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Abstract

Background: Spring viraemia of carp virus (SVCV) has been identified as the causative agent of spring viraemia
of carp (SVC) and it has caused significant losses in the cultured common carp (Cyprinus carpio) industry. The
molecular mechanisms that underlie the pathogenesis of the disease remain poorly understood. In this study,
deep RNA sequencing was used to analyse the transcriptome and gene expression profile of EPC cells at
progressive times after SVCV infection. This study addressed the complexity of virus—cell interactions and added
knowledge that may help to understand SVCV.

Results: A total of 33,849,764 clean data from 36,000,000 sequence reads, with a mean read length 100 bp, were
obtained. These raw data were assembled into 88,772 contigs. Of these contigs, 19,642 and 25,966 had significant hits
to the NR and Uniprot databases where they matched 17,642 and 13,351 unique protein accessions, respectively.
At 24 h post SVCV infection (1.0 MOI), a total of 623 genes were differentially expressed in EPC cells compared to
non-infected cells, including 288 up-regulated genes and 335 down-regulated genes. These regulated genes were
primarily involved in pathways of apoptosis, oxidative stress and the interferon system, all of which may be involved in

viral pathogenesis. In addition, 8 differentially expressed genes (DEGs) were validated by quantitative PCR.

Conclusions: Our findings demonstrate previously unrecognised changes in gene transcription that are associated
with SVCV infection in vitro, and many potential cascades identified in the study clearly warrant further experimental
investigation. Our data provide new clues to the mechanism of viral susceptibility in EPC cells.

Background

Spring viraemia of carp virus (SVCV), the causative
agent of spring viraemia of carp (SVC), is classified as
a member of the family Rhabdoviridae and belongs to
the genus Vesiculovirus. SVC is an important disease
affecting cyprinids, primarily common carp (Cyprinus
carpio). This high-mortality disease is endemic in Europe,
North America, and parts of Asia [1]. The major clinical
signs for SVCV infection include ascites, and petechiae
and ecchymoses in the gills and skin [2].

SVCV exhibits the typical bullet-shaped morphology
of a vertebrate rhabdovirus. Its genome is a linear
single-stranded, negative-sense RNA that is approximately
11 kb in length and encodes five structural proteins:
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nucleoprotein (N), phosphoprotein (P), matrix protein
(M), glycoprotein (G), and RNA-dependent polymerase
(L) [3.4].

There have been several studies concerning the patho-
genic mechanism (s) involved in SVCV infection have
been reported [5-8]. Our previous work demonstrated
that the expression of heme oxygenase 1 (HO-I) was
down-regulated during SVCV infection in vivo, which
suggested that SVCV infection could induce host oxida-
tive stress that might contribute to tissue injury [7].
High-throughput methods, including pathway-targeted
microarrays and proteomic analysis, have also been used
to scan the host response to viral infection [9,10]. These
studies suggest that apoptosis, oxidative stress and the
interferon (IFN) system may contribute to the mechanisms
of the viral pathogenesis. However, a comprehensive
identification of the genes involved in viral pathogen-
esis as well as major signal transduction pathways and
intracellular interaction networks remains unavailable.
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Ultrahigh-throughput sequencing technologies permit
genome-wide transcriptome analysis at high reso-
lution, and these technologies have been widely used
to study pathogenic processes during virus infection,
including infections by aquatic viruses [11,12].

New evidence has suggested that the current line-
ages of the epithelioma papulosum cyprinid (EPC) cell
line originated from the fathead minnow (Pimephales
promelas) [13]. The temperature growth range, good
splitting ratio (1/10) and virus susceptibility make
EPC cells highly suitable both for fish pathology and
comparative virology studies. The fathead minnow, a
species of temperate freshwater fish belonging to the
cyprinid family, is widely used as an indicator of
environmental water monitoring in ecotoxicological
research [14,15]. However, only sporadic genetic in-
formation about EPC cells or the fathead minnow is
available, which might limit further studies with these
resources.

In the present study, we present the results from se-
quencing and assembly of the transcriptome of EPC
cells at progressive times after SVCV infection. Genes
involved in oxidative stress, apoptosis, and the IFN
system as well as nearly all major conserved metazoan
signal transduction pathways were largely identified in
the EPC transcriptome. It is the first light upon this
well known and used fish cell line in fish virology. Add-
itionally, a great number of genes that were differen-
tially expressed upon SVCV infection were obtained
and functionally annotated. The gene expression patterns
for some of these genes were verified by RT-qPCR. These
results offer insight into the complexity of the virus—cell
interactions, and add new information that may help to
control SVCV infection.
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Results

Transcriptome sequence assembly and analysis

To obtain an overview of the transcriptome of the EPC
cells, cDNA samples from normal EPC cells and from
EPC cells at different stages during SVCV infection were
mixed and sequenced on an Illumina machine. A total
of 33,849,764 clean data from 36,000,000 sequence
reads, with a mean read length 100 bp, was obtained.
These raw data were assembled into 88,772 contigs. The
mean contig size was 831 bp, with lengths ranging from
201 bp to 17,900 bp. The contig size distribution is
shown in Figure 1.

BLASTX searches for all contigs from EPC cells were
performed against several protein databases, including the
GenBank non-redundant (NR) and Uniprot databases
with an E- value cut-off of 107°. Of the 88,772 contigs,
19,642 and 25,966 had significant hits to the NR and Uni-
prot databases respectively, and they respectively matched
17,642 and 13,351 unique protein accessions.

Further gene ontology (GO) analysis was performed
with these contigs. A total of 16,994 unique proteins
mapped to 114,154 GO terms: 48,270 unigenes mapped
to biological processes, 40,247 unigenes mapped to mo-
lecular functions, and 48,151 unigenes mapped to cellu-
lar components (Figure 2).

EuKaryotic Orthologous Groups (KOG) classification
of the unigenes is important for functional annotation
and evolutionary studies. As shown in Figure 3, a total
of 12,896 unigenes were finally mapped onto 25 different
KOG categories. The largest KOG group was “Signal
transduction mechanisms” (2,604 unigenes), followed by
“General function prediction only” (1,531 unigenes) and
“Posttranslational modification, protein turnover, chaper-
ones” (937 unigenes).
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Figure 1 Assembled contig length distribution of the Pimephales promelas transcriptome. The x-axis indicates contig size and the y-axis
indicates the number of contigs of each size.
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Figure 2 Gene ontology assignments for P. promelas. The annotated contigs from P. promelas sequencing that matched the three major
categories, including biological process, cellular component, and molecular function were shown. The x-axis indicates the GO terms and the
y-axis indicates the number of genes mapped to the indicated GO term.
.

To obtain more information for predicted functions of
the unigenes, the genes from the EPC cells were cate-
gorised in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. A total of 7,349 unigenes was obtained
the KO number (Figure 4).

To assess the evolutionary conservation of the identified
unique genes in EPC cells, the number of hits to unique
genes in each species of zebrafish, medaka, Tetraodon,
Fugu, stickleback, human, mouse, and chicken were com-
pared. A total of 19,018 (70.3% of total number of unique
fathead minnow genes) putative known unique genes was
found in all eight species; 20,266 (74.9%) were found in all

five fish species; and 26,986 (99.8%) were found in at least
one of the five fish species (Table 1 and Figure 5), indicat-
ing a high level of conservation of gene content among
Pimephales promelas and other teleost fish species.

Differentially expressed genes

To identify differentially expressed genes (DEGs) that
potentially are involved in SVCYV infection, cDNA libraries
were constructed from pooled mRNAs extracted from the
SVCV- infected EPC cells (3 h, 6 h and 24 h post infec-
tion) and non-infected groups. Subsequently, these librar-
ies were sequenced on a Genome Analyzer II. DEGs were
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obtained based on the RPKM of the genes either in
SVCV-infection or non-infection group. A gene with
an RPKM ratio larger than 2 or smaller than 0.5 was
considered to be a DEG [11,12]. For the SVCV tran-
scriptome, all five genes encoded by the SVCV gen-
ome, including N, P, M, G and L, were transcribed in
EPC cells during the entire infection course, though
the M and L gene were decreased at 6 h and 24 h post
infection. The statistics of DEGs of host cells between
different groups is shown in Table 2. Altogether, 623
genes were differentially expressed in EPC cells at 24 h
post SVCV infection (1.0 MOI) compared to the non-
infected cells, including 288 up-regulated genes and
335 down-regulated genes (Additional file 1: Table S2).
Among the up-regulated genes, the expression levels of
177 genes were increased more than 4 times, and 58
genes were increased more than 16 times. C-fos and
kruppel-like factor 2a (KLF2A), both associated with
stress response, were the genes that showed the highest
up-regulation, with an increase of more than 32 times.
Among the down-regulated genes, the expression levels
of 100 genes were decreased more than 4 times. The most
down-regulated gene adrenomedullin 2 (ADM?2), which

associated with oxidative stress, was decreased more
than 32 times.

Functional annotation of the DEGs

To understand the functions of the DEGs and the bio-
logical processes involved in SVCV infection, all of the
DEGs were mapped to terms in the GO (Figure 6) and
KEGG databases (Figure 7). GO analysis showed that a
total of 1,748 unigenes had GO annotations. Among the
up-regulated genes of host cells at 24 h post infection,
713 unigenes were mapped to biological processes, 551
unigenes were mapped to cellular components, and 484
unigenes were mapped to molecular functions. Of the
biological process related genes, most were involved in
cellular processes (141), regulation of biological processes
(91), macromolecule metabolism (86), cell communication
(58) and responses to stimulus (51). Most of the cellular
component related genes were involved in the cell and
nucleus. Most of the molecular function related genes
were involved in binding (protein or other), transcrip-
tion regulator and transporter activity. The GO analysis
of the down-regulated genes at 24 h post infection is
show in Figure 5B. Among these DEGs at 24 h post
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Figure 4 KEGG classification of the P. promelas transcriptome. The x-axis indicates the number of predicted proteins and the y-axis indicates
the pathway.

SVCV infection, “nucleus”, “intracellular” and “chromo-
some” in the cellular component ontology, “regulation of
biological process”, “response to stimulus” and “macro-
molecule metabolism” in the biological process ontology,
and “protein transporter activity” and “structural molecule
activity” in the molecular function ontology were enriched
by p-value analysis.

KEGG analysis on the DEGs revealed that the up-
regulated genes at 24 h post SVCV infection were assigned
to 33 KEGG pathways (Figure 6). Nearly 50% percent
of the up-regulated DEGs were assigned to the top 5
pathways as follows: infectious diseases (136), cancer
(99), signal transduction (88), immune system(36) and
endocrine system(32) (Q value < 0.05). Additionally, the
down-regulated genes were assigned to 37 KEGG path-
ways, including infectious diseases (50), cancer (35), signal
transduction (28), neurodegenerative diseases (27), and

endocrine system (26). Altogether, the pathways involved
with the DEGs that were enriched for the terms “cell growth
and death”, “immune disease”, “infectious diseases”, “endo-
crine system”, “cancer”, “neurodegenerative diseases” and

“signal transduction” were enriched by p value analysis.

Kinetics of DEGs at different time points post- SVCV
infection

Compared to the non-infected EPC cells, there were 162
up-regulated genes and 27 down-regulated genes at 3 h
post infection (Table 2). When comparing DEGs of host
cells between the groups of 6 h and 3 h post- infection,
the number of up-regulated and down-regulated genes is
11 and 75, respectively. Looking at various genes, many
were up-regulated at 3 h or 6 h, then decreased to the
control level. This suggested that SVCV infection stirred
up an obvious stress reaction in the early stage of infection.
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Table 1 Summary of the BLASTX (BLSATP) search analysis
of P. promelas unique sequences

Database Hits* Unique % of total unique
protein proteins

NR' 2559 17642

Uniprot’ 19642 13351

Refseq/Ensembl

Zebrafish 25910 15612 36.49% of 42787

Medaka 23006 12508 50.69% of 24674

Tetraodon 22059 12196 52.76% of 23118

Fugu 22539 14352 30.009% Of 47841

Stickleback 22919 12934 46.90% of 27576

Human 21802 13534 12.97% of 104310

Mouse 21782 12422 24.15% of 51437

Chicken 21103 10178 62.24% of 16354
27049 17396

Cumulative unique
2

The version of indicated species of protein database is the

ensemble release-73(ftp://ftp.ensembl.org/pub/release-73/fasta/).

*Number of significant alignments using all P. promelas unique sequences as
queries to search the listed databases. "Number of significant alignments
using all P. promelas unique sequences as queries to search EMBOSS with
BLASTp. 2Cumulative unique totals were derived from the sum of unique
gene/protein identities across all listed species.

For instance, Interleukin-11b, involved in antibacterial
and antiviral responses [16], was transiently and sharply
up-regulated at 3 h by SVCV infection, and then de-
creased to the normal level at 6 h and 24 h. In contrast to
the early stage of SVCV infection, DEGs with modest
overlaps were found and resulted in cell damage.

Verification of transcriptome data by RT-qPCR

To further evaluate our DEG library, 5 up-regulated DEGs
and 3 down-regulated DEGs with different fold changes
were randomly selected to perform RT-qPCR. Among
these selected DEGs, c¢-fos, c-Jun, and KLF2A showed the
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highest up-regulation in mRNA sequencing method. c-Jun
in combination with c¢-fos, forms the activator protein 1
(AP-1) early response transcription factor and is associ-
ated with stress response. The two other up-regulated
genes were caspase 8 (CASP8) and myeloid differentiation
primary response 88 (MYD88). These two genes were in-
volved in the regulation of cell death and the innate
immune response, respectively. The three selected down-
regulated DEGs were heat shock protein 47 (HSP47),
ubiquinol-cytochrome ¢ reductase, Rieske iron-sulfur
polypeptide 1(LUQCRFS1) and GSNA. The RT-qPCR re-
sults revealed the same expression tendency as the DEG
data, despite some quantitative differences in expression
level (Figure 8). Among these selected DEGs, the obvi-
ous quantitative differences between sequencing and
qPCR methods was only observed on the expression of
Klf2a. Taken together, qRT-PCR analysis confirmed the
tendency detected by the mRNA sequencing analysis.

Discussion

Global analysis of viral susceptibility genes in EPC
transcriptome

The EPC cell line was established in the 1970s and has
become one of the most widely used tools for research
on fish virus and the diagnosis of fish diseases. Most of
viruses causing systemic infections of fish families and
amphibians, as well as Indiana-type vesicular stomatitis
virus can propagate in EPC cells [13]. Mining the viral
susceptibility genes from the transcriptome data may
shed light on the potential mechanism for the broad
spectrum sensitivity of this cell line to viruses. Previously,
twelve independent studies were summarised to compile a
list of human genes important for human immunodefi-
ciency virus (HIV) and other virus infection [17]. A total of
388 human genes that were identified in two or more of
these independent studies was suggested to be important
for viral infection in mammalian cells. Among these, only
54 homologous genes lacked detectable expression levels in

species using BLASTX searches with an E- value cut-off of 107°.

Figure 5 Conservation of P. promelas gene identities with other species. Number of P. promelas homologous genes identified from other

27,049 |dentified genes

26,986 found in at least one of the five species
25,910 found in zebrafish

20,266 found in all five fish species

19,018 found in all eight species
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Table 2 Statistics of the differentially expressed genes
(DEGSs) upon SVCV infection between various time points

Sample Up-regulated Down-regulated
3h Vs Oh 162 27
6h Vs 3h 11 75
6h Vs Oh 71 48
24h Vs 6h 276 360
24h Vs 3h 240 461
24h Vs Oh 288 335

the EPC transcriptome (Additional file 2: Table S3). Of
these unexpressed genes, several were specially expressed
on mammalian T cells, natural killer (NK) cells or antigen
presenting cells (APC), including CD2, CD4, CD4, CXCR4,
CD44, CD86. For instance, CD2 is expressed on the surface
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of T cells and NK cells, and CD58 is expressed on APC,
particularly macrophages. These two adhesion molecules
are vitally important for hepatitis B virus (HBV) infec-
tion. The gene expression profile of EPC cells suggests
that EPC would be one of the best cell models for the
study of virus-host interactions. This contrasts with
CHO-K1, a preferred host cell line for the production
of therapeutic proteins, which is naturally resistant to
several viral infection; in CHO-K1 there were 158 genes
lacking detectable expression levels and 4 genes that
were not found in its genome [18]. Interestingly, over-
laps were found among the non- expressing genes in the
EPC and CHO-K1 cell lines. For example, interleukin 1
alpha (IL1«x), responsible for the production of inflam-
mation, as well as the promotion of fever and sepsis,
was not expressed in the EPC and CHO-KI1 cells.

Number of genes

down-regulated genes upon SVCV infection.
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Figure 7 KEGG classification of the differentially expressed genes (DEGs) upon SVCV infection. The KEGG classification of up-regulated
genes (A) and down-regulated genes (B) upon SVCV infection is shown. The x-axis indicates the pathway and the y-axis indicates the number
of DEGs.

Another gene of interest that was not expressed in EPC
cells. is catalase, a common enzyme found in nearly all
living organisms exposed to oxygen. Such information
could aid an in-depth analysis of viral susceptibility
genes in EPC cells.

Overlaps among different screens for the host responses
to SVCV infection

Until now, two independent studies have investigated the
host response to SVCV infection by systematic methods
[9,10]. Liu et al. revealed 55 dynamically changed proteins
in SVCV-infected EPC using 2-DE profile and MS identi-
fication [10]. Compared with our results presented here, a
total of 10 genes (18%) overlapped with similar expression
profile (Additional file 2: Table S4). Similarly, the overlap
between our results and a study which was screened using
pathway-target microarrays for zebrafish infected with
and survived SVCV was modest [9]. In that study, 16 mul-
tipath genes common to more than 6 pathways were

identified in 2-day exposed or 30-day survivors of SVCV
infection. Among these 16 regulated genes, 7 genes shared
a similar expression pattern. However, variation due to 1)
experimental noise, 2)timing of sampling, 3) cell type, and
4)different filtering criteria are likely to explain some of
the differences among these studies.

Pathophysiology of the EPC response to SVCV infection

i. Oxidative stress in SVCV infection

Oxidative stress has been implicated in the pathogenesis
of various neurodegenerative diseases, such as Alzheimer’s
disease and Parkinson’s disease [19]. Oxidative stress oc-
curs in cells when production of reactive oxygen species
(ROS) exceeds the cell’s endogenous antioxidant defences.
Many DNA and RNA viruses can trigger oxidative stress
and induce host cell death in infected cells [20-22]. Upon
SVCYV infection, 19 genes involved in oxidative stress were
regulated, including 11 down-regulated genes and 8
up-regulated genes (Table 3). The down-regulated genes
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Figure 8 RT-qPCR confirmation of the differentially expressed genes (DEGs) upon SVCV infection. Relative transcript levels (fold changes)
of selected DEGs were determined by the real-time PCR, using TATA box binding protein (TBP) as the reference control, and shown by the black
bars. Data shown are the mean of triplicates + SD. Three parallel experiments were performed and one representative experiment of three is
shown. The transcript abundance from DEG data is shown by the grey bars. The minus value means the gene is down-regulated after SVCV infec-

tion; while the positive value means the gene is up-regulated in SVCV-infected cells.

included several subunits of the NADH dehydrogenase 1
alpha complex, the first enzyme complex in the electron
transport chain located in the inner mitochondrial mem-
brane, i.e. NADH dehydrogenase 1 alpha subcomplex 1
(NDUFA1), NDUFA7, NDUFA11 and NDUFA12, NADH
dehydrogenase Fe-S protein 5 (NDUFS5), ubiquinol-
cytochrome c reductase iron-sulphur subunit, and cyto-
chrome b5 type A (Cyb5a). Cu/Zn-superoxide dismutase
(Cu/Zn SOD), one of the major defences against ROS, was
down-regulated more than 2 times post SVCV infection.
The up-regulated genes included sestrin 3 (sesn3), un-
coupling protein 2 (UCP2) and oxidative stress induced
growth inhibitor 1 (OSGINI). Sesn3 encodes a member of
the sestrin family of stress-induced proteins and could re-
duces the levels of intracellular reactive oxygen species
[23]. Uncoupling protein 2 is a member of the larger
family of mitochondrial anion carrier proteins and its
main function is to control mitochondria-derived re-
active oxygen species. OSGINI, encoding an oxidative
stress response protein, is regulated by p53 and is induced
by DNA damage. OSGIN1I also regulates apoptosis by in-
ducing cytochrome c release from mitochondria. These
regulated genes indicated that SVCV infection could in-
duce oxidative stress in EPC cells resulting in a series of
physiological changes. Another gene of interest is catalase,
a common enzyme found in nearly all living organisms
exposed to oxygen that is very important in protecting the
cell from oxidative damage by ROS; but there was no de-
tectable expression in EPC cells. Altogether, host and virus
factors were both contributed to the induction of oxidative
stress and the consequent cell damage.

ii. Apoptosis induced by SVCV infection

Programmed cell death (apoptosis) is one of the most
common forms of cell death in multicellular organisms
and it plays a pivotal role during normal development
and in the regulation of various physiological processes
[24]. Two principle pathways of apoptosis exist in mam-
malian cells, ie., the extrinsic or receptor-mediated
pathway and the intrinsic pathway, which is mediated
via mitochondrial and the endoplasmic reticulum. A
previous study indicated that EPC cells infected with
SVCV undergo apoptosis [6]. In agreement with those
results, we found that 19 pro-apoptosis genes were up-
regulated and 6 anti-apoptosis genes were down-regulated
at 24 h post infection. Most of the up-regulated genes were
involved in the death receptor pathway and the mitochon-
drial pathway, including CASPS8, Bcl-2-binding compo-
nent 3 (BBC3), tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein, epsilon polypeptide
2 (YWHAE), programmed cell death protein 6 (PDCD6)
and many other genes involved in p53 signal transduction
(MDM?2, GADD4S5 and sestrin). CASP8 encodes an initi-
ator caspase that directly cleaves downstream effector cas-
pases such as caspase-3 or cleavaging Bid, a Bcl-2 family
protein with a BH3 domain to initiate a mitochondrial
amplification loop [25]. Upon SVCV infection, CASP8
was up-regulated more than 2 times. BBC3, encoding an
essential pro-apoptotic protein, was up-regulated more
than 32 times at 24 h post infection. In the pathway of
p53 dependent apoptosis, the up-regulation of BBC3 can
induce the expression of apoptosis regulator BAX and BAK
to trigger apoptosis through the mitochondrial pathway.
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Table 3 List of the differentially expressed genes (DEGs) involved
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in the pathophysiology of the EPC response to SVCV

infection
Abbr. Gene description “Fold changes “Fold changes “Fold changes
(3 h, Log2) (6 h, Log2) (24 h Log2)
Oxidative stress in SVCV infection
NDUFA12 NADH dehydrogenase 1 alpha subcomplex 12 - - -1.36
NDUFAT1 NADH dehydrogenase 1 alpha subcomplex 1 - - -1.76
NDUFA11 NADH dehydrogenase 1 alpha subcomplex subunit 11 -0.84 -1.01 -1.38
NDUFA7 NADH dehydrogenase 1 alpha subcomplex 7 - - -1.98
UQCRFST Ubiquinol-cytochrome ¢ reductase iron-sulfur subunit - - -251
ATPeVPL Vacuolar ATP synthase 16 kDa proteolipid subunit - - -1.22
NDUFS5 NADH dehydrogenase Fe-S protein 5 - - -1
COX7B cytochrome ¢ oxidase subunit Vilb - - -1.25
SOD1 Cu/Zn-superoxide dismutase - - -1.15
SESN Sestrin-3 -161 -0.72 276
Cyb5a Cyb5a protein - - -3.06
ENC1 Ectodermal-neural cortex 1, a member of the kelch-related 1.30 - -1.14
family of actin-binding proteins
OSGIN1 Oxidative stress-induced growth inhibitor 1 - - 1.39
ucp2 Mitochondrial uncoupling protein 2, control of - - 1.16
mitochondria-derived reactive oxygen species
HSP90 Heat shock protein HSP 90-alpha —-1.88 -161 1.50
C/EBP beta CCAAT/enhancer binding protein beta 098 - 2.96
GADD45A Growth arrest and DNA-damage-inducible, alpha, a -0.98 - 3.38
GADD458B Growth arrest and DNA-damage-inducible, beta b 192 1.01 443
Jun-B Transcription factor jun-B 173 2.14 443
Apoptosis induced by SVCV infection
NFKBIA NF-kappaB inhibitor alpha-like protein A - - 341
NFKBIB NF-kappaB inhibitor alpha-like protein B - - 532
CSRNP1 Cysteine/serine-rich nuclear protein 1-like 1.17 0.69 399
CASP8 Caspase 8 - - 1.35
TNFRSFTA Tumor necrosis factor receptor superfamily member 1A precursor - - 1.09
BIRC2-3 Baculoviral IAP repeat-containing 3 0.90 - 143
MYD88 Myeloid differentiation primary response protein MyD88 145 - 202
GADD45A Growth arrest and DNA-damage-inducible, alpha, a -0.98 - 3.38
GADD45B Growth arrest and DNA-damage-inducible, beta b 192 1.01 443
OSGIN1 Oxidative stress-induced growth inhibitor 1 - - 1.39
YWHAE Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase - - -1.02
activation protein, epsilon polypeptide 2 ,14-3-3 protein epsilon
Gelsolin Scinderin like b - - -1.34
Mdm?2 E3 ubiquitin-protein ligase - - 2.12
PDCD6 Programmed cell death protein 6 1.50 093 1.79
DDIT3 DNA damage-inducible transcript 3 protein - - 357
IRF7 IFN-regulatory factory 7 - - 359
PIM1 Proto-oncogene serine/threonine-protein kinase pim-1 1.70 1.60 2.58
BBC3 BCL2 binding component 3 - - 537
JUN-D Transcription factor jun-D - - 545
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Table 3 List of the differentially expressed genes (DEGs) involved in the pathophysiology of the EPC response to SVCV

infection (Continued)

Tax1bp1 Tax1-binding protein 1 homolog B

PHLDA3 Pleckstrin homology-like domain family B member 3-like
BIRC5 Baculoviral IAP repeat-containing protein 5

PAWR PRKC apoptosis WT1 regulator protein

Mcl1b Myeloid cell leukemia sequence 1

Set Protein SET

Regulation of the cytoskeleton by SVCV infection

ACTN1 Alpha-actinin-1

ACTN4 Alpha-actinin-4

ACTB Beta-actin

ARPC5 Actin related protein 2/3 complex, subunit 5A
TUBA8 Tubulin, alpha 8 like 2

TUBB6 Tubulin, beta 6 class V

TUBA4 Tubulin alpha-4A chain-like

TUBA1 Tubulin alpha-1C chain

TUBA2 Tubulin, alpha 2

TUBB Tubulin beta-4 chain-like isoform 1
TUBA Tubulin alpha 6

PFN21 PEN2I protein

RRAS Ras-related protein

Gelsolin; Scinderin like b

RAC1 Ras-related C3 botulinum toxin substrate 1-like
CFL Cofilin 2, like

PFN2 Profilin-2-like isoform 2

GSN GSNA

BRICK1 Probable protein BRICK1-like

VCL Vinculin

FLNA; Vilamin A

COTL1 Voactosin-like protein

TGAT1 Integrin alpha-11

Inhibition of the interferon system

IFNR1 IFN-regulatory factor 1

IRF2 Interferon regulatory factor 2

IRFBP2 Interferon regulatory factor 2-binding protein 2-8
IRF7 IFN-regulatory factory 7

235
2.58
=213
-1.32
-1.13
-1.03

-143
~145
-135
-122
-332
-2.70
-308
-266
-2.19
-204
-2.00
-1.19
-123
~134
-137
-1.17
-137
-205
—244
~134
-173
-221
073 155 201

4.77
2.23

- 0.66 2.59

3.59

“Fold changes refers to the changes of gene expression in response to SVCV infection at the indicated time points, and the minus value means the gene is
down-regulated after SVCV infection; while the positive value means the gene is up-regulated in SVCV-infected cells. The dashes (-) indicated that the expression
level of certain gene is not changed at the indicated time point post SVCV infection when compared with 0 h post SVCV infection.

MDM?2, an important negative regulator of the p53 tumour
suppressor, was up-regulated more than 4 times upon
SVCYV infection. Meanwhile, several tumor necrosis factor
(TNF) signal-related genes were up-regulated including
tumour necrosis factor, tumour necrosis factor receptor
superfamily member 1A/11A and 11B, and tumour necro-
sis factor alpha-induced protein 3/6. This indicated that

the TNF signal was activated upon SVCV infection.
Several genes involved in the p53 signal pathway were
also regulated post SVCV infection. Taken together,
SVCV infection could induce apoptosis through the
TNF mediated extrinsic pathway and the mitochondrial
pathway. Further studies are needed to reveal the detailed
mechanism.
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iii. Regulation of the cytoskeleton by SVCV infection

Viruses use different elements of the cytoskeleton for
entry, replication, intracellular transport and budding [26].
Many studies have implicated microfilament, intermediate
filaments, and microtubules, as well as proteins that
regulate cytoskeleton functions, in the infectious cycles
of viruses [27,28]. Previous proteomic data revealed that
SVCV infection could regulate the cytoskeleton of EPC
cells. In our results, approximately 24 cytoskeleton- as-
sociated genes were down-regulated, including five
microfilament-associated gene (ACTAI, ACTA4, ACTB,
FLNA, and ARPCS5) and several microtubule-associated
genes (TUBA2, TUBA4, TUBAS, TUB4, and TUB6). These
microtubule-associated genes were down-regulated more
than 4 times. These genes are also associated with the
functional category of cell communication. Among all the
regulated genes, only one cytoskeleton-related gene
(integrin, alpha 11, ITGA1I) was up-regulated at 24 h
post-viral infection. In agreement with the gene ex-
pression profile, EPC cells changed to a round sharp
and lost the capacity to adhere at 24 h post-infection.
Previous studies have shown that influenza A virus
may interact with tubulin and induce disruption of the
microtubule network and apoptosis in A549 cells [29].
We speculated that SVCV can also induce cytoskeletal
disruption, which may be related to the release of
SVCV particles, as well as induce apoptosis of infected
cell, but this requires further study.

iv. Inhibition of the interferon system

The interferon (IFN) response is one of the most funda-
mental defence mechanisms against viral infection [30].
Viruses, which require cellular machinery for their repli-
cation, have evolved different strategies to counteract
the action of IFN, particularly by the alteration of IFN-
signaling and IFN-induced mediators that are required
for virulence [31]. Here, four IFN-signaling genes were
up-regulated and no IFN-stimulated genes (ISGs) were
regulated untill 24

h post infection with SVCV. However, we could find
many ISGs from the transcriptome of EPC cells, includ-
ing MX dynamin-like GTPase 1 (MXI). These up-
regulated genes include interferon regulatory factor 1
(IRFI), interferon regulatory factor 2 (IRF2), interferon
regulatory factor 7 (IRF7), and IFR2 binding protein 2-B
(IBP2B). The products of IRFI and IRF2, interferon regu-
latory factor 1 (IRF-1) and interferon regulatory factor 2
(IRF-2) are structurally similar but functionally distinct
transcription factors that bind to the positive regulatory
domains I and III (PRDI/III) within the human IFN-beta
promoter [32]. IRF-1 serves as an activator of interferon
alpha and beta transcription, while IRF-2 competitively
inhibits the IRF-1-mediated transcriptional activation of
interferon alpha and beta. Both of IRFI and IRF2 were also
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up-regulated more than 4 times. More interestingly,
IFR2 binding protein 2-B, which can interact with the
C-terminal transcriptional repression domain of IRF-2,
was up-regulated more than 4 times. The product of
IRF7, interferon regulatory factor 7 (IRF-7), has been
shown to play a role in the transcriptional activation of
virus-inducible cellular genes, including the type I
interferon genes [33]. IRF7 was also up-regulated sig-
nificantly at 24 h post SVCV infection. In summary, we
speculate that SVCV infection might induce the pro-
duction of IFN but block the function of IFN by inhi-
biting the production of ISGs through an unknown
mechanism.

Conclusions

In this study, we present the data from sequencing and
assembly of the transcriptome of EPC cells at pro-
gressive times after SVCV infection. A great number
of genes that were differentially expressed upon SVCV in-
fection were obtained and functionally annotated. Further,
the gene expression patterns for some of these genes were
verified by RT-qPCR. The data present here demonstrate
previously unrecognised changes in gene transcription
that are associated with SVCV infection in vitro, and
many potential cascades identified in the study clearly
warrant further experimental investigation. Our data also
provide new clues to the mechanism of viral susceptibility
in EPC cells.

Methods

Cells and virus stock

The EPC cell line (ATCC: CRL-2872) was maintained in
Eagle’s minimum essential medium (MEM, Invitrogen,
Carlsbad, CA) supplemented with 10% foetal calf serum
at 25°C. SVCV (ATCC: VR -1390), as originally isolated
by Fijan et al. [34], was kindly provided by Professor
Yuanan Lu (Department of Public Health Sciences, John
A. Burns School of Medicine, University of Hawaii at
Manoa). Virus multiplication and titration assays were
performed as described previously [6].

SVCV infection and sample collection

For viral infection assays, the SVCV stock was diluted
and then used to infect EPC cells at a multiplicity of
infection (MOI) of 1.0. Following 1 h of viral adsorption
at 25°C, the inoculum was removed, cells were washed
twice with PBS (pH7.2), and normal medium (MEM
containing 10% FBS) was added. Cells were cultivated at
25°C for the time points (0 h, 3h, 6 h, and 24 h) indicated
in the figure legends, and then further processed. At each
time point in the viral infection assay, three parallel sam-
ples were prepared as biological replicates.
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RNA extraction, mRNA purification, and cDNA synthesis
Total RNA was extracted from EPC cells at 0, 3, 6, and
24 h postinfection in three independent experiments,
using TRIzol reagent (Invitrogen, Carlsbad, CA) accord-
ing to the manufacturer’s protocol. The concentration of
total RNA was determined using NanoDrop (Thermo
Scientific, Waltham, MA), and the RNA integrity value
(RIN) was checked using the RNA 6000 Pico LabChip
on an Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA). For mRNA purification, total RNA was incubated
with 10 U DNase I (Ambion, Grand Island, NY) at 37°C
for 1 h, followed by a purification step using a MicroPoly
(A) Purist Kit (Ambion, Grand Island, NY) according to
the manufacturer’s instructions. Then, the purified mRNA
was dissolved in RNA storage solution, and the final
concentration was determined using NanoDrop. Double-
stranded cDNA was synthesised from mRNA according to
Ng’s full-length cDNA synthesis protocol with some mod-
ifications [35]. A Gsul-oligo dT primer was used for the
first-strand ¢cDNA synthesis with 10 mg of mRNA and
Superscript II reverse transcriptase (Invitrogen, Carlsbad,
CA). After incubation at 42°C for 1 h, the 5- CAP struc-
ture of mRNA was oxidised by NalO4 (Sigma, St. Louis,
MO) and ligated to biotin hydrazide, which was used to
select complete mRNA/cDNA heterodimers by binding to
Dynal M280 beads (Invitrogen, Carlsbad, CA). After the
second strand cDNA synthesis, the polyA and 5- adaptor
were removed by Gsul digestion.

c¢DNA sequencing

The cDNA was sonicated to the range of 300-500 bp
and purified using Ampure beads (Agencourt, USA).
The ¢cDNA libraries were prepared with a TruSeq™ DNA
sample Prep Kit — Set A and were PCR-amplified (15cycles)
using a TruSeq PE Cluster kit (Illumina); there were then
sequenced on a Genome Analyzer II (Illumina) according
to the manufacturer’s instructions.

Sequence assembly and annotation
Raw reads were first cleaned by removing adaptor se-
quences and low quality sequences (Q >20), and then
assembled into EST clusters (contigs) using Trinity with
the default assembly parameters (http://trinityrnaseq.
sourceforge.net/). The raw data from the Illumina reads
have been deposited into NCBI' s Sequence Read Archive
(SRA) under the accession numbers of SRX546183,
SRX546212, SRX546380, SRX547280, and SRX547883.
All contigs were annotated with GetORF from the
EMBOSS package (http://emboss.sourceforge.net/) [36].
The ORF of each predicted protein was used for BLASTp
searches, against the Swiss-Prot and the NCBI nr data-
bases, setting the e-value threshold to 107>, GO annota-
tions were also derived based on sequence similarity with
GoPipe (http://www.geneontology.org/) [37]. The COG
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and KEGG pathway annotations were performed using
Blastall software against the Cluster of Orthologous
Groups database and the Kyoto Encyclopaedia of Genes
and Genomes database (http://www.genome.jp/kegg/) [38].
In this study, we used the default parameters in each ap-
proach and no other custom approach was used.

Analysis of gene expression profiles by digital gene
expression tag profiling

To analyse genes that were differentially expressed at dif-
ferent stages of infection, the number of reads for each of
the contigs from the indicated samples was converted to
Reads per Kilobase per Million (RPKM) [39]. Then, the
MA-plot-based method with Random Sampling (MARS)
model in the DEGseq package (http://www.bioconductor.
org/packages/release/bioc/html/DEGseq.html) was used to
calculate the expression abundance of each contig among
the indicated samples [40]. We used an false discovery rate
(FDR) to determine the threshold of p value for this ana-
lysis. An FDR of 0.001 was considered to have significant
expression abundance. For the identification of the path-
ways that the differentially expressed genes (DEGs) are pre-
dicted to participate in, all DEGs were mapped to terms in
the KEGG database and searched for significantly enriched
KEGG terms compared to the genomic background.

Analysis of gene expression by real-time PCR

Eight genes were selected for the confirmation of DEG
data by real-time PCR, using the SYBR Premix Ex Taq
kit (Takara, Japan) according to the manufacturer’s in-
structions in a StepOne machine (Applied Biosystems,
Carlsbad, CA). Quantification was performed using the
comparative Ct method with separate reaction tubes for
chosen DEGs and reference (TATA box binding protein,
TBP) RNAs. Primers for qPCR were designed with Primer
Express software (version 3.0, ABI) based on the target
sequences. The primers used for qPCR of the selected
DEGs are listed in Additional file 2: Table S1. All reactions
were performed in a 10 pl volume (5 pl, 2 x SuperMix
Universal; 200 nM of each forward and reverse primer;
and 0.2 pl ROX reference Dye). A total of 40 cycles were
performed. All samples were analysed in triplicate and the
relative gene expression data were expressed as the
transcription units relative to those of the TBP gene
using the 2°°T method [41]. Three parallel experiments
were performed and one representative experiment of
three is shown.

Additional files

Additional file 1: Table S2. List of the differentially expressed genes
(DEGS) in EPC cells between SVCV infection at 24 h and 0 h.

Additional file 2: Table S1. Primers used for RT-gPCR verification of DEG
data. Table S3. List of the homologous genes involved in viral susceptibility
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that lacked detectable expression levels in the EPC transcriptome. Table S4.
List of the differentially expressed genes in SVCV-infected EPC cells which
were both identified by MALDI-TOF/TOF and mRNA-sequencing.
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