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Abstract

Recent advances in automated face recognition algorithms have increased the risk that de-

identified research MRI scans may be re-identifiable by matching them to identified photographs 

using face recognition. A variety of software exist to de-face (remove faces from) MRI, but their 

ability to prevent face recognition has never been measured and their image modifications can alter 

automated brain measurements. In this study, we compared three popular de-facing techniques 

and introduce our mri_reface technique designed to minimize effects on brain measurements 

by replacing the face with a population average, rather than removing it. For each technique, 

we measured 1) how well it prevented automated face recognition (i.e. effects on exceptionally-

motivated individuals) and 2) how it altered brain measurements from SPM12, FreeSurfer, and 

FSL (i.e. effects on the average user of de-identified data). Before de-facing, 97% of scans 
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from a sample of 157 volunteers were correctly matched to photographs using automated face 

recognition. After de-facing with popular software, 28–38% of scans still retained enough data for 

successful automated face matching. Our proposed mri_reface had similar performance with the 

best existing method (fsl_deface) at preventing face recognition (28–30%) and it had the smallest 

effects on brain measurements in more pipelines than any other, but these differences were modest.
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1. Introduction

It has long been hypothesized that de-identified brain images may potentially be re-

identified by reconstructing the participant’s face from the scan and applying face 

recognition. Consequently, many algorithmic techniques have been developed for removing 

or distorting face imagery (“de-facing”) to prevent face recognition (Alfaro-Almagro et al., 

2018; Bischoff-Grethe et al., 2007; Fonov and Collins, 2018; Gulban et al., n.d.; Hanke, 

2015; Milchenko and Marcus, 2013; Schimke and Hale, 2011; Silva et al., 2018). A 2009 

study tested whether human volunteers could successfully match participant photographs 

to the correct MRI-based face reconstruction, and only 40% of volunteers performed the 

matching with success rates greater than random chance (Prior et al., 2009). A 2012 

study was the first to test automatic face recognition software (Google Picasa, launched 

in 2009), finding that 27.5% of CT-based re-constructions could be matched to the correct 

participant photographs (Mazura et al., 2012). However, adoption of de-facing software 

across research neuroimaging studies has been mixed, and many large studies and data-sets 

have widely distributed images without attempting to prevent face recognition. Studies may 

have chosen to avoid de-facing for multiple reasons: 1) desire to share minimally-altered 

data to maximize potential scientific utility; 2) concern that de-facing techniques may reduce 

the quality of measurements obtained from the images; 3) belief that researchers receiving 

the data would act in good faith and honor Data Use Agreements they signed in order to 

receive the data; or 4) belief that the threat of loss of privacy via face recognition was small 

enough to be an acceptable level of risk for their scientific potential.

Between 2013 and 2018, identification performance of face recognition algorithms (for their 

designed purpose of matching photographs to photographs) improved by approximately 20x 

industry-wide as older algorithms were replaced by convolutional neural networks and deep 

learning (Grother et al., 2018). Our recent study found that when applying more-recent face 

recognition algorithms, photos of 70/84 (83%) of participants were matched to the correct 

MRI (Schwarz et al., 2019), demonstrating that face recognition now poses a much greater 

risk to the privacy of research participants than previously estimated. These findings have 

led to increased concern that a motivated individual could violate research agreements by: 1) 

requesting access to de-identified MRI via data sharing, 2) reconstructing participants’ faces, 

and 3) matching these to public photographs to re-identify participants. This re-identification 

would also re-identify all protected health information (PHI) released by the study about 
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each participant, such as diagnoses, genetic information, neuropsychiatric measures, family/

personal history, etc.

2. Study design

An ideal technique for de-facing images should: 1) minimize the risk of face recognition; 

and 2) not significantly alter automated brain measurements on the de-faced images. 

Other recent works have suggested that some popular de-facing techniques may provide 

inadequate protection (Abramian and Eklund, 2019), and may substantially alter or impede 

automated brain measurements (de Sitter et al., 2020). In this study, we compare several 

popular de-facing techniques and introduce our mri_reface, which we designed to minimize 

effects on brain measurements by replacing the face rather than removing it. We believe 

both of these criteria are equally important, but their consequences affect very discrete sets 

of people and therefore we first evaluate them separately and in very different contexts 

before we compare de-facing techniques according to the combined findings. We used 3D 

Fluid-Attenuated Inversion Recovery (FLAIR) scans for testing criterion 1 because these 

give the best facial reconstructions (see supplementary material), but in contrast we used 

T1-weighted scans for criteria 2 because these are the most commonly analyzed images 

from public data sets.

2.1 Validation criterion 1: Protection from face recognition

The hypothetical worst-case scenario caused by re-identification of research participants 

would be if a highly-skilled and highly-motivated individual were to re-identify and 

extort research participants using their sensitive protected health information. Regardless 

of whether they targeted a single high-profile participant or large numbers of average 

participants, public disclosure of such an event would cause a devastating loss of public 

trust and participation in medical research, as vulnerable individuals would not trust research 

scientists to keep their participation and health information confidential. Therefore, we 

designed Validation Criterion 1 to compare techniques according to how well they could 

potentially prevent re-identification by a motivated individual with extensive skills and 

knowledge of MR image processing. Our design tests the scenario where a motivated 

individual has reason to believe that someone is part of a study, and they attempt to identify 

that participant within the study’s de-identified FLAIR image data.

2.2 Validation criterion 2: Minimizing effects on brain measurements

The overwhelming majority of people who gain access to de-identified research data will 

have no motivation to re-identify research participants; they will only use the data for its 

intended scientific purposes in accordance with applicable data use agreements. For most 

users, this means downloading de-identified T1-weighted images from a large public data-

set (e.g. Alzheimer’s Disease Neuroimaging Initiative (ADNI)), running standard popular 

software pipelines, and analyzing resulting numeric data. This large majority of users are not 

affected by whether the data can be re-identified but only by whether the de-identification 

process hinders their analyses. Therefore, we designed Validation Criteria 2 to compare and 

quantify how each de-identification technique affects these standard analyses by the average 

user.

Schwarz et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Materials and methods

3.1 Standard de-facing techniques

We include three of what we believe to be the most popular de-facing software in our 

comparison: mri_deface (FreeSurfer) (Bischoff-Grethe et al., 2007), pydeface (Gulban et al., 

n.d.), and fsl_deface (Alfaro-Almagro et al., 2018). Although it is also relatively popular, 

we did not include mask_face (Milchenko and Marcus, 2013) because previous work has 

already demonstrated that it provides inadequate protection (Abramian and Eklund, 2019). 

We provide a comparative example of all tested methods in Fig. 1.

mri_deface: mri_deface is a program included with FreeSurfer that locates face voxels 

using linear registration and a pre-defined mask created from manual labeling of scans from 

10 subjects. It was designed for use with T1-w images. Face voxels are removed (set to zero 

intensity) only if they are not within 7mm of estimated brain tissue (Bischoff-Grethe et al., 

2007). We used mri_deface version 1.22 (the current release), with default settings.

pydeface: pydeface (Gulban et al., n.d.) was initially released in 2017 and has become 

popular among the python neuroimaging community. Like mri_deface, it includes its 

own pre-defined mask of face voxels which are located on the input image using linear 

registration (FSL’s linear registration tool (FLIRT) (Jenkinson et al., 2002)) and removed 

(set to zero). We used the un-named version automatically installed through the python 

package manager (pip) on December 6, 2019, with default settings (only image input/output 

name were specified). Its documentation does not specify what types of MRI are supported.

fsl_deface: The UK Biobank study uses a customized image processing pipeline based 

on FSL (Alfaro-Almagro et al., 2018), which includes a de-facing approach also based 

on FSL tools. It was designed for use with T1-w images. This de-facing approach was 

later extracted from the larger processing pipeline and released as part of the main FSL 

package as fsl_deface. Like mri_deface and pydeface, this method uses linear registration 

(also FLIRT) to locate its own pre-defined mask of face voxels on the target image, then sets 

voxels in the mask to zero. Unlike mri_deface and pydeface, this method also removes the 

ears. We used fsl_deface as included in FSL version 6.0.3 (the current version), with default 

settings (only image input/output name were specified).

3.2 Proposed face-replacement technique: mri_reface

Method overview: We also propose and compare our in-house de-facing technique, 

mri_reface: rather than removing or blurring the face voxels, we replace them (i.e. perform 

a digital face “transplant”) with voxels from a population-average face. The goal of this 

approach was to provide increased protection from re-identification while minimizing effects 

on brain measurements by generating de-faced images that better resemble the natural 

images that each measurement pipeline was designed for. Another notable detail vs the other 

compared methods is that our implementation is based on nonlinear registration rather than 

only linear, allowing for more precision in localizing face regions to ensure their accurate 

removal without altering brain regions. We also replace the ears, to prevent ear recognition 

(Emeršič et al., 2017), and regions of air that may contain image artifacts with identifiable 
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features. Our current implementation supports T1-, T2-, and FLAIR-weighted images. We 

detail our approach below.

Creation of population-average face templates: First, we created a population-

average template for each MRI contrast, using scans of 177 Mayo Clinic participants age 

30–89 (stratified by age-decade and sex; 120 cognitively unimpaired and 57 with clinically-

diagnosed Alzheimer’s disease), imaged using 3D T1-weighted MPRAGE sequences on 

Siemens Prisma scanners. We co-registered the scans using an unbiased, group-wise 

approach (Avants et al., 2010) with high-dimensional symmetric normalization (Avants 

et al., 2008), and we normalized their intensities prior to voxel-wise averaging. In brief, 

a voxel-wise mean was computed from all 177 MRI, then each MRI was non-linearly 

deformed (its geometry was locally compressed and expanded) to match the mean image as 

closely as possible. The process was then repeated for several iterations until convergence 

(i.e. the average is no longer blurry). Finally, we used ANTs to transform the new template 

to the space of our Mayo Clinic Adult Lifespan Template (MCALT) (Schwarz et al., 2017a), 

to match our in-house atlases. This process provides an unbiased average MRI (Fig. 2, Left), 

which includes a geometrically average face (Fig. 2, Center), from the sampled population. 

On this average MRI, we then manually traced our de-identification mask: a mask of 

image voxels potentially containing face and ear structural information (Fig. 2, Right). We 

also created average T2-weighted and FLAIR templates from the same imaging sessions 

by linearly registering each of these images to their corresponding T1-weighted MRI and 

transforming them through the linear and nonlinear parameters computed above from the 

T1-weighted scans.

Transforming between input image and template: (Fig. 3 A-C) Given a target MRI 

to de-identify, our method performs ANTs symmetric non-linear registration (Avants et 

al., 2008) between the input image and the population-average template image, in order 

to transform the template to match the input image and identify all face/ear voxels. The 

input image modality is specified by the user, and the matching template is used from the 

included library. The registration uses a mask (–warp-mask option) in the template space 

that includes only voxels that are part of the head with those in the face and ear masks 

removed. Performing the registration using this mask calculates parameters that use only 

linear registration in the air, face, and ears, but use nonlinear registration in the rest of the 

head and brain. We then apply these parameters to transform and resample the template to 

the space of the original input image, which leaves the template face un-warped (aligned; 

modified only linearly) while warping the rest of the template image. At this point, the edges 

of the transformed face/ear regions align with those of the target image, but within those 

regions, the contour is that of the original average template, i.e., a population-average face 

rather than the face in the target image.

Intensity normalization: (Fig. 3 D) Before copying face voxels from the template image 

to the target image, the transformed template image must be intensity-normalized to match 

the target image. First, global intensity normalization is performed by a linear transform 

with the difference between air voxels for the intercept and the ratio between tissue voxels 

(white matter for T1-weighted images and gray matter for T2-weighted or FLAIR images) 
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for the slope. Because this global intensity normalization alone would not account for 

local image intensity variations (field inhomogeneity), we apply differential bias correction 

(DBC) for smooth local intensity normalization between the images (Vemuri et al., 2015). 

To perform DBC, both images are smoothed with a Gaussian 12mm FWHM isotropic 

Gaussian kernel and sampled on an isotropic grid of approximately 10mm, omitting points 

where the difference between the images is large enough (differ by > 50%) to suggest that 

they likely do not contain analogous tissue. We compute the ratio of the images at each 

remaining voxel and use the scatteredInterpolant function in Matlab to interpolate between 

sampled points. Finally, we smooth the interpolated field with an 8mm FWHM Gaussian 

kernel and multiply the transformed template by the result to produce an image that is 

intensity-normalized to match the input image both globally and locally.

Face and ear replacement: We then de-identify the target image by replacing all voxels 

in the face and ear regions (Fig. 3 E) with those from the transformed template, thereby 

“transplanting” the template face and ears onto the target. The binary mask of face and ear 

regions to replace is smoothed (8mm FWHM Gaussian kernel), and the spatial transition 

between original and replaced parts of the image is interpolated according to this smoothed 

mask (Fig. 3 F). All voxels within the mask of TIV (as defined in the template space) 

are never altered, regardless of their proximity to the face or the smoothed/interpolated 

transitional area.

Removal of identifiable artifacts in air: voxels in front of the face and behind the head 

may contain identifiable information. For example, participant movement of the eyes/eyelids 

(more common) or nose/mouth (less common) during the scan can cause faint aliases of 

their contours in front of the face. To address this, we first compute a robust mean of air 

voxels in the input image, as identified by a mask in the template space, and replace air 

voxels > 10x the mean (i.e. brighter than the surrounding air and may contain identifiable 

artifacts) with the corresponding voxels from the template. Relatedly, if the image field 

of view is too large to contain the nose/mouth/chin, these features are sometimes aliased 

into the air behind the head. Such locations are not typically modified by other de-facing 

methods, but they could be automatically un-wrapped and re-attached when generating 

MRI-based face reconstructions (as we do for face reconstructions in this work). To prevent 

this, we calculate the median of non-zero voxels in a mask-defined region of air voxels 

behind the head, then replace all voxels with intensity > 2x the median with intensities from 

a random normal distribution.

3.3 Validation criterion 1: Protection from face recognition

We assessed the performance of each de-facing method according to two distinct criteria. 

The first was the relative ability of each de-facing method to prevent re-identification of 

research participants if attempted by an exceptionally skilled and motivated individual. We 

believe that such an individual would have the skills needed to attempt reconstructing faces 

from images with partially-removed faces, and thus we compared de-facing methods by their 

ability to prevent re-identification in this scenario.
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3.3.1 Validation data-set—This data-set included 84 individuals from our previous face 

recognition study (Schwarz et al., 2019), as well as 73 additional volunteers from continuing 

recruitment. In total, we recruited 157 volunteers (ages 34–93; mean = 63.0, SD = 16.3) 

stratified by sex and age-decade who had an existing brain MRI (3D FLAIR sequence) 

within the previous six months as part of their existing enrollment in the Mayo Clinic 

Study of Aging (MCSA (Petersen et al., 2010; Roberts et al., 2008)) or Alzheimer’s Disease 

Research Center studies. All participants provided informed consent for this specific study, 

which was approved by the Mayo Clinic Institutional Review Board.

We photographed each individual’s faces under indoor lighting conditions using standard 

iPads (Apple Inc., Cupertino, CA; models Air 2 and 6th generation). Participants were 

instructed to look directly at the camera, and then approximately 10 degrees up, down, 

left, and right, for a total of five photos, designed to provide somewhat-unique photos of 

each individual suitable for face recognition with minimal participant burden. Photos were 

manually cropped loosely around the head and converted to grayscale to better match MRI 

(which does not capture color). Our image cropping retained the head/hair/ears and removed 

only distant background and torso, in order to reduce unnecessary image size and speed up 

repeated image uploading during testing.

Sagittal 3D FLAIR head MRI were acquired using Siemens Prisma scanners using standard 

protocols matching those from ADNI3: resolution 1.0×1.0×1.2mm, repetition time = 

4800ms, echo time = 441ms, and inversion time = 1650ms. We used 3D FLAIR (rather 

than 3D T1-weighted) scans because these sequences provided more-recognizable face 

reconstructions (see supplementary material).

3.3.2 Validation methods

Standard Face Reconstructions:  We refer to generating a synthetic image of a face 

from an MRI scan as “face reconstruction”. For our “standard” face reconstructions, we 

used the same process as previously described (Schwarz et al., 2019). In brief, a threshold 

was automatically chosen to binarize each image based on Otsu’s method (Otsu, 1979), 

aliased nose parts behind the head were automatically detected and reattached to the face 

for applicable images, and any remaining, floating regions disconnected from the head (e.g. 

motion artifacts) were removed. Finally, each volume was converted to a surface using an 

automated threshold based on and the nii_nii2gii utility provided with surf_ice (Rorden, 

n.d.). For each reconstruction, 81 2D render images (analogous to a synthetic photograph) 

were automatically generated using surf_ice with the “Phong_Matte” shader under a variety 

of simulated lighting and viewing angles and saved as .png files (Schwarz et al., 2019). 

A random subset of 10 of these render images (chosen consistently across methods) was 

selected for each scan and used to train the face recognition software to recognize each 

MRI-based face reconstruction.

Advanced Face Reconstructions (for de-faced scans with partial faces):  For images 

where faces have been removed by de-face techniques, our “standard” face reconstructions 

(Fig. 4, left) produce images without faces or with only partial faces, which can prevent 

detection of a face by automatic algorithms (Fig. 4, center). However, we noticed that 
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mri_deface and pydeface frequently (but not always) retain the eyes. Because some 

face recognition algorithms can attain good match performance with only partial faces 

(Elmahmudi and Ugail, 2019), we hypothesized that these de-faced images may still contain 

enough information for a skilled individual to perform partially-effective automatic face 

recognition. To test this hypothesis, we created our “advanced” face reconstructions as 

follows. We used ANTs (Avants et al., 2008) to warp a template MRI (the same as the 

average faces used in our own approach) to each de-faced scan, performed global intensity 

normalization, and replaced all missing voxels (those that were subthreshold in the input 

de-faced image but super-threshold in the template image) with those from the template. 

This replaced all removed voxels with those from the average face, allowing us to then use 

our standard method to create a face reconstruction containing a composite of: 1) the image 

regions that were not removed, and 2) the average face (in the areas that were removed) (Fig. 

4, right). We used this process only when assessing Criterion 1 (preventing face recognition) 

with de-facing methods that remove face regions.

Face Recognition Testing:  We used the same process for testing face recognition detailed 

in our previous publication (Schwarz et al., 2019), with the exception that we now use 

Microsoft Azure’s recently updated recognition_02 model with higher accuracy. In brief, 

we used the Microsoft Azure Cognitive Face API (Microsoft Corporation, 2019), which is 

designed to match an input face photo with one of a user-defined set of possible faces. 

This is analogous to a digital police “line-up”, where the software is trained to recognize a 

“training set” of faces, and then a new “test image” is input with the question “which of the 

training faces does it best match?” The details of how the software works are unpublished 

proprietary technology using pre-trained models for face detection and encoding, and it 

operates as a cloud-based service that is available to the public. We trained an instance 

of Azure’s “PersonGroup” classifier to recognize each participant based only on their MRI-

based face reconstructions (i.e. the MRI faces comprised the “line-up” of potential faces 

to be recognized). Then, we input each of the five photographs for each participant and 

queried the software using the “FaceIdentify” function. For each photograph, Azure returned 

a ranked list of the 50 best matches (with match confidence scores for each) from among 

the MRI-based face reconstructions in the training set. We summed the match confidence 

scores for each potential match across each participant’s five photographs and ranked each 

candidate MRI according to these summed scores. The resulting ranking reflected the 

combined set of five photos for each participant.

3.4 Validation criterion 2: Minimizing effects on brain measurements

Our second criterion for assessing de-facing methods was measuring how each affects the 

ability of an average data user to generate and compare brain measurements using SPM12, 

FreeSurfer, and FSL. We considered the results of each pipeline on the unmodified image to 

be the gold standard, and we compared the de-facing methods according to how much each 

pipeline’s measurements on the de-faced images deviated from these original measurements. 

Aside from de-facing, no other pre-processing was performed on images before inputting 

them to each pipeline. This criterion was designed to reflect the experience of the typical 

downloader of shared de-identified images from public data sets (e.g. ADNI) who would run 

standard measurement pipelines on the de-identified (de-faced) data. We used ADNI data for 
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this criterion because it is one of the largest public repositories of neuroimaging data and 

because it allowed us to construct a large data-set with a balanced set of scans from multiple 

MRI vendors.

3.4.1 Validation data-set—We constructed a data-set of 300 3-Tesla T1-weighted 

accelerated MRI scans from the ADNI database (adni.loni.usc.edu). For up-to-date 

information, see the ADNI homepage (“ADNI Home,” 2013). One hundred scans were 

included from each of the three MRI vendors (GE, Siemens, and Philips). Among each 

set of 100 within-vendor scans, 50 participants were cognitively unimpaired (CU) and 50 

participants (individually sex- and age-matched within 3 years) had clinically-diagnosed 

Alzheimer’s disease. Details of ADNI image acquisition parameters have been previously 

published (Jack et al., 2010). We used T1-weighted scans because these are what the most 

popular analysis pipelines are designed to analyze.

3.4.2 Software measurement pipelines—We compare the effects of each de-facing 

method on three different software pipelines, each described below.

SPM12:  We constructed this automated pipeline to represent a traditional GM volumes 

analysis with Statistical Parametric Mapping version 12 (SPM12) and default settings. 

For each input T1-weighted image, Unified Segmentation (Ashburner and Friston, 2005) 

was performed as implemented in SPM12 (“Segment” function) with the default priors 

and settings. The deformation parameters produced by Unified Segmentation were used 

to resample the atlas from MNI space into the space of the input image using nearest-

neighbor interpolation. Per-region GM volumes were measured in subject space as the 

sum of the estimated GM probabilities in each voxel within the ROI, multiplied by 

the per-voxel volume. To produce per-region GM volume measurements, we used the 

Neuromorphometrics atlas included with SPM12 (omitting regions that are primarily WM or 

CSF). Total volume measurements were produced from segmentation outputs by using the 

included “Tissue Volumes” utility to sum total GM, WM, and CSF volumes. We summed 

GM + WM for total tissue volume (TTV) and GW + WM + CSF for total intracranial 

volume (TIV).

FreeSurfer:  We used FreeSurfer (Fischl, 2012) version 6.0 in the cross-sectional stream. 

We ran recon-all using the flags “-all −3T -notal-check -no-isrunning” and analyzed regional 

GM volume, cortical thickness, TTV, and TIV measurements from the aparc and aseg 
outputs (omitting non-GM regions). We used EstimatedTotalIntraCranialVol for TIV and 

BrainSegVolNotVent for TTV (even though this excludes brainstem and cerebellum, it is 

used analogously and we are not comparing values across pipelines).

FSL-UKBB:  To measure the effects of de-facing on FMRIB Software Library (FSL) tools, 

we included the UK Biobank Pipeline version 1 (Alfaro-Almagro et al., 2018), which uses 

FSL tools and was written with input from several primary authors of FSL. In their standard 

pipeline, segmentations are performed on images after applying the internal de-facing, but 

from bb_struct_init we separated the portions of code related to de-facing (described above) 

from the portions related to image segmentation (described here) so that we could test each 

independently and in combination with the other methods. We also removed the gradient 
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distortion correction step, as our images have this already applied during preprocessing. 

This pipeline does not produce per-region GM volume measurements analogous to the other 

tested pipelines, so to create comparable measurements we transformed the HarvardOxford 

cortical and subcortical atlases (Desikan et al., 2006) included with FSL, using the same 

FNIRT (Andersson et al., 2008) nonlinear registration parameters the pipeline previously 

computed, and over each region we summed the per-voxel values previously computed by 

FAST (Zhang et al., 2001), then multiplied by the per-voxel volume. We used outputs from 

SienaX (Smith et al., 2002) for TTV (“BRAIN”) and TIV (“VSCALING”). SienaX does 

not directly produce a TIV as a volume, but it provides the VSCAL-ING ratio to be used 

for scaling tissue volume measurements; since that is arguably the primary use of TIV 

measurements, we analyzed this value in place of TIV (we performed all comparisons within 

each pipeline, so the difference in units or scale across pipelines is not an issue).

3.4.3 Validation methods—The 300 images in the validation data-set were used as 

input to each of the three pipelines above, to produce per-region measurements of gray 

matter volumes and (where applicable) cortical thickness. We then input each image through 

each pipeline after using each de-facing method (without any other pre-processing). The 

per-region numeric values produced for the unmodified images were treated as the gold 

standard, and we measured systematic (bias) and non-systematic (noise) deviations from 

these values when measured from the de-faced images as described below.

Quality Control (QC):  Trained medical image analysts visually examined the output 

segmentations produced by each of the three processing pipelines for each of the 300 

unmodified scans. For any combination of scan + pipeline (900 total) where numeric results 

for unmodified images were not produced (missing, zero, or NaN) or where analysts judged 

the visual segmentation or atlas images to be gross failures, that scan was removed from 

analyses of the effects of de-facing on that particular pipeline.

Statistical methods: We measured the differences between per-region brain 

measurements produced by each pipeline for each image before vs. after each de-facing 

method. Analyses used R statistical software (R Development Core Team, 2008) version 

3.6.2 with tidy-verse packages (Wickham, 2017). For each combination of measurement 

pipeline, output regional brain measurement, and de-facing method, we measured a) non-

systematic error (noise) with intra-class correlation co-efficient (ICC) and b) systematic 

error (bias) across the 300 measurements from each scan before vs. after de-facing. For 

ICC, we used the ICC function from the R pysch package (Revelle, 2019) to calculate 

the fixed-raters ICC3 variant that is not sensitive to differences in means between raters 

(i.e. is not sensitive to systematic error). We then separately measured the systematic error 

(bias) of the de-faced image measurements as the percent difference between the x = y 

line and a linear least-squares fit (lm function) of the original vs. de-faced measurements, 

taken at the “centercept” point (mean value across the x axis, i.e. all measurements from the 

unmodified image) (Wainer, 2000). We then summarized these ICC and bias values (across 

all regions, within each combination of pipeline and de-facing method) using median values 

and box plots. We measured p values for pair-wise differences between de-facing methods 

using paired Wilcoxon Signed Rank tests (wilcox.test() in R). Non-GM atlas regions were 
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omitted from summary measures of GM volumes. The total numbers of summarized atlas 

GM regions for each pipeline were: 116 with SPM12, 78 with FreeSurfer (70 for cortical 

thickness), and 64 for FSL-UKBB.

Simulated test-retest:  To provide a reference for these values, we also measured the 

differences in regional measurements produced by modifying the input image headers 

(Nifti image format s-form matrix and q-form values) to simulate the head moving 5mm 

downward and rotating (pitch) 2 degrees upward. The image voxels were not resampled 

or otherwise modified; only the image headers were altered. This technique simulates 

the effects of varying participant position in the scanner upon downstream measurements 

(Schwarz et al., 2017b), and we include it in the comparison of de-facing methods as 

“simulated test-retest”. Because the image voxels are identical, this simulation measures 

variability in biomarker measurement software but excludes the variability in imaging 

hardware and patient motion that would both be present in “true” test-retest MRI scan-pairs. 

However, since correctly-working de-facing software would modify only non-brain regions 

and leave all brain voxels completely identical to the original image, we expected their 

effects on brain measurements to be smaller than or similar to those of this simulated 

test-retest experiment.

ADNI test-retest data set:  We also compared the effects of de-facing to the effects of a 

more-traditional MRI test-retest (scan-rescan) experiment using back-to-back T1-weighted 

MRI scan-pairs of 117 ADNI participants. Identical 3T MPRAGE sequences were used 

for both scans, and patients were not repositioned (Jack et al., 2008). This measure of 

test-retest uses a discrete set of participants vs. our other experiments and represents a 

more traditional measure of test-retest precision that includes variance from scanner noise 

and patient movement, in addition to variability of the biomarker measurement software. 

Because the voxels in brain regions are re-imaged and thus not identical, we expected these 

test-retest effects on brain measurements to be larger than both the simulated test-retest 

experiments (above) and those of the de-facing software.

4. Results

4.1 Validation criterion 1: Protection from face recognition

We present the results of face recognition testing, both with and without each of the de-

facing techniques, in Table 1.

Standard face reconstruction: Using unmodified (non-de-faced) MRI, 97% (153/157) 

of participants were automatically matched to their correct corresponding MRI. Our 

proposed mri_reface reduced the rate to 30%. When using the standard face reconstructions 

with mri_deface, pydeface, and fsl_deface, the missing face parts prevented face detection 

in a large majority of images (Table 1, column 1). Consequently, with these methods only 

3–13% of participants’ MRI-based reconstructions could be included in the “training set” of 

potential matches (the software cannot “learn” to recognize a face where it believes none 

exists). The resulting match rates across all photos (including those participants that could 

not be included in the training set) were between 3% (fsl_deface) and 13% (pydeface) (Table 
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1, column 2). These results may represent success rates of re-identifying de-faced data when 

attempted by an individual who lacks the skill in image processing to overcome the face 

detection issue.

Advanced face reconstruction: When we used our advanced face reconstructions (Fig. 

4), faces were almost-always detected, and this allowed for face recognition upon the 

partially de-faced images with success rates of 33% after mri_deface, 38% after pydeface, 

and 28% after fsl_deface (Table 1 column 3). We directly compare these rates with the 

30% from mri_reface when using the standard reconstructions, because its outputs already 

contain (altered, but standard-reconstructable) faces. These results may represent success 

rates of re-identifying de-faced data when attempted by a highly-skilled individual who 

adapts their reconstruction approach to each de-facing method.

Analyses of which participants were correctly matched: All but four participants 

were correctly matched without de-facing, so this was not enough to establish trends. The 

common set of participants that were correctly recognized after all four de-facing methods 

methods (using advanced reconstructions for fsl_deface, pydeface, and mri_deface) was only 

8/157 (5.1%). Across the 7 de-faced experiments in Table 1 (basic reconstructions only for 

mri_reface and basic + advanced for the 3 alternatives), we summed for each participant 

how many times (out of 7) they were correctly identified, and we tested this number for 

demographic correlations. Men were identified more often than women (t-test p < .001), and 

identified participants had larger head sizes (Spearman p = 0.02). Trends were also observed 

toward increased correlations with older age (Spearman p = 0.15), taller height (Spearman 

p = 0.07), and greater weight (Spearman p = 0.07). No correlation was observed with body 

mass index (BMI; Spearman p = 0.74). We present plots of these data in supplementary 

material.

4.2 Validation criterion 2: Minimizing effects on brain measurements

Effects of each de-facing method on GM volume and cortical thickness measures are plotted 

in Fig. 5. In supplementary material, we also provide the raw values from Fig. 5, the 

ICC and bias values for all regions individually, and a corresponding plot of un-signed 

(magnitude) bias. We show several examples of instances where de-facing procedures 

produced large changes in segmentation results in Fig. 6.

QC Results: Scans from 9 participants were removed from analyses with the SPM12 

pipeline because its segmentations of the original, unmodified images were visually judged 

by trained image analysts as grossly invalid. By the same criteria, 10 scans were removed 

from analyses with the FSL-UKBB pipeline, and 7 were removed from analyses with 

FreeSurfer 6.0.

Rates of failure to generate measurements: In Table 2, we present the number 

of scans (out of 300) where each de-facing method caused a pipeline to produce no 

measurements or produce only zero or NaN measurements. Scans where this occurred for 

the unmodified image (see above) are counted only in the first row. Our proposed mri_reface 
caused the smallest number of failures (1 vs 2–3).
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Global measurements: First we measured how each de-facing algorithm affected global 

measurements of each scan: total tissue volume (TTV; sum of gray matter and white matter, 

used as a global biomarker) and total intracranial volume (TIV; aka ICV, frequently used 

as a nuisance covariate in tissue volumes analyses). TIV and TTV measurements with all 

pipelines and all de-facing techniques had biases < 1% (all but one combination were < 

0.5%) in magnitude. ICC’s of TIV and TTV measurements were > 0.99 with SPM12 and 

> 0.96 with FreeSurfer. ICC’s of TIV’s from the FSL-UKBB pipeline were 0.89 when 

used with fsl_deface, but were > 0.95 with all other combinations. Overall, these global 

measurements were only minimally affected by de-facing techniques.

ICC (non-systematic error) of regional measurements: There was no de-facing 

method that outperformed all others across all pipelines. SPM-based regional measurements 

with de-facing methods had ICC values > 0.9, except for left/right frontal pole with 

fsl_deface (left/right ICC = 0.84/0.86). FreeSurfer-based measurements all had ICC’s > 

0.83, except for left/right frontal pole with fsl_deface (thickness left/right ICC = 0.70/0.67; 

volume left/right ICC = 0.63/0.65). The FSL-UKBB pipeline had ICC’s > 0.88, except for 

left pallidum GM volumes with mri_reface, pydeface, and fsl_deface (ICC = 0.77, 0.77, 0.81 

respectively). Our mri_reface had the largest median ICC for GM volumes from SPM12 

(0.996, p < .001 vs. mri_deface) and from FreeSurfer (0.977, p < .001 vs. fsl_deface), 

but for both of these the difference in median ICC from the next-best method was < 

0.005. For FreeSurfer cortical thickness, the largest median ICC was also with mri_reface 
(0.964), but the difference between it and the next best method (pydeface) was < 0.001 and 

not statistically significant (p = 0.547). The lowest-performing regional measurement with 

mri_reface had ICC = 0.78 (left pallidum volume with the FSL-UKBB pipeline), and all 

other regional ICCs with mri_reface were > 0.87.

ICCs with only perturbing image geometry headers (simulated test-retest) were greatly 

higher than all de-face methods with the SPM and FSL-based pipelines. With FreeSurfer, 

this modification actually added more noise to cortical thickness measurements than any 

tested de-face technique despite not altering the image voxels, and for GM volumes it added 

more noise than all de-facers except mri_deface. Conversely, this header modification had 

no effect on the FSL-UKBB pipeline. ICCs for the test-retest data set were substantially 

lower than all defacers, for all pipelines.

Bias (systematic error) of regional measurements: As with ICC, there was no 

de-facing method that outperformed all others across all pipelines. Across all pipelines, the 

greatest measurement biases occurred in GM volume measurements of the pallidum with 

FSL-UKBB, where volumes measured with de-faced data were an average of 6–11% larger 

than with unaltered images. The next-largest measurement biases occurred in measurements 

of the frontal pole; FreeSurfer measured these regions (both volume and thickness) as 

an average of 3–6.75% smaller after the fsl_deface and mri_deface methods, and SPM12 

measured these as an average of 4.5–5.0% larger after fsl_deface. After these exceptions, all 

measurements had average biases < 3.3%. Our mri_reface had the smallest median biases 

(closest to 0) with SPM12 GM volumes (p = .084 vs. pydeface (not significant)). With 

FreeSurfer GM volumes, pydeface had the smallest median biases (p = .034 vs. mri_reface), 
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and with FreeSurfer cortical thickness, fsl_deface had the smallest median biases (p < .001 

vs. mri_reface). For FSL-UKBB GM volumes, the best method was mri_deface (p < .001 

vs. fsl_deface at rank 2; p < .001 vs. mri_reface at rank 3). Modifying the image header 

geometry had minimal systematic bias effects on the SPM- or FSL-based pipelines, but 

FreeSurfer volume and thickness measurements were biased to larger magnitudes (mostly 

toward smaller measurements) with modifying the image header than with any de-face 

method. In the test-retest data set, GM volumes in the repeat scan vs. the first scan were 

substantially larger for the SPM12 and FSL-UKBB pipelines, and substantially smaller for 

FreeSurfer. Despite their differing directions, the magnitudes of the biases for all three 

GM volume pipelines were substantially greater than the effects of any de-facing pipeline. 

However, test-retest biases with FreeSurfer cortical thickness were relatively small and were 

comparable with the de-face methods.

Hippocampal and Entorhinal Measurements: These regions were included in the 

above analyses, but we also examine them separately because they are of specific interest 

to studies of aging and Alzheimer’s disease (in supplementary material, we provide the 

quantitative results for all regions). Across all de-facing methods, ICC’s of hippocampal 

volume measurements were > 0.99 with SPM12, > 0.96 with FreeSurfer, and > 0.96 

with FSL-UKBB. Entorhinal cortical thickness values had ICC’s > 0.94 with FreeSurfer. 

Across all de-facing methods, median biases were < 1% for all hippocampal volume and 

entorhinal thickness measures. Although the effects of de-facing on these regions were 

relatively small, it is notable that they were affected at all given their distance from 

altered face or ear regions. For each pipeline’s hippocampal volume measurements, and 

FreeSurfer’s entorhinal thickness measurements, we also measured the effects of these 

de-facing techniques on: a) Area Under the Receiving Operating Characteristic Curve 

(AUROC) separation of cognitively unimpaired vs. Alzheimer’s disease participants; b) 

Spearman correlation (rho) with each participant’s Mini-Mental State Exam (MMSE) score 

(Folstein et al., 1975); or c) Spearman correlation with each participant’s Clinical Dementia 

Rating-Sum of Boxes (Lynch et al., 2006). We assessed AUROC using the roc function 

from the pROC package (Robin et al., 2011), and Spearman correlation (with confidence 

intervals) using the SpearmanRho function from the desctools package (Signorell, 2019). 

Compared within each pipeline across de-facing methods, 95% confidence intervals for 

each measure greatly overlapped and no meaningful differences or consistent trends were 

observed (these analyses are shown only in supplementary material).

Run times: We recorded the run times for each de-facing program when we ran each of 

the 300 ADNI T1-w images in our validation data-set using our local compute cluster of 28 

“white box” servers with Intel Xeon processors (manufactured between 2010 and 2020) with 

24–40 cores (assigned one core/job) and 128GB + RAM. Mean (sd) runtimes in minutes for 

each method were: mri_deface: 5.06 (1.59); pydeface: 1.80 (0.52); fsl_deface: 2.32 (1.05); 

mri_reface: 51.95 (17.65).
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5. Discussion

5.1 Face recognition rates

Recognition rates without de-facing: Since our previous study (Schwarz et al., 2019), 

our measured face recognition rates on unaltered MRI have improved from 83% of 84 

participants to 97% of 157 participants. The improved detection rate with the recently-

updated Microsoft algorithm (see further discussion in supplementary material) is prima 

facie evidence of the inevitable improvement of face recognition technology with time. 

The threat of individual re-identification will continue to increase with advancing face 

recognition technology, suggesting that in the future some form of de-facing should be 

considered a necessary part of image de-identification prior to external data sharing.

Recognition rates across de-facing methods: We found that a highly-skilled 

individual could re-identify up to 38% of scans, even after popular de-facing programs. 

Even with our standard face reconstructions (i.e. assuming re-identification attempted by a 

less-skilled individual), recognition rates after these popular programs were as high as 10%. 

These results suggest that for the goal of preventing face recognition, effective de-facing is a 

much more difficult problem than previously appreciated. We also found that after de-facing, 

men were still recognized significantly more often than women. Unsurprisingly (because 

these variables are themselves correlated with sex), we also found correlations of varying 

significance with larger head size (TIV), weight, and height. However, these correlations 

disappeared when using BMI, suggesting that this is an effect of participants’ sex or gender 

rather than their relative size or physical fitness. We expected that larger participants would 

be less recognizable due to larger heads increasingly making contact with (being deformed 

by) the MRI head coil, but we found the opposite effect. These results are difficult to 

interpret because we cannot separate (due to too-few participants that were mismatched 

using non-defaced scans) between potential demographic biases in the de-facing software vs. 

potential demographic biases in the face recognition system. We will explore this further in 

future work.

5.2 Effects of de-facing on brain measurements

Another surprising result was that effects on downstream regional measurements were 

measureable, even in regions distant from any modified parts of the image. Although frontal 

pole, orbitofrontal, and temporal pole regions (relatively near to the face) often had the 

largest differences, some of the largest effects also occurred in measurements of deep grey 

structures, far from any modified voxels. Original validations of many de-facing techniques 

have focused on ensuring that minimal brain voxels are modified (Alfaro-Almagro et al., 

2018; Bischoff-Grethe et al., 2007; Schimke and Hale, 2011), but our findings agree with 

another recent study (de Sitter et al., 2020) in showing that measurable effects can also 

occur in measurements from unmodified, distant brain regions. These distant effects may 

arise from both local and non-local effects on linear or nonlinear registration between each 

scan and standard templates, or from generative/Bayesian segmentation frame-works where 

the estimated probability of a given tissue type at each location is defined relative to the 

appearance of all other tissue types in the image. Therefore, creating de-facing software that 

does not alter brain measurements is also much more difficult than previously appreciated.
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Comparisons with test-retest: It is reasonable to expect that ideal de-facing software 

should produce effects on brain measurements that are smaller than those of re-scanning 

the same participant without significant time passage (test-retest). We tested this expectation 

against two different measurements of test-retest. The “ADNI test-retest data set” is a 

“true” test-retest experiment that includes scans of 117 (different) ADNI participants who 

were scanned back-to-back. These test-retest scans did not reposition participants between 

the scans, so its effects are likely underestimated vs. typical test-retest (scan-rescan) 

experiments. Even so, all of the de-facing pipelines achieved the goal of having smaller 

effects than (this underestimate of) test-retest: ICCs were substantially higher and biases 

were somewhat smaller (nearer to zero).

However, all the tested brain measurements involve (only) brain regions, which all the 

de-facing programs are designed to not modify. In theory, one would expect identical brain 

voxels to produce identical brain measurements, but this is not the case. Consequently, 

we argue that ideal de-facing software should have effects on brain measurements that 

are more comparable to test-retest with identical brain voxels (i.e. measuring variance of 

the measurement software without variance in the imaging/participant) than with standard 

test-retest experiments (which measure both sources of variance). To this end, our simulated 
test-retest data used the same 300 scans as all the other experiments; geometry in the image 

header was modified but no resampling was performed and all image voxels (not just the 

brain) were identical to the original. All the de-facing programs had effects on the SPM- 

and FSL-based pipelines that were substantially larger than this standard of (same-voxels) 

test-retest, but the opposite was true for FreeSurfer. In total, effects of de-facing programs on 

brain measurements were smaller than test-retest, but still measureable and (mostly) larger 

than our simulated identical-voxel test-retest. We expected them to lie in between these two 

measures, but closer to the simulated than “true” test-retest variants.

Comparisons with effect sizes of the biology of interest: We found that the effects 

of de-facing were extremely negligible in cross-sectional comparisons of AD pathology in 

the hippocampus and entorhinal cortex. However, the statistical power of those particular 

comparisons (before de-facing) is very large, and these regions were also among the most 

robust in all the brain in our test-retest measurements, so these case-control comparisons 

represent a best-case scenario. We found much larger effects in other regions (mainly frontal 

and subcortical), where de-facing with some techniques biased average GM volumes by as 

much as 11%. By comparison, the rate of annual hippocampal atrophy in AD participants 

is only 2–4% (Josephs et al., 2017) and many brain pathologies have effects far smaller 

than AD. Thus, even though the effects of de-facing were smaller than test-retest, they were 

sometimes large and problematic in comparison to biological effect sizes.

5.3 Comparing de-facing methods

When face recognition was performed using the advanced face reconstructions as-needed, 

the de-facing methods that best prevented face recognition were fsl_deface (44/157 = 

28%) and mri_reface (47/157 = 30%). We designed this scenario to reflect recognition 

performance when the person attempting re-identification has the skills to exploit more 

remaining information in the images. However, when we used standard face reconstructions 
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with minimal image processing, fsl_deface had the lowest face recognition rate (3%). This 

low rate is largely due to the fact that only 3% of reconstructions were detected as faces 

i.e. recognition could not be performed on the rest. The mri_reface and fsl_deface methods 

reliably removed the eye regions, which is likely why they prevented face recognition 

substantially better than mri_deface or pydeface. The mri_deface and pydeface methods also 

do not attempt to remove the ears, although our study did not attempt ear recognition. Our 

mri_reface is also the only method that attempts to remove aliased face regions (artifacts) 

in front or behind the head, although our study did not attempt to exploit that information 

during face recognition.

No de-facing method consistently outperformed all others in minimizing effects on brain 

measurements. Median ICC’s with mri_reface were the best for GM volumes with 

SPM12 and with FreeSurfer. Although both differences were statistically significant, their 

magnitudes vs. the next-best methods were < .005 ICC. For FreeSurfer cortical thickness, 

ICC values were also the smallest with mri_reface, but the difference between it and 

the next-best method (pydeface) was within 0.001 and not statistically significant. Its 

measurement biases were the nearest to zero for SPM12 GM volumes, and they were 

second-smallest for FreeSurfer GM volumes (the smallest was pydeface). It was also caused 

fewer instances (1 vs 2–3) where pipelined to fail to produce measurements for any scan that 

had worked prior to de-facing. We attribute these advantages to its generation of outputs that 

resemble natural images with realistic image statistics. One cost to these improvements is 

that mri_reface has a significantly longer run-time (≈50 minutes) than the tested alternatives 

(< 5 minutes). These costs occur primarily in computing the nonlinear registration (vs. affine 

with other methods) needed for more-accurate localization of face regions.

Taken together, our proposed mri_reface was the second best method for preventing re-

identification via face recognition, and it had the smallest effects on brain measurements in 

more pipelines than any other method. We hypothesize that its relatively better protection 

from face recognition is because it was designed to remove (replace) more/larger identifiable 

portions of input images (than mri_deface or pydeface), and its smaller effects on brain 

measurements are because it replaces rather than removes voxels to produce output images 

that better resemble those that SPM, FreeSurfer, and FSL were designed for. fsl_deface 
also performed well; it was the best for preventing face recognition (28% vs 30% with 

mri_reface), and it was also among the leading methods for minimizing measurement effects 

for each pipeline.

5.4 Strengths and limitations of current study

Strengths: We took a comprehensive approach to comparing MRI-defacing techniques 

by simultaneously considering 1) their efficacy at preventing re-identification via face 

recognition, and 2) their effects on brain measures from output scans; previous studies 

comparing de-facing techniques have considered only the latter (de Sitter et al., 2020). 

We also compared these measurement effects with two different variants of test-rest 

experiments.
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Face recognition scenarios: Our face recognition testing methodology of matching 

participant photos to MRIs reflects a hypothetical situation where a highly motivated and 

skilled individual has reason to believe that a participant is part of a particular study and 

wishes to find them among shared de-identified study data. The opposite problem, where 

someone has a de-identified MRI and wishes to re-identify it using face recognition from 

among potentially all humans on earth, is of course much more difficult. However, the 97% 

recognition rate on the current scenario suggests that MRI scans of the brain can provide 

comparable face-recognizing information with that of standard photographs, and because 

existing technologies can successfully identify face photos from databases of > 12 million 

people with failure rates < 1% (Grother et al., 2018), we hypothesize that identifying a fully-

unknown brain MRI is not implausible with current or near-future technology. Moreover, the 

ability to re-identify an individual will only improve as technology inevitably advances.

Alternate face recognition algorithms: We did not compare multiple face recognition 

algorithms. We used Microsoft Azure because of an existing Mayo Clinic service agreement 

with Microsoft that allowed us to test the Azure face recognition services under a secure 

private platform without potentially exposing data to the public. Microsoft’s face recognition 

algorithms have also ranked #1 in ongoing NIST face recognition software comparisons 

(Grother et al., 2018). Because most leading face recognition algorithms are proprietary 

cloud-based technologies, securing the data used for testing presents complicated legal and 

technical challenges. Thus, although we acknowledge that testing the relative performance 

of de-facing techniques against multiple face recognition systems would be of value, we 

must leave this exercise for future work. We also did not examine human-based face 

matching because comprehensive prior work (Prior et al., 2009) has shown that it has much 

lower matching rates (40% of participants could perform the matching with success rates 

exceeding statistical chance) than with automatic face recognition.

De-facing approaches: We included what we believed to be the most popular de-facing 

approaches currently in use, and we tested each using its default (or only available) settings. 

It is possible that alternate settings or pre-processing approaches that we were not aware of 

may have improved the other software’s performances. Future work would ideally include 

a “grand challenge”-like competition, where software authors would each run their own 

approaches on a shared data-set and the results would be compared by third parties.

Demographics: We performed tests using images of older adults from studies of aging 

and Alzheimer’s disease. It is possible that the performance of either criterion may not 

generalize to other populations. Our mri_reface and fsl_deface were both designed for older 

adults, so pediatric populations may be especially challenging. In future work, we plan to 

test images from other populations and adapt our method as needed (e.g. by generating 

population-specific templates).

6. Conclusion

Without de-facing, automated face recognition was able to match participant photographs 

to the correct MRI with 97% accuracy, suggesting that in the future some form of de-

facing should be considered a necessary part of image de-identification prior to external 
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data transmission or sharing. After de-facing with popular programs, recognition rates 

still ranged from 28%−38%. Effects on SPM12, FreeSurfer 6, and FSL’s regional brain 

measurements of de-faced scans were modest but measureable: smaller than standard test-

retest but larger than would be expected given that by-design these software alter only 

non-brain voxels. Compared to tested popular de-facers, our proposed mri_reface performed 

second best at preventing face recognition (30% vs 28% with fsl_deface) and modestly 

reduced effects on brain volume/thickness measurements. Still, our proposed method’s 

improvements were very modest, and further work is needed to greatly improve MRI 

de-facing techniques while minimizing and reducing their impacts on brain measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of tested de-facing techniques on an input 3D FLAIR scan. Top: sagittal MRI 

slice (brain is omitted for participant privacy) Bottom: corresponding face reconstruction. 

Note that mri_deface retained the eyes and part of the nose. Our reconstruction process 

removes floating disconnected voxels, so the remaining nose is not visible on the 

corresponding render. Pydeface retained the top of the eyes. Among the three standard 

methods, only fsl_deface removed the ears, and entirely removed the eyes. In our proposed 

mri_reface, all face regions and ear regions were replaced with an average face and ears. 

This volunteer consented to allow publication of their photographs and corresponding MRI-

based reconstructions for illustration purposes.
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Fig. 2. 
Population-average MRI and de-identification mask. Left: Our population-average T1-

weighted MRI template Center: Reconstruction of the population-average face from the 

template Right: De-identification mask (over-laid) of face, ear, and behind-head (red, yellow, 

and orange respectively) voxels to be replaced.
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Fig. 3. 
Steps in our proposed face replacement (mri_reface) approach: Top: MRI voxel slice 

Bottom: Image of face reconstructed from above image. A) Input image (brain is omitted for 

participant privacy) B) Template co-registered (affine) to input image C) Template warped 

(nonlinear) to input image (only affine transformation in face/ear regions) D) Image C after 

DBC intensity normalization E) Mask of regions to be replaced F) Output image, a blend 

of images A and D as defined by E. This volunteer consented to allow publication of their 

photographs and corresponding MRI-based reconstructions for illustration purposes.
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Fig. 4. 
Left: For images where faces have not been removed, we used our “standard” face 

reconstruction with minimal preprocessing. Center: mri_deface and py_deface frequently 

(but not always) retain the eyes, but the removed nose/mouth can prevent testing automated 

face recognition because no face is detected. Right: To test whether a highly skilled and 

motivated individual could perform automated face recognition using only the remaining 

facial features, we applied our “advanced” face reconstruction, where we filled-in missing 

regions with those from the average template.
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Fig. 5. 
Effects of de-facing methods on regional measurements of GM volume and Cortical 

Thickness from SPM, FreeSurfer, and FSL. Left: Intra-class correlation measurements 

(ICC) measure non-systematic error (noise) of measurements from unmodified vs de-faced 

scans with each de-facing method, and two different measures of test-retest error. Each 

plot shows the summary of ICC across atlas regions, where ICC between original vs. 

de-faced measurements were independently calculated for each region across scans of 300 

participants. Higher ICC values indicate less noise. Right: Bias measures the systematic 

error as the percentage offset between the 1 = 1 line and a fit linear line, evaluated at the 

centercept (center of the x axis) for each region. Values near 0 are best. Each plot shows the 

summary of bias across atlas regions. We also provide the raw values for these plots, and a 

corresponding plot of un-signed (magnitude) bias, in supplementary material.
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Fig. 6. 
Examples of quantification errors due to de-facing. In all instances, outputs from the 

unmodified images did not have these errors. A) Pydeface + FreeSurfer: voxels in frontal 

lobe were segmented as non-brain tissue (not colored), despite not being adjacent to the 

tissue removed by de-facing. B) mri_deface: voxels in the cerebellum were removed by 

defacing while the face itself was left intact (affects all pipelines). C) fsl_deface + SPM12: 

gray matter in precentral gyrus and other superior regions was misclassified (not marked 

yellow) as a result of de-facing. De-facing did not remove any tissue nearby these regions. 

D) fsl_deface + FSL-UKBB: gray matter in most of the cortex was misclassified (not 

marked red/yellow) as a result of de-facing.
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