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Abstract

Goblet cells populate wet-surfaced mucosa including the conjunctiva of the eye, intestine, and 

nose, among others. These cells function as part of the innate immune system by secreting high 

molecular weight mucins that interact with environmental constituents including pathogens, 

allergens, and particulate pollutants. Herein we determined whether IFN-γ, a Th1 cytokine 

increased in dry eye, alters goblet cell function. Goblet cells from rat and human conjunctiva were 

cultured. Changes in intracellular [Ca2+] ([Ca2+]i), high molecular weight glycoconjugate 

secretion, and proliferation were measured after stimulation with IFN-γ with or without the 

cholinergic agonist carbachol. IFN-γ itself increased [Ca2+]i in rat and human goblet cells and 

prevented the increase in [Ca2+]i caused by carbachol. Carbachol prevented IFN-γ-mediated 

increase in [Ca2+]i. This cross-talk between IFN-γ and muscarinic receptors may be partially due 

to use of the same Ca2+
i reservoirs, but also from interaction of signaling pathways proximal to the 

increase in [Ca2+]i. IFN-γ blocked carbachol-induced high molecular weight glycoconjugate 

secretion and reduced goblet cell proliferation. We conclude that increased levels of IFN-γ in dry 

eye disease could explain the lack of goblet cells and mucin deficiency typically found in this 

pathology. IFN-γ could also function similarly in respiratory and gastrointestinal tracts.

Introduction

The wet-surfaced mucosa including the conjunctiva of the eye, the intestine, colon, nose, 

bronchioles, Eustachian tube, and vagina contain goblet cells. These cells function as part of 

the innate immune system by secreting high molecular weight mucins that directly interact 

with environmental constituents including pathogens, allergens, and particulate pollutants. 
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Substantial experimental evidence demonstrates that goblet cells function in mucosal 

epithelial protection and disease pathogenesis in respiratory and gastrointestinal tracts. 
1,2

In the ocular surface goblet cells are found in the epithelial layer of the conjunctiva, the 

mucous membrane that surrounds the cornea and lines the eyelids. These goblet cells are 

specialized cells that produce and secrete mucins, most notably the mucin (MUC) MUC5AC 

that lubricates and protects the ocular surface, maintaining its health. 
3,4 Goblet cells are also 

integral participants in diseases of the ocular surface including allergic conjunctivitis, 

bacterial keratitis and conjunctivitis, and dry eye.

MUC5AC is a high molecular weight glycoconjugate that forms the mucous layer of the tear 

film. 
5
 The amount of MUC5AC found in the ocular surface is tightly controlled by goblet 

cell number, MUC5AC synthesis, and MUC5AC secretion. In inflammatory disorders such 

as dry eye, Sjögren's syndrome or ocular cicatricial pemphigoid goblet cells die or are non-

functional. 
6-8 On the other hand, in diseases such as allergic conjunctivitis, higher goblet 

cell numbers are found. As early as in 1992, Lemp 
9
 suggested that either an increase or a 

decrease in the number of filled goblet cells was associated with ocular surface pathology.

Under normal conditions, goblet cell secretion is under neural control by the efferent 

parasympathetic nervous system. Cholinergic, muscarinic mediators that are analogs of the 

parasympathetic neurotransmitter acetylcholine are major stimuli. 
10

 Cholinergic agonists 

transmit their signal by activating the G protein Gαq/11 that activates phospholipase C, 

which breaks down phosphatidylinositol 4,5 bisphosphate (PIP2) producing inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol. The increase in IP3 binds to its receptor in the 

endoplasmic reticulum to release Ca2+ from intracellular stores thereby elevating the 

intracellular Ca2+ concentration ([Ca2+]i). 
11

 The increase in [Ca2+]i leads to activation of 

extracellular regulated kinase (ERK)1/2 (also known as p44, p42 mitogen activated protein 

kinase (MAPK)), and secretion of high molecular weight glycoconjugates including 

MUC5AC. 
12

 In airway epithelium, mucin secretion is dependent upon the calcium sensors 

Munc13-2 and sytnaptotagmin2.
13

 These proteins have not yet been identified in the 

conjunctiva. Cholinergic agonists mediate goblet cell secretory responses to environmental 

changes under normal conditions. When inflammation develops in the ocular surface as 

occurs in dry eye, these responses may be altered. This alteration would lead to a change in 

goblet cell mucin production. In early disease mucus production can be increased as a 

protective response, but later in the disease goblet cell mucin production can be decreased 

leading to ocular surface pathology.

Interferon gamma (IFN-γ) is the major Th1-derived cytokine. This cytokine is implicated in 

several different immune responses, such as inflammation or graft rejection. IFN-γ is 

secreted by cytotoxic T cells, Th1 cells, and natural killer cells. 
14

 It binds to its receptor, 

IFN-γ-R, that is ubiquitously expressed at the cell surface on all cells except erythrocytes. 
15 

The main signaling pathway induced by IFN-γ is through the JAK-STAT intracellular signal 

transduction pathway leading to activation of STAT-1 target genes. 
16,17

 IFN-γ-R can also 

recruit and activate phosphatidylinositol-3 kinase (PI-3K), Src, or MyD88, that initiate 

signaling cascades involving ERK1/2, Akt or NF-κB.
13
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In the conjunctival epithelium, IFN-γ induces squamous metaplasia, which leads to 

progressive goblet cell loss. Both changes are related to dry eye disease. Recently Zhang et 

al. 
18

 showed that IFN-γ caused goblet cell apoptosis in a mouse model of dry eye. However, 

the signaling pathways activated by this cytokine and its role regulating in goblet cell 

function remain unclear.

The purpose of this study was to determine if IFN-γ, a mediator of dry eye, directly regulates 

mucin production in rat and human conjunctival goblet cells. Thus, presence of IFN-γ-R-1, 

as well as effect on intracellular Ca2+ signaling, mucin secretion, and goblet cell 

proliferation were measured after stimulation with IFN-γ alone or in the presence of a 

normal stimulus of secretion, a cholinergic agonist. We found that IFN-γ blocked the 

cholinergic agonist-stimulated increase in [Ca2+]i, mucin secretion, and decreased goblet 

cell proliferation. Thus, IFN-γ leads to decreased goblet cell mucus production and 

contributes to the mucin deficiency found in dry eye disease.

Results

Goblet Cell Characterization

Identity of cells cultured from both rat and human conjunctiva was confirmed by 

immunofluorescence microscopy using the following markers: cytokeratins (CK) 4 (specific 

for stratified squamous non-goblet epithelial cells) and 7 (goblet cell specific keratin), 
19,20 

and lectins from Ulex europaeus agglutinin type 1 (UEA-1) (rat) or Helix pomatia agglutinin 
(HPA) (human). Lectins identify high molecular weight glycoconjugates including 

MUC5AC synthesized and secreted by goblet cells.

The majority of rat cells in culture were positive for both lectin UEA-1 (green) and CK7 

(red) as shown in Figure 1a. To assure that lectins were identifying goblet cells, 

immunocytochemistry against UEA-1 and MUC5AC was performed in cultured cells 

(Figure 1b). We observed that UEA-1 and MUC5AC staining co-localized, showing that 

there were identifying the same mucous products. Human cultured cells were positive for 

lectin HPA (red) and CK7 (green), as shown in Figure 1c, and positive for MUC5AC (Figure 

1d). Cultured cells did not express CK4 (data not shown). Additionally, the expression of 

MUC5AC in these cells and in conjunctival tissue from rat and human was confirmed by 

semi-quantitative real time RT-PCR (Figure 1e). MUC5AC was detected in both rat (left) 
and human (right) conjunctival tissue and in cultured goblet cells. MUC5AC mRNA levels 

were 277.7 times higher in cultured rat goblet cells that in rat conjunctiva, and 170.7 times 

higher in human goblet cells than in human conjunctiva. Therefore the overwhelming 

majority of cells in culture were goblet cells.

Goblet Cells Express IFN-γ-R1

To determine if conjunctival goblet cells were able to directly respond to IFN-γ, the presence 

of IFN-γ-R1, the receptor for this cytokine, was determined by immunofluorescence 

microscopy and by real time RT-PCR. IFN-γ-R1 protein expression was identified in both rat 

and human cultured cells (Figure 2a-b). In addition, IFN-γ-R1 was detected in conjunctival 
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tissue and cultured goblet cells (Figure 2c). We confirmed that both rat and human cultured 

cells expressed the receptor needed for IFN-γ to be effective.

IFN-γ Increases [Ca2+]i in Goblet Cells

Due to its role in goblet cell signaling, [Ca2+]i was measured in cultured cells after addition 

of different stimuli. The effect of IFN-γ was compared with the cholinergic agonist 

carbachol, an agonist of parasympathetic nerve-mediated responses, that are known to 

increase [Ca2+]i in conjunctival goblet cells. 
21

 Concentration-dependency assays were first 

performed in cultured rat cells to select optimal concentrations for IFN-γ and carbachol. 

IFN-γ caused a rapid increase in [Ca2+]i to a peak value that was maintained at a lower 

plateau level over time (Figure 3a). IFN-γ at 0.1, 1.0, and 3.0 ng/ml significantly increased 

the peak [Ca2+]i in a concentration dependent manner to 68.8 ± 29.6, 115.6 ± 37.3, and 

239.5 ± 52.3 (n=6), respectively (Figure 3b). The highest concentration of IFN-γ 10 ng/ml 

did not produce any change. Thus IFN-γ itself increases [Ca2+]i. IFN-γ at 3 ng/ml was 

chosen as the maximal concentration for use in subsequent experiments.

When three different concentrations (10−6 M, 10−5 M, and 10−4 M) of carbachol were used, 

all these concentrations significantly increased [Ca2+]i over time with a peak response 

followed by an elevated plateau (Figure 3c). When peak values were analyzed, the highest 

response of 271.4 ± 64.2 nM (n=4) was obtained at 10−4 M carbachol (Figure 3d). This 

result is in agreement with previous studies, 
22

 that found the plateau for carbachol was at 

10−4 M. Therefore, carbachol at 10−4 M was chosen as the concentration to be used in 

subsequent experiments. Comparison of carbachol and IFN-γ responses shows that IFN-γ 

caused a Ca2+
i response comparable to that induced by the cholinergic agonist.

IFN-γ and a Cholinergic Agonist Block Each Others' Increase in [Ca2+]i in Goblet Cells

The effect of a 15 min pretreatment with IFN-γ on the carbachol Ca2+
i response was next 

studied. Carbachol 10−4 M significantly increased [Ca2+]i to 232.0 ± 52.1 nM (n=5) (Figure 

3e and f). IFN-γ at 0.1, 1.0, 3.0, and 10 ng/ml significantly inhibited the carbachol-

stimulated peak [Ca2+]i response decreasing it to 18.4 ± 15.6, 17.1 ± 7.1, 43.2 ± 24.0, and 

24.2 ± 11.9 nM (n=5), respectively. This was a 92.07, 92.63, 81.36, and 89.57 % inhibition. 

All four IFN-γ concentrations blocked the carbachol-induced increase in [Ca2+]i (Figure 3f).

Conversely, the effect of 15 min pretreatment with carbachol on the IFN-γ response was also 

studied. IFN-γ (3ng/ml) significantly increased peak [Ca2+]i to 886.4 ± 326.7 nM (n=4). 

Carbachol at 10−6 M and at 10−4 M significantly decreased IFN-γ stimulated [Ca2+]i 

response to 27.3 ± 10.9 and 91.6 ± 19.0 nM (n=4), respectively, with 96.92 and 89.67 % 

inhibition (Figure 3g and h). Although not a significant decrease, carbachol at 10−5 M 

decreased the IFN-γ response by 88.6 %.

IFN-γ and the cholinergic agonist carbachol each block the intracellular Ca2+
i response of 

the other agonist.
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IFN-γ Causes a Time-dependent Inhibition of a Cholinergic Agonist-Induced Increase in 
[Ca2+]i in Goblet Cells

The effect of IFN-γ on carbachol-induced increase in [Ca2+]i was evaluated at two different 

incubation times. The first time, 15 min, is a short treatment that indicates the immediate 

effect on intracellular Ca2+ levels and the use of the different cellular Ca2+ pools. The effect 

of a 15-min treatment was shown in Figure 3 and is used as a control in Figure 4. The 

second time, 24 h, is used to study longer term activation of cytokine dependent signaling 

pathways probably involving synthesis of signaling mediators. In rat goblet cells, IFN-γ (3 

ng/ml) increased peak [Ca2+]i to a mean of 240.4 ± 52.0 nM (n=5) (p = 0.009, Figure 4 a-c). 

IFN-γ treatment for 15 min significantly reduced the effect of carbachol (10−4 M) from 

304.5 ± 64.7 nM to 43.2 ± 23.9 nM (p = 0.009), whereas with the 24 h treatment no 

statistically significant difference was found when comparing the carbachol response before 

with the response after IFN-γ (p = 0.06, Figure 4a-c).

In human cells, IFN-γ (3 ng/ml) also induced a significant increase in peak [Ca2+]i (Figure 4 

d-f), to an average of 110.7 ± 40.8 nM compared to basal (n=7) (p = 0.019; Figure 4f). The 

15 min treatment with IFN-γ blocked carbachol-induced increase from 395.3 ± 199.8 nM to 

76.9 ± 9.0 nM (p = 0.009, Figure 4f). In contrast, the 24 h treatment with IFN- γ showed no 

significant effect on the carbachol-induced [Ca2+]i response before compared to after IFN-γ.

In summary, IFN-γ by itself increased peak [Ca2+]i in both rat and human cells, although the 

magnitude of the effect was higher in rat cells. The 15 min, but not the 24 h, treatment with 

IFN-γ blocked the carbachol-induced increase in [Ca2+]i in goblet cells from both species. 

These findings suggest that an alteration in cellular Ca2+ handling or activation of similar 

short term signaling pathways, but not those longer term pathways that use transcription 

factors or protein synthesis, can regulate the goblet cell intracellular Ca2+ response to 

cholinergic agonists.

Effect of Extracellular and Intracellular Ca2+ Store Depletion on IFN-γ and Cholinergic 
Agonist Ca2+

i Responses in Goblet Cells

We explored the cellular Ca2+ pools used by IFN-γ and carbachol to increase [Ca2+]i.. To 

determine the role of extracellular Ca2+ (Ca2+
o) we removed Ca2+

o for 3 min before adding 

3 ng/ml IFN-γ or 10−4 M carbachol. In rat goblet cells, IFN-γ increased [Ca2+]i to 368.1 

± 109.4 nM (n=6)(Figure 5 a and c). In the absence of Ca2+
o this response was significantly 

decreased to 92.6 ± 41.8 nm. When Ca2+
o was re-added, a significant increase in [Ca2+]i to 

531.9 ± 123.2 nM was observed showing that the intracellular Ca2+ stores were not altered 

in these experiments. Similar results were obtained with carbachol (Figure 5 a and c). 

Carbachol increased [Ca2+]i to 1061.2 ± 356.1 nM (n=6), which was significantly decreased 

to 258.7 ± 57.7 nM in the absence of Ca2+
o. Re-addition of Ca2+

o increased the carbachol 

[Ca2
+]i response to 618.9 ± 200.7 nM.

A similar experiment was conducted using human goblet cells (Figure 5 b and d). In the 

presence of extracellular Ca2+, IFN-γ increased Ca2+ to 398.6 ± 222.7 nM (n=5), and that 

increase was reduced to 21.2 ± 10.6 nM in the absence of Ca2+
o. When Ca2+

o was re-added, 

[Ca2+]i increased to 380.5 ± 225.0. Carbachol increased [Ca2+]i to 394.4 ± 77.9 nM, and in 
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the absence of Ca2+
o it was decreased to 100.7 ± 34.8 nM. Re-addition of Ca2+

o increased 

[Ca2+]i to 284.2 ± 215.4 nM.

To explore the role of intracellular Ca2+ stores, rat goblet cells were treated for 15 min with 

10−5 M thapsigargin or for 30 min with 10−5 M 2-amino-ethoxydiphenylborane (2-APB). 

Thapsigargin depletes intracellular Ca2+ stores and 2-APB blocks store-operated calcium 

release. 
23

 After treatment, cells were stimulated with 3 ng/ml IFN-γ or 10−4 M carbachol 

(Figure 5e-h). IFN-γ increased [Ca2+]i to 961.4 ± 308.1 nM (n=6) (Figure 5 e and g). The 

IFN-γ-induced increase in [Ca2+]i after treatment with thapsigargin was significantly 

reduced to 110.5 ± 66.6 and with 2-APB was decreased to 303.3 ± 146.7 nM. Carbachol 

increased [Ca2+]i to 1128.9 ± 348.6 nM (n=6) (Figure 5 f and h). After treatment with 

thapsigargin the carbachol increase in [Ca2+]i was significantly depressed to 212.1 ± 131.2 

and after 2-APB was decreased to 422.5 ± 217.5 nM.

Both IFN-γ and carbachol responses were significantly lowered with prior treatment with 

thapsigargin. 2-APB also blocked both IFN-γ and carbachol responses, but the decrease was 

not statistically significant. IFN-γ and cholinergic agonists use similar cellular Ca2+ stores in 

goblet cells. These stores have both intracellular and extracellular components as previously 

demonstrated for cholinergic agonists. 
24

Effect of Inhibition of PI-3K and ERK1/2 on IFN-γ- and Cholinergic Agonist-Stimulated 
Increase in [Ca2+]I in Goblet Cells

Phosphoinositide-3 kinase (PI-3K) and mitogen-activated protein kinase kinase (MEK) 1/2 

form part of an alternative IFN-γ signaling cascade compared to STAT-1.
13

 Rat goblet cells 

were preincubated with the PI-3K inhibitor LY294002 or the MEK1/2 inhibitor U0126 at 

10−5 M (prevents activation of ERK1/2) for 30 min and then stimulated with IFN-γ (3 

ng/ml) or carbachol (10−4 M).

IFN-γ increased [Ca2+]i to 453.7 ± 82.9 nM (n=5) (Fig 6a and b). Addition of LY294002 

before IFN-γ decreased [Ca2+]i to 259.3 ± 130.3 nM, but the effect was not significant. 

When U0126 was added, goblet cell response to IFN-γ was significantly reduced to 133.9 

± 68.5 nM. This is a 70.49 % inhibition.

Carbachol increased [Ca2+]i to 942.9 ± 253.4 nM (n=5) (Fig 6 c and d). After pretreatment 

with LY294002, the response to carbachol was significantly decreased to 114.3 ± 10.7 nM, 

an 87.88% inhibition. In contrast, preincubation with U0126 did not significantly inhibit 

carbachol-mediated increase in [Ca2+]i, which was 309.0 ± 197.4 nM.

These data suggest that in goblet cells IFN-γ induces ERK1/2, but not PI-3K to increase 

[Ca2+]i. In contrast, cholinergic agonists activate PI-3K, but not ERK1/2 to increase [Ca2+]i. 

These results confirm results from a previous study. 
25

IFN-γ Induces Mucin Secretion and Blocks Cholinergic Agonist-Stimulated Mucin 
Secretion from Goblet Cells

Goblet cell secretion was evaluated after stimulation with 3 ng/ml IFN-γ or 10−4 M 

carbachol. IFN-γ by itself did not have a significant effect on rat goblet cell secretion, and 
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did not stimulate secretion from human cells (n=3) (Figure 7a and d). As a positive control 

carbachol induced high molecular weight glycoconjugate secretion from both rat and human 

goblet cells to 1.60 ± 0.08 and 2.01 ± 0.20 fold increase over basal (n=3), respectively. This 

response is consistent with previous results. 
26

 The effect of IFN-γ on carbachol-induced 

secretion was determined at two times of incubation 15 min and 24 h. A 15 min treatment 

with IFN-γ did not have any significant effect on carbachol-induced secretion, in either rat or 

human goblet cells. In contrast, IFN-γ incubated for 24 h significantly blocked carbachol-

induced secretion to 0.88 ± 0.06 and to 1.21 ± 0.23 in rat (p = 0.002, Figure 7b) and human 

cells (p = 0.05, Figure 7c), respectively. In rat cells a 120.0 % inhibition was obtained, 

whereas in human cells a 79.2 % inhibition was obtained.

These data suggest that activation of a long-term pathway such as JAK-STAT by IFN-γ can 

prevent cholinergic agonist stimulated secretion, but that stimulating a short-term pathway 

such as increasing the [Ca2+]i cannot.

IFN-γ Decreases Goblet Cell Proliferation

Cell proliferation was measured in rat conjunctival goblet cells. A 24 h treatment with IFN-γ 

at 3 ng/ml decreased proliferation to 0.8 compared to basal value set as 1 (n=3) (p = 

0.00018) (Fig 8). As expected carbachol 10−4 M did not have a significant effect on goblet 

cell proliferation after a 2 h treatment and IFN-γ added 24 h before carbachol did not alter 

proliferation either.

Discussion

The role of the Th1 cytokine IFN-γ has been widely studied in a number of diseases, such as 

dry eye, Steven-Johnson syndrome, or Sjögren's syndrome, where elevated levels of IFN-γ 

have been found. 
27-29

 In humans, IFN-γ correlates with disease severity. 
30

 Our results 

demonstrate that IFN-γ, which is found to be increased in several inflammatory diseases of 

the conjunctiva, has a direct effect on conjunctival goblet cell function. We found that IFN-γ 

increases [Ca2+]i, but did not stimulate goblet cell secretion. As a decrease in goblet cell 

mucin production plays a critical role in ocular surface inflammation 
31

 the most important 

finding of the present study is that IFN-γ blocks two of the three processes used by goblet 

cells to increase mucin production: mucin secretion and goblet cell proliferation. That is, 

IFN-γ prevented the increase in [Ca2+]i and stimulation of secretion caused by cholinergic 

agonists. In addition, IFN-γ itself reduced goblet cell proliferation. These in vitro studies 

using isolated goblet cells were performed to determine the effect of IFN-γ on goblet cells 

not contaminated by other cell types. In vivo, is likely that cross talk between goblet and 

non-goblet cells occurs, involving multiple signaling cascades that could alter goblet cell 

signaling pathways. Therefore, further research in vivo is warranted.

Cultured goblet cells responded to IFN-γ in a concentration-dependent manner. IFN-γ from 

0.1 ng/ml to 3 ng/ml showed progressive increase in [Ca2+]i, whereas the highest 

concentration (10 ng/ml) did not. This suggests that at the highest concentration of IFN-γ, a 

Ca2+ inhibitory signaling pathway is being activated. Interestingly, all four concentrations of 

IFN-γ blocked the effect of cholinergic agonists in a very similar way. This result suggests 

that IFN-γ at high concentrations is not using a Ca2+-dependent mechanism to block 
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cholinergic agonist-mediated Ca2+ responses. IFN-γ is known to activate other short-term 

signaling pathways 
16

 that will be investigated in future.

The mechanisms involved in short- and long-term responses induced by IFN-γ are likely to 

be different. Short-term blockade could be due to depletion of intracellular calcium 

reservoirs. Our results suggest that cholinergic agoinsts and IFN-γ are using, at least in part, 

the same intracellular Ca2+ reservoirs. Major Ca2+ reservoirs are the intracellular stores 

located in the endoplasmic reticulum 
32

 that are linked by Orai-1 and STIM1 to Ca2+ 

influx. 
33,34

 This intracellular store is depleted by thapsigargin. The findings that: 1) 

intracellular Ca2+ responses caused by cholinergic agonists and IFN-γ are both decreased 

after the addition of thapsigargin, and 2) the recovery of the intracellular Ca2+ response after 

the re-addition of extracellular Ca2+ support this hypothesis. In agreement with our 

hypothesis is the finding that cholinergic agonist treatment for 15 min also inhibited IFN-γ 

induced Ca2+ responses and that a similar IFN-γ treatment inhibited the cholinergic Ca2+ 

response.

Cholinergic agonists bind to muscarinic receptors and IFN-γ binds to its own receptor, IFN-

γ-R. The main signaling pathway activated by IFN-γ-R is JAK-STAT, 
17

 a pathway probably 

not activated by muscarinic receptors. However, several of the alternative pathways activated 

by IFN-γ involve two kinases that form part of the muscarinic pathways, PI-3K and 

MEK1/2, 
16

 suggesting that an interaction based on these pathways may be occurring. For 

that reason we used specific inhibitors of these two kinases. We found that when PI-3K was 

blocked the response to cholinergic agonists was inhibited, but the response to IFN-γ was 

not altered. In contrast, when MEK1/2 was inhibited, goblet cell response to cholinergic 

agonists remained unaltered, while response to IFN-γ was significantly blocked. Even 

though cholinergic agonists and IFN-γ use the same cellular Ca2+ stores, the mechanism by 

which they use these stores appears to be different. The short-term effect could also be 

independent of Ca2+, occur before the rise in intracellular Ca2+, or involve a direct effect on 

the muscarinic receptors. Because both IFN-γ and cholinergic agonists blocked one another's 

responses, a cross desensitization of both receptors may be occurring.

A hallmark of dry eye disease is reduced mucin secretion. Although the levels of [Ca2+]i 

were not significantly blocked after 24 h incubation with IFN-γ alone, secretion induced by 

cholinergic agonists was reduced when there was a previous 24 h incubation with IFN-γ. 

This result is similar to the report of Contreras-Ruiz et al. of a reduction of cholinergic 

agonist-mediated mucin secretion of mouse goblet cells exposed to IFN-γ for 24 h. 
35

 As a 

24 hr treatment of IFN-γ does not alter cholinergic agonist increase in [Ca2+]i it is possible 

that activation of the JAK-STAT pathway that involves stimulation of transcription factors 

and synthesis of proteins could be responsible for the inhibition of secretion.

We showed in this study that IFN-γ decreases cultured goblet cell proliferation. This 

conclusion is supported by published results that associated increased IFN-γ levels with low 

numbers of goblet cells and increased apopotosis. 
18,36

 Interestingly, in some cells, IFN-γ 

stimulation led to JAK2-dependent transactivation of epidermal growth factor receptor 

(EGFR).
13

 As activation of the EGFR is known to stimulate conjunctival goblet cell 

proliferation, it is unlikely that the JAK-STAT pathway plays a role in the IFN-γ blockade of 

García-Posadas et al. Page 8

Mucosal Immunol. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell proliferation. Blockade of goblet cell proliferation induced by IFN-γ could use another 

long-term mechanism or signaling pathway different from that used to decrease secretion.

A decrease in goblet cell proliferation could result from inhibition of the cell cycle or 

stimulation of apoptosis. When IFN-γ is present in the goblet cell environment, the 

proliferation of these cells is blocked (current study) and the apoptotic processes begin, as 

demonstrated by Zhang et al. 
18

 IFN-γ has been involved in goblet cell apoptosis through 

both extrinsic and intrinsic apoptosis pathways. 
18

 The main organelles that regulate Ca2+ 

homeostasis are also the main sites of apoptotic regulation. 
37

 Thus, there could be an 

interaction between apoptotic and other Ca2+ pathways that explain the long-term effect on 

IFN-γ on proliferation.

In previous studies, rat conjunctival goblet cells were found to behave in a similar manner as 

human goblet cells. 
38-40

 Similarly, in the current study in both rat and human goblet cells, 

IFN-γ blocked carbachol-mediated increase in [Ca2+]i and secretion in both species. Thus rat 

conjunctival goblet cells are an excellent model for human goblet cells, especially 

considering the difficulty in obtaining human conjunctiva.

The main limitation of using primary cultures is the high variability between experiments. 

We observed that especially in calcium experiments, where only a few cells are analyzed, 

increasing the risk of higher variation. In addition, in the case of human cells, that variability 

may be increased due to the use of cells from both male and females, as well as from elderly 

donors. However, even with those limitations, we found several significant effects.

We conclude that IFN-γ affects multiple processes that control the amount of mucin 

produced by goblet cells. IFN-γ itself decreases goblet cell number by blocking proliferation 

and potentially by stimulating apoptosis. In addition, we have shown that the normal goblet 

cell increase in [Ca2+]i and mucin secretion, usually mediated by cholinergic agonists, is 

blocked by this Th1 cytokine. Taking all these data together, we conclude that the presence 

of IFN-γ could explain the mucin deficiency typically found in dry eye disease 
6
 since goblet 

cell number is diminished and the secretion of the remaining cells is blocked.

Methods

Materials

RPMI-1640 cell culture medium, penicillin/streptomycin, and L-glutamine were purchased 

from Lonza (Walkerville, IL). Fetal bovine serum (FBS) was from Atlanta Biologicals 

(Norcross, GA).

Antibodies against CK4, CK7, and MUC5AC were from Abcam (Cambridge, MA). The 

antibody against IFN γ receptor was from Novus Biologicals (Littleton, CO). Secondary 

antibodies were from Jackson Immunoresearch (West Grove, PA). Lectins UEA-1 and HPA 

were from Sigma-Aldrich (St. Louis, MO).

Primers for human IFN-γ receptor were from OriGene Technologies, Inc. (Rockville, MD), 

and those for rat were from SABioscience-Qiagen (Frederick, MD). The Superscript First-

Strand Synthesis system for reverse transcription polymerase chain reaction (RT-PCR) was 
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from Invitrogen, (Carlsbad, CA). SYBR Green PCR Master Mix was from Applied 

Biosystems (Carlsbad, CA).

Recombinant Rat IFN-γ and recombinant Human IFN-γ (carrier-free) were purchased from 

BioLegend Inc. (San Diego, CA). Carbachol was purchased from Sigma (St. Louis, MO). 

Fura-2/AM was from Life Technologies (Grand Island, NY). The 35mm Glass Bottom 

Culture Dishes were from MatTek Corporation (Ashland, MA). Thapsigargin and 2-APB 

were from Sigma-Aldrich, and LY294002 and U0126 were from Tocris Bioscience 

(Minneapolis, MN).

Enzyme-linked lectin assay (ELLA) was from Pierce Biotechnology (Rockford, IL) and 

Amplex Red was from Invitrogen. The Cell Counting Kit-8 was purchased from Dojindo 

Molecular Technologies (Gaithersburg, MD).

Animals

Male Sprague-Dawley rats between 4 and 5 weeks of age were obtained from Taconic Farms 

(Germantown, NY). All experiments followed the ARVO Statement for the Use of Animals 

in Ophthalmic and Vision Research, and were approved by the Schepens Eye Research 

Institute Animal Care and Use Committee. Rats were anesthetized with CO2 for 2 min and 

then euthanized by decapitation. Forniceal and bulbar conjunctival tissues were removed 

from both eyes.

Human Tissue

Human conjunctival tissues were obtained from Heartland Lions Eye Bank (Columbia, MO) 

and Michigan Eye Bank (Ann Arbor, MI). This study adhered to the Tenets of the 

Declaration of Helsinki and was approved by the Schepens Eye Research Institute Human 

Studies Internal Review Board. Received tissues were normal bulbar and forniceal 

conjunctival tissues.

Cell Culture

Tissue samples were obtained from 29 rats and from 12 human donors. Rat and human 

conjunctival goblet cells were grown in organ culture as previously described. 
38,41

 Briefly, 

conjunctival tissue was carefully minced into small pieces, and placed in six-well plates. 

When cell outgrowth was observed, tissue explants were removed. Conjunctival cells were 

cultured from every sample, although goblet cells were not obtained from each piece. As 

early as 24 h after establishment of organ culture, cell outgrowth from the explant was 

observed. Cells were fed with RPMI-1640 medium supplemented with 10% FBS, 2 mM L-

glutamine, and 100 μg/ml penicillin-streptomycin. Cells were maintained at 37° C in 5% 

CO2, and the medium was changed every other day. After 7-10 days, cells were trypsinized 

and passaged. Cells in passage 1 were used for all experiments.

Immunofluorescence microscopy

First-passage cultured cells were grown on glass cover slips and fixed in methanol or 

formaldehyde. To confirm that the cultured cells were goblet cells, these cells were stained 

with antibody against CK7, CK4, MUC5AC, and the lectins UEA-1 conjugated to FITC or 
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HPA conjugated to TRITC. Cells were incubated for 2 h with a blocking solution. 

Thereafter, primary antibody anti-CK7, anti-CK4, or anti-MUC5AC at 1:100 dilution was 

added. After one hour, cover slips were washed with PBS, and then secondary antibody 

conjugated with Cy2 or Cy3 (at 1:200 dilution), and UEA-1 or HPA (at 1:500 dilution) were 

added for one hour. To detect cell nuclei, 6-diamidino-2-phenylindole (DAPI) was added to 

the mounting medium. The same protocol was used to determine the presence of IFN-y 

receptor, using an anti-IFN-y-R antibody. Negative controls included the omission of 

primary antibodies. Specificity of primary antibodies and lectins had been previously tested. 

Cells were viewed by fluorescence microscopy (Eclipse E80i, Nikon, Tokyo, Japan). 

Micrographs were taken with a digital camera (Spot, Diagnostic Instruments, Inc, Sterling 

Heights, MI).

RNA Isolation and Real Time Reverse Transcript PCR (RT2-PCR)

Briefly, RNA was extracted with TRIzol and total RNA was isolated according to 

manufacturer's instructions. One microgram of purified total RNA was used for 

complementary DNA (cDNA) synthesis using the Superscript First-Strand Synthesis system 

for RT-PCR.

RT2-PCR reaction was performed with 10 ng cDNA, 1 μl primers (Table 1) and 10 μl SYBR 

Green PCR Master Mix in a final volume of 20 μl. Conditions of the PCR reaction were: 

denaturation at 95°C for 10 min, and 40 cycles of 95°C for 15 s and 60°C for 60s. After the 

40 cycles there was a final cycle of 95°C for 90 s. All reactions were performed in duplicate. 

The levels of GAPDH for each sample were used as endogenous controls. Non template 

controls (NTC) included the omission of cDNA. To assure the specificity of the PCR 

products, a melting curve analysis was performed. For the posterior analysis of mRNA 

expression levels, the 2− ΔΔCt method was used. 
42

Measurement of [Ca2+]i

First-passage cultured goblet cells were grown on 35 mm glass-bottom culture dishes for 1 

day. Cells were then incubated in KRB buffer (containing 120 mM NaCl, 25 mM NaHCO3, 

10 mM HEPES, 4.8 mM KCl, 1.2 mM MgCl2, 1.2 mM NaH2PO4, 1 mM CaCl2) with 0.5% 

BSA, 8 μM pluronic acid F127, 250 μM sulfinpyrazone, and 0.5 μM of Fura-2/AM for 1 h at 

37° C. Fura-2/AM is a fluorescent molecule that indicates the intracellular Ca2+ levels 

([Ca2+]i). After incubation cells were washed with KRB buffer containing sulfinpyrazone, 

and the dishes were observed using a Ca2+ imagining system, InCyt Im2 (Intracellular 

Imaging, Cincinnati, OH). This system allows measuring the ratio of Fura-2 using excitation 

wavelengths of 340 and 380 nm, and an emission wavelength of 505 nm. A mean of 10 cells 

per dish was selected, and [Ca2+]i was measured in each individual cell. A basal reading was 

done for at least 15 seconds before addition of agonists or inhibitors. Data are presented as 

the change in peak [Ca2+]i, that was calculated by subtracting the basal value from the 

[Ca2+]i peak.

High Molecular Weight Glycoconjugate Secretion

For secretion assays, first-passage goblet cells were cultured in 24-well plates and grown to 

confluence. After serum starving for 24 h, cells were incubated with buffer alone (basal), 
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carbachol (10−4 M), or IFN-γ (3 ng/ml) for 24 h in serum-free RPMI 1640 supplemented 

with 0.5% bovine serum albumin. Goblet cell secretion was measured using ELLA. UEA-1 

lectin conjugated to horseradish peroxidase was used to detect high molecular weight 

glycoconjugates, including the mucin MUC5AC produced by rat and human goblet cells. 

After incubation, the culture medium was collected and the amount of lectin-detectable 

glycoconjugates was measured. After collection of supernatant for the ELLA, cells in the 

24-well plate were removed and sonicated. The cell homogenate was analyzed for total 

amount of protein using the Bradford protein assay. Bovine submaxillary mucin was used 

for the standard curve.

To perform the ELLA, standards and supernatants were placed into 96-well microplates and 

dried overnight at 60° C. The manufacturer's protocol was followed. UEA-1 was detected 

using Amplex Red. In the presence of hydrogen peroxide, Amplex Red is oxidized 

producing a fluorescent molecule. Fluorescence was then quantified using a fluorescence 

ELISA reader (Bio-Tek, Winooski, VT), using 530 nm and 590 nm excitation and emission 

wavelengths, respectively. The amount of high molecular weight glycoconjugate secretion 

was normalized to total protein in the homogenate, and expressed as fold increase over 

basal. Basal value was set at 1.

Proliferation

Proliferation was measured using Cell Counting Kit-8. Briefly, cells were serum starved for 

24 h, treated with IFN-γ (3 ng/ml), for 24 h, and then stimulated with carbachol (10−4 M) for 

2 h. After stimulation, WST-8 product was added to the wells and after a 45 min incubation, 

absorbance was read in a spectrophotometer, following manufacturer's instructions.

Data Presentation and Statistical Analysis

Data were presented as mean ± standard error of the mean (SEM). Student's t-test was 

performed to analyze data and p ≤ 0.05 was considered statistically significant.
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Figure 1. 
Cultured cells are goblet cells as they contain CK7, lectin binding domains, and MUC5AC. 

Representative images of rat (a-b) and human (c-d) cultured goblet cells. Nuclei were 

stained in blue with DAPI. Cells expressed CK7 (a, c), lectins UEA-1 (rat cells, a) and HPA 

(human cells, c), and MUC5AC (b, d) as seen in merged images. Magnification ×100 for a, 

×400 for b and d, and ×200 for c. MUC5AC mRNA expression was measured by Real Time 

RT-PCR (e). Values are expressed as mean ± SEM (n=2).
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Figure 2. 
Conjunctival goblet cells express the IFN-γ receptor. Images of rat (a) and human (b) 

cultured goblet cells, where IFN-γ-R is stained in red. Nuclei were stained in blue with 

DAPI. IFN-γ-R mRNA expression was analyzed by Real Time RT-PCR (c). Values are 

expressed as mean ± SEM (n=2).
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Figure 3. 
IFN-γ and carbachol cause a concentration dependent increase in intracellular [Ca2+] and 

desensitize each others Ca2+ response in cultured conjunctival goblet cells. Concentration 

dependency of IFN-γ (a-b) and carbachol (Cch) (c-d) of [Ca2+]i in rat conjunctival goblet 

cells. Mean intracellular Ca2+ response over time after addition of increasing concentrations 

of IFN-γ from 0.1-10 ng/ml (n=6) (a) and of Cch from 10−6 -10 4 M (n=5) (c). Peak [Ca2+]i 

over basal is shown in (b) and (d) for IFN-γ and Cch, respectively. Mean intracellular Ca2+ 

response over time (e) or peak value over basal (f) in response to Cch at 10−4 M alone or the 

effect of addition of increasing concentrations of IFN-γ (indicated by first arrow) on the Cch 

response 15 min (indicated by second arrow) after IFN-γ addition (n=5). Mean intracellular 

Ca2+ response over time (g) or peak value over basal (h) in response to IFN-γ (3 ng/ml) 

alone or the effect of increasing concentrations of Cch (indicated by first arrow) on the IFN-

γ response 15 min (indicated by second arrow) after Cch addition (n=4). * p ≤ 0.05; ** p ≤ 

0.01; *** p ≤ 0.005.
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Figure 4. 
A fifteen minute, but not a 24 h incubation with IFN-γ blocks the increase in [Ca2+]i 

stimulated by carbachol (Cch) in rat and human conjunctival goblet cells. A pseudo color 

image of [Ca2+]i from fura-2 loaded single goblet cells in rat (a) and human (d) shows the 

increase in [Ca2+]I under basal conditions, after stimulation with Cch (10−4 M), or Cch after 

15 min or 24 h incubation with IFN-γ. Shown in rat (b) and human (e) goblet cells is the 

mean intracellular Ca2+ response over time, after addition of carbachol (Cch- arrow black 

line), IFN-γ (first arrow red line), Cch (second arrow red line) after a 15 min treatment with 

IFN-γ or Cch (first arrow green line) after a 24 h treatment with IFN-γ. Peak [Ca2+]i over 

basal for each condition is shown in (c) and (f) and is expressed as mean ± SEM (n=5) in rat 

cells (b and c) and (n=7) in human cells (e and f). * indicates statistical significance 

compared to basal values, and # is compared to carbachol values. * or # p ≤ 0.05; ** or ## p ≤ 

0.01; *** or ### p ≤ 0.005.
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Figure 5. 
The IFN-γ and carbachol (Cch) stimulated increases in [Ca2+]i are dependent upon both 

extracellular Ca2+ and intracellular Ca2+ stores in rat and human conjunctival goblet cells. 

The mean [Ca2+]i over time is shown for 3 ng/ml IFN-γ or 10−4 M Cch in the presence or 

absence of extracellular calcium (first arrow), or the re-addition of extracellular Ca2+ 

(second arrow) was studied in rat (a) and human (b) goblet cells in (n=6 in rat cells) or (n=5 

in human cells). Peak [Ca2+]i over basal for each condition is shown in (c) and (d) and is 

expressed as mean ± SEM. The [Ca2+]i over time is shown for 3 ng/ml IFN-γ (e) or 10−4 M 

Cch (f) alone (first arrow) or after a 15 min treatment with thapsigargin (10−5 M) (second 

arrow) or 30 min after addition of 2-APB (10−5 M) in rat goblet cells (n=6). Peak [Ca2+]i 

over basal for each condition is shown in (g) and (h) and is expressed as mean ± SEM. * p ≤ 

0.05; ** p ≤ 0.01.
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Figure 6. 
Blockage of phosphatidylinositol-3 kinase PI-3K or extracellular regulated kinase (ERK) 1/2 

differentially inhibits IFN-γ and carbachol (Cch) stimulation of [Ca2+]i. The mean [Ca2+]i 

over time is shown for 3 ng/ml IFN-γ (a) or 10−4 M Cch (c) alone or after a 30 min treatment 

with the PI-3K inhibitor LY294002 (10−5 M) or the MEK inhibitor U0126 (10−5 M) in rat 

goblet cells (n=3). Arrow indicates addition of agonist. Peak [Ca2+]i over basal for each 

condition is shown in (b) and (d) and is expressed as mean ± SEM. * p ≤ 0.05; ** p ≤ 0.01.
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Figure 7. 
IFN-γ blocks carbachol (Cch) stimulated secretion of high molecular weight glycoproteins 

in rat and human goblet cells. Secretion from rat (a, b) and human (c) goblet cells is shown 

after a 2 h incubation with carbachol (10−4 M), a 24 h incubation with IFN-γ (3 ng/ml), or a 

15 min or 24 h treatment with IFN-γ followed by a 2 h incubation with Cch. Data are mean 

± SEM (n=3). * means statistical significance compared to basal values, and # is compared 

to Cch values. * or # p ≤ 0.05; ** or ## p ≤ 0.01; *** or ### p ≤ 0.005.

García-Posadas et al. Page 21

Mucosal Immunol. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
IFN-γ inhibits proliferation of cultured rat conjunctival goblet cells. Proliferation of goblet 

cells in response to no addition, IFN-γ (3 ng/ml) for 24 h, Cch (10−4 M) for 2 h, alone or 

after IFN-γ for 24 h. Data are mean ± SEM (n=3). ** ≤ 0.01; *** ≤ 0.005.
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Table 1
Primers sequences

Primer Primer sequence/Reference Source

GAPDH Sense: 5′-GAACGTGAAGGTCGGAGTCAAC-3′ Sigma-Aldrich (St.Louis, MO)

Antisense: 5′-CGTGAAGATGGTGATGGGATTTC-3′

MUC5AC Sense: 5′-CCCACAGAACCCAGTACAA-3′ Sigma-Aldrich

Antisense: 5′-AATGTGTAGCCCTCGTCT-3′

Human IFN-γ-R1 Ref: HP200396 OriGene Technologies, Inc. (Rockville, MD)

Rat IFN-γ-R1 Ref. PPR06409A Qiagen (Frederick, MD)
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