; λ
(q)
k )

dzij , ξ
(q)
ik . (49)

Therefore,
E[b(2)ijk zij|pl; θ(q)] = ξ

(q)
ik e(q)ijk . (50)

Substituting Equations (44), (46), and (50) into Equation (42b), we can get the Q function in the
qth iteration:

Q(θ, θ(q)) =
N

∑
i=1

[
m

∑
k=1

(logπk + logλk − λkti)a(q)ik +
Ri

∑
j=1

m

∑
k=1

[
(logπk + logλk)e

(q)
ijk − λkξ

(q)
ik e(q)ijk

]]
, (51)

where θ = (π, λ), π = (π1, . . . , πm), λ = (λ1, . . . , λm), and ∑m
k=1 πk = 1.

Corollary 3. If there is no uncertain information in the experiment, i.e., plxi ,k = 1, the conditional expectations
defined in Equations (44), (46), and (50) are the same as those in the conventional EM algorithm:

E[b(1)ik |pl; θ(q)] =
π
(q)
k fk

(
ti; λ

(q)
k

)
∑m

l=1 π
(q)
l fl

(
ti; λ

(q)
l

) ,

E[b(2)ijk |pl; θ(q)] =
π
(q)
k sk

(
ti; λ

(q)
k

)
∑m

l=1 π
(q)
l sl

(
ti; λ

(q)
l

) ,

E[b(2)ijk zij|pl; θ(q)] =
π
(q)
k

∫ ∞
ti

zij fk(zij; λ
(q)
k )dzij

∑m
l=1 π

(q)
l sl

(
ti; λ

(q)
l

) .

• M-step: In order to get the updated estimates, we have to maximize the Q(θ, θ(q)) function with
respect to parameters π and λ. The Lagrangian method can be adopted to consider the constraint
∑m

k=1 πk = 1. Let:

L(θ, η) = Q(θ, θ(q)) + η(
m

∑
k=1

πk − 1).

We can get:

∂L(θ, η)

∂πk
=

A(q)
k

πk
+ η = 0, (52)

∂L(θ, η)

∂λk
=

A(q)
k

λk
− C(q)

k −
N

∑
i=1

tia
(q)
ik = 0, (53)

∂L(θ, η)

∂η
=

m

∑
k=1

πk − 1 = 0, (54)
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where

A(q)
k =

N

∑
i=1

a(q)ik +
N

∑
i=1

Ri

∑
j=1

e(q)ijk , (55)

C(q)
k =

N

∑
i=1

Ri

∑
j=1

ξ
(q)
ik e(q)ijk . (56)

From Equations (52) and (54), we know:

η = −
m

∑
k=1

A(q)
k .

Thus, it is easy to get:

π
(q+1)
k =

A(q)
k

∑m
k=1 A(q)

k

, k = 1, . . . , m, (57)

λ
(q+1)
k =

A(q)
k

C(q)
k + ∑N

i=1 tia
(q)
ik

, k = 1, . . . , m. (58)

where A(q)
k and C(q)

k are defined in Equations (55) and (56), respectively.

The E-step and M-step will be repeated iteratively until:√
m

∑
i=1

(
π
(q+1)
i − π

(q)
i

)2
≤ ε (59)

and: √
m

∑
i=1

(
λ
(q+1)
i − λ

(q)
i

)2
≤ ε, (60)

where ε is a given small positive constant. Suppose that the algorithm stops at the lth step, then
θ(l) = (π(l), λ(l)) are the MELEs for the parameters. The whole process of the estimation is summarized
in Algorithm 1.

Algorithm 1 : The evidential estimation approach for uncertain MED under progressive censoring.

Input: The observed failures (t1, . . . , tN) and the censoring scheme (R1, . . . , RN).
Initialization:

(1) Let q = 0.
(2) Initialize the parameters θ(q) =

(
π(q), λ(q)

)
.

repeat
(1) E-step: Calculate the Q function based on the current parameters Q(θ, θ(q)).
(2) M-step: Maximize Q(θ, θ(q)) with respect to θ and update the parameters θ(q+1).
(3) q = q + 1.

until Both Equations (59) and (60) hold true.
Output: The MELEs of the parameters.
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4. Data Analysis

In this section, a real dataset of the air conditioning system of an airplane is considered to illustrate
the practical application of the proposed evidential estimation model. The group of failure times of the
system is given as follows:

1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246, 261.

This dataset was analyzed by different authors using various models [43,44]. In [19], the authors found
that the MED model with two components (m = 2) provided a good fit to the given failure data.
The fitted probability density function can be obtained by the maximal likelihood estimations:

f̂ (x) = π̂1λ̂1e−λ̂1x + π̂2λ̂2e−λ̂2x, x ≥ 0,

with π̂1 = 0.3459, π̂2 = 0.6541, λ̂1 = 0.0647, λ̂2 = 0.0121. If we do not have any information about
the sub-class labels of each sample, the MLEs of the above MED can be obtained using the EM
algorithm [19]:

π̂MLE
1 = 0.1136, π̂MLE

2 = 0.8864, λ̂MLE
1 = 0.1091, λ̂MLE

2 = 0.0161.

Suppose we have some uncertain information about the sub-class labels. This type of knowledge
can be obtained by experts or from historical data. Here, we can use the evidential c-means (ECM)
clustering algorithm [31] to obtain the contour function for each sample. From the given failures, it is
easy to see that they can be divided into two groups. The credal partition found by ECM can provide
us with the plausibility of the data belonging to the sub-groups. In ECM, let C = 2, and the other
parameters are set as the default. The plausibility matrix describing the partial information about the
sub-class label of each sample is illustrated in Table 1.

The maximum likelihood estimations in the sense of evidential likelihood (denoted by MELE)
that can integrate the uncertain label information can be obtained:

π̂MELE
1 = 0.3433, π̂MELE

2 = 0.6567, λ̂MELE
1 = 0.0651, λ̂MELE

2 = 0.0121.

We can see that the estimation results by the proposed estimation model are closer to the estimations
by the complete data.

Table 1. The plausibility matrix for the data.

ID pl(B)
xi ,1 pl(B)

xi ,2 ID pl(B)
xi ,1 pl(B)

xi ,2

1 0.9971 0.0080 16 0.9976 0.0076
2 0.9980 0.0057 17 0.9775 0.0858
3 0.9987 0.0038 18 0.9687 0.1264
4 0.9992 0.0022 19 0.9590 0.1770
5 0.9999 0.0003 20 0.9388 0.3094
6 0.9999 0.0003 21 0.9247 0.4584
7 0.9999 0.0003 22 0.9247 0.4584
8 1.0000 0.0001 23 0.9266 0.7394
9 1.0000 0.0001 24 0.9319 0.7860

10 1.0000 0.0001 25 0.9435 0.8549
11 1.0000 0.0001 26 1.0000 1.0000
12 0.9998 0.0006 27 1.0000 1.0000
13 0.9998 0.0006 28 0.0001 1.0000
14 0.9989 0.0035 29 0.0189 0.9930
15 0.9985 0.0047 30 0.0474 0.9813
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As we know, in the traditional EM algorithm, the solution depends on the initial values adopted.
In order to show the influences of the initial values for the proposed estimation model, we will try
with different initialization strategies. For parameter π, we evoke the estimation model with:

π
(0)
1 = |0.5 + N(0, 0.1)|, π

(0)
2 = 1− π

(0)
1 ,

while for λ, we set:
λ
(0)
1 = |0.2 + N(0, 0.1)|, λ

(0)
2 = |0.8 + N(0, 0.1)|,

where |x| is the absolute value of x and N(0, 0.1) denotes a random number from the normal
distribution with µ = 0, σ2 = 0.1. The E2M algorithm and EM algorithm are both repeated 100 times.
The mean value and the standard variances of the estimations are reported, which is illustrated
in Table 2.

Table 2. The mean and standard variance (sd) values of the estimations with different initializations.
MELE, maximal evidential likelihood estimate.

MLE MELE

Parameter Mean sd Mean sd

λ1 0.0898 0.0101 0.0598 0.0083
λ2 0.0177 0.0305 0.0277 0.0045
π1 0.1931 0.1094 0.0931 0.0182
π2 0.8069 0.1094 0.4069 0.0154

It is easy to see that the standard variation values of MELEs are smaller than those of MLEs.
We can conclude that the use of the uncertain information can reduce the influence of the initializations
in the estimation model. Many initialization methods have been studied for the EM algorithm, which is
worth learning and a reference for the proposed estimation model. However, in this paper, we do not
focus on the proper initialization method and leave it for our future research.

5. Simulations

Monte Carlo simulations are conducted in this section to show the performance of the proposed
method. Suppose that X1, X2, . . . , Xn are n independent variables from the mixed exponential
distribution in Equation (2). Here, we consider the model with two mixture components (m = 2)
under the Type-II progressive censoring scheme. The parameters to be estimated are π1, π2, λ1, λ2 with
π1 + π2 = 1.

To simulate uncertainty on class labels, the original generated data are processed as follows.
For the ith observed failure, an error probability qi is drawn randomly from a beta distribution with
mean ρ and standard deviation σ. In real applications, qi can be obtained by experts or from historical
data. With probability qi, the label of zi is replaced by a completely value of z̃i (with a uniform
distribution over all the class labels). The contour function on class labels can be defined as:

pl(B)
xi ,k

= P(bik = 1|b∗ik) =
{ qi

m , b∗ik = 0,
qi
m + 1− qi, b∗ik = 1,

i = 1, . . . , n; k = 1, . . . , m. (61)

If there is no uncertainty, i.e., plxi ,k = 1, the evidential likelihood degrades to the traditional likelihood.
Let π1 = 0.3, π2 = 0.7; λ1 = 0.6, λ2 = 0.1. Set the initial value of the parameters as:

π
(0)
1 = 0.5, π

(0)
2 = 0.5, λ

(0)
1 = 1, λ

(0)
2 = 0.5.

In this experiment, we set the number of units placed on the life-test to be n = 20, 100, 200, 400.
We consider different censoring proportions for a given sample size. Let N = n× (0.1, 0.2, 0.3). For the
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parameters to model the uncertain label information, we set ρ = 0.2, σ = 0.2. Three censoring schemes
are considered:

Scheme 1: R1 = . . . , RN−1 = 0, RN = n− N.
Scheme 2: R1 = n− N, R2 = . . . , RN = 0.
Scheme 3: R1 = R2 = · · · = RN−1 = 1, RN = n− 2 ∗ N + 1.

Given the sample size n and the censoring scheme, the E2M algorithm will be repeated s = 100 times.
The bias and mean squared error (MSE) values of the estimators are reported. The results are illustrated
in Tables 3–8.

From the tables, we can see that, with the increasing size of n and N , for the estimators obtained
both by the proposed evidential estimation model and by the EM algorithm, the values of the bias and
MSE decrease in most cases. This is consistent with our common sense about the maximum likelihood
estimations. For different censoring schemes, it is obvious that the estimation efficiency is highly
related to the proportion of the censored samples. When the number of units placed in the life-test is
fixed, with the increasing number of censored data, the values of MSE increase.

Overall, in most cases, the biases and MSEs of the MELEs by the proposed evidential estimation
model are smaller than those of MLEs by the EM algorithm, which can be attributed to the use of the
uncertain prior information about the sub-class labels. When the proportion of the censored data is
large, the MELEs obtained by the proposed estimation model are significantly better.

Table 3. The statistical properties of the estimators of λ1 and λ2 with Scheme 1. λ̂MELE
i and λ̂MLE

i are the
MELE by the proposed estimation method and the MLE by the traditional EM algorithm, respectively.

Bias MSE

n N λ̂MLE
1 λ̂MELE

1 λ̂MLE
2 λ̂MELE

2 λ̂MLE
1 λ̂MELE

1 λ̂MLE
2 λ̂MELE

2

20 2 0.3940 0.2279 0.3193 0.1421 5.4890 3.6382 0.0990 0.0808
20 4 0.9357 0.7783 0.2508 0.1373 4.4376 2.6257 0.0933 0.0764
20 6 0.1281 1.0112 0.1934 0.1189 5.9467 2.6358 0.0858 0.0683

100 10 0.7666 0.2661 0.2825 0.1249 3.1009 0.0790 0.0970 0.0642
100 20 0.4059 0.2158 0.2504 0.1509 1.6919 0.3333 0.0823 0.0652
100 30 0.2601 0.1422 0.1860 0.1427 0.6354 0.1728 0.0865 0.0657
200 20 0.6175 0.2911 0.2775 0.1167 7.9779 0.7749 0.1008 0.0645
200 40 0.2238 0.2470 0.2451 0.1639 1.0183 0.5144 0.0747 0.0604
200 60 0.4149 0.1986 0.1992 0.1454 3.9797 0.3526 0.0810 0.0665
400 40 0.9731 0.3065 0.2739 0.1268 7.4599 0.0686 0.0936 0.0635
400 80 0.7262 0.3163 0.2461 0.1242 9.7900 0.0716 0.0820 0.0540
400 120 0.2421 0.1978 0.2037 0.1219 0.3790 0.2534 0.0768 0.0455

Table 4. The statistical properties of the estimators of π1 and π2 with Scheme 1. π̂MELE
i and π̂MLE

i are the
MELE by the proposed estimation method and the MLE by the traditional EM algorithm, respectively.

Bias MSE

n N π̂MLE
1 π̂MELE

1 π̂MLE
2 π̂MELE

2 π̂MLE
1 π̂MELE

1 π̂MLE
2 π̂MELE

2

20 2 0.0508 0.0892 0.0579 0.1193 0.3963 0.2967 0.1314 0.0596
20 4 0.1200 0.0392 0.0627 0.0508 0.1669 0.1140 0.1275 0.0752
20 6 0.1178 0.0739 0.0811 0.0066 0.1644 0.1364 0.1272 0.0869
100 10 0.1316 0.0589 0.0751 0.0825 0.1578 0.1116 0.1339 0.0546
100 20 0.1471 0.0810 0.0491 0.0504 0.1643 0.1215 0.1122 0.0649
100 30 0.1695 0.1146 0.0573 0.0140 0.1795 0.1416 0.1180 0.0861
200 20 0.1420 0.0718 0.0833 0.0775 0.1596 0.1150 0.1402 0.0561
200 40 0.1503 0.0917 0.0361 0.0451 0.1674 0.1281 0.1014 0.0626
200 60 0.1744 0.1190 0.0546 0.0008 0.1820 0.1430 0.1121 0.0819
400 40 0.1529 0.0801 0.0732 0.0739 0.1685 0.1189 0.1304 0.0563
400 80 0.1629 0.0946 0.0558 0.0461 0.1751 0.1260 0.1140 0.0649
400 120 0.1799 0.1170 0.0581 0.0037 0.1860 0.1405 0.1097 0.0794
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Table 5. The statistical properties of the estimators of λ1 and λ2 with Scheme 2. λ̂MELE
i and λ̂MLE

i are the
MELE by the proposed estimation method and the MLE by the traditional EM algorithm, respectively.

Bias MSE

n N λ̂MLE
1 λ̂MELE

1 λ̂MLE
2 λ̂MELE

2 λ̂MLE
1 λ̂MELE

1 λ̂MLE
2 λ̂MELE

2

20 2 9.1642 10.1750 0.1960 0.1354 4.8531 9.1105 0.0942 0.1050
20 4 12.2537 13.2526 0.2083 0.1614 5.6519 5.0538 0.0905 0.0959
20 6 4.0073 4.3486 0.2546 0.1650 1.3179 4.2556 0.1318 0.0993
100 10 12.9948 9.4179 0.1790 0.1272 7.8862 9.7824 0.0925 0.1078
100 20 1.2818 1.3895 0.1991 0.1259 11.6120 3.5432 0.1077 0.1003
100 30 0.4817 0.7400 0.2286 0.1477 1.9537 5.4708 0.1082 0.0890
200 20 1.9440 0.9701 0.2530 0.1425 2.9915 1.5640 0.1163 0.1022
200 40 0.3792 0.5135 0.2234 0.1697 1.6746 4.1021 0.0834 0.0781
200 60 0.2999 1.2155 0.2286 0.1742 1.1539 1.5056 0.0962 0.0792
400 40 2.6339 1.3680 0.1942 0.1198 1.1806 1.7962 0.0848 0.0982
400 80 4.7986 0.6004 0.2031 0.1395 1.3783 0.5436 0.0840 0.0810
400 120 0.2702 0.0976 0.2199 0.1410 0.6702 0.4962 0.0924 0.0876

Table 6. The statistical properties of the estimators of π1 and π2 with Scheme 2. π̂MELE
i and π̂MLE

i are the
MELE by the proposed estimation method and the MLE by the traditional EM algorithm, respectively.

Bias MSE

n N π̂MLE
1 π̂MELE

1 π̂MLE
2 π̂MELE

2 π̂MLE
1 π̂MELE

1 π̂MLE
2 π̂MELE

2

20 2 0.0308 0.0205 0.0646 0.0040 0.2471 0.2576 0.1382 0.1103
20 4 0.0765 0.0688 0.0386 0.0083 0.2212 0.1841 0.1215 0.1036
20 6 0.1701 0.1613 0.0350 0.0546 0.1786 0.1867 0.1235 0.1256
100 10 0.1830 0.1791 0.0728 0.0210 0.1831 0.1849 0.1425 0.1148
100 20 0.1936 0.1878 0.0741 0.0009 0.1916 0.1972 0.1369 0.1215
100 30 0.1968 0.1897 0.0523 0.0286 0.1915 0.1977 0.1186 0.1129
200 20 0.1976 0.1832 0.0575 0.0530 0.1893 0.1999 0.1330 0.1140
200 40 0.1974 0.1926 0.0303 0.0234 0.1941 0.1976 0.1028 0.0929
200 60 0.1979 0.1934 0.0258 0.0286 0.1943 0.1986 0.1030 0.1023
400 40 0.2011 0.1929 0.0802 0.0058 0.1945 0.2008 0.1365 0.1017
400 80 0.1965 0.1905 0.0605 0.0031 0.1926 0.1978 0.1149 0.0983
400 120 0.2001 0.1931 0.0590 0.0199 0.1956 0.2020 0.1195 0.0981

Table 7. The statistical properties of the estimators of λ1 and λ2 with Scheme 3. λ̂MELE
i and λ̂MLE

i are the
MELE by the proposed estimation method and the MLE by the traditional EM algorithm, respectively.

Bias MSE

n N λ̂MLE
1 λ̂MELE

1 λ̂MLE
2 λ̂MELE

2 λ̂MLE
1 λ̂MELE

1 λ̂MLE
2 λ̂MELE

2

20 2 7.9040 0.1744 0.1278 0.1974 8.9819 0.2180 0.1060 0.0689
20 4 3.0177 5.2017 0.1306 0.1556 7.6359 1.3141 0.1031 0.0694
20 6 1.4218 0.5737 0.1603 0.1936 3.1824 1.1476 0.0872 0.0804

100 10 1.7309 0.0356 0.1230 0.1750 4.4582 1.5949 0.0954 0.0651
100 20 0.9920 0.1063 0.1410 0.1343 3.2922 1.3056 0.0891 0.0678
100 30 0.5160 0.4788 0.1254 0.1470 1.6549 2.8739 0.0843 0.0732
200 20 0.8511 0.2909 0.1285 0.1770 4.9667 0.0717 0.0902 0.0638
200 40 0.4303 0.3190 0.1322 0.1393 1.5101 0.0742 0.0873 0.0649
200 60 0.6432 0.4140 0.1272 0.1505 4.1079 2.7520 0.0851 0.0778
400 40 0.4359 0.3001 0.1124 0.1753 1.2242 0.0669 0.0971 0.0630
400 80 0.0547 0.3164 0.1377 0.0423 0.9854 0.1682 0.0896 0.0628
400 120 0.0770 0.0161 0.1391 0.0752 0.9764 0.0856 0.0829 0.0743
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Table 8. The statistical properties of the estimators of π1 and π2 with Scheme 3. π̂MELE
i and π̂MLE

i are the
MELE by the proposed estimation method and the MLE by the traditional EM algorithm, respectively.

Bias MSE

n N π̂MLE
1 π̂MELE

1 π̂MLE
2 π̂MELE

2 π̂MLE
1 π̂MELE

1 π̂MLE
2 π̂MELE

2

20 2 0.0438 0.0149 0.0722 0.0974 0.2629 0.2063 0.1415 0.0554
20 4 0.0771 0.0028 0.0694 0.0556 0.1643 0.1263 0.1377 0.0686
20 6 0.1432 0.0668 0.0397 0.0064 0.1712 0.1335 0.1140 0.0967
100 10 0.1445 0.0685 0.0770 0.0750 0.1617 0.1120 0.1335 0.0576
100 20 0.1526 0.0947 0.0590 0.0343 0.1692 0.1294 0.1214 0.0722
100 30 0.1806 0.1440 0.0746 0.0530 0.1861 0.1644 0.1221 0.1055
200 20 0.1463 0.0718 0.0715 0.0770 0.1624 0.1153 0.1273 0.0557
200 40 0.1685 0.1000 0.0678 0.0393 0.1793 0.1290 0.1225 0.0677
200 60 0.1771 0.1463 0.0728 0.0495 0.1834 0.1615 0.1220 0.1078
400 40 0.1511 0.0763 0.0876 0.0753 0.1675 0.1182 0.1384 0.0555
400 80 0.1644 0.0977 0.0623 0.0423 0.1782 0.1289 0.1223 0.0652
400 120 0.1718 0.1415 0.0609 0.0248 0.1794 0.1557 0.1156 0.0961

6. Conclusions

In this paper, a method for estimating the parameters of a mixed distribution model under Type-II
progressive censoring was introduced. The main advantage of the proposed formalism is that it
can combine uncertainty captured by the imperfect observation process due to censoring and the
partial knowledge about the sub-class information in the mixture model. These two types of uncertain
information can be represented in a united frame by the use of belief functions, and then, the evidential
likelihood is derived, which can be seen as a generalized likelihood criterion. It can be maximized
using the evidential EM algorithm. As an illustration, the method was applied to the MED model.
A real dataset was considered, and some Monte Carlo simulations were carried out to demonstrate the
performance of the resulting estimates. The results show that the estimations by the proposed method
gain better estimation efficiency, which can be attributed to the effective integration of the uncertain
information in the model.

More generally, the evidential estimation approach introduced in this paper is applicable to any
other mixed distributions under different censoring schemes, where data uncertainty in the parametric
statistical model arises from the imperfect observation process and reliability engineering applications
such as the life data with multiple failure causes.
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