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Angiogenesis, the formation of new blood vessels from preexisting one, represents
a critical process for oxygen and nutrient supply to proliferating cells, therefore
promoting tumor growth and metastasis. The Vascular Endothelial Growth Factor
(VEGF) pathway is one of the key mediators of angiogenesis in cancer. Therefore,
several therapies including monoclonal antibodies or tyrosine kinase inhibitors target this
axis. Although preclinical studies demonstrated strong antitumor activity, clinical studies
were disappointing. Antiangiogenic drugs, used to treat metastatic patients suffering of
different types of cancers, prolonged survival to different extents but are not curative. In
this review, we focused on different mechanisms involved in resistance to antiangiogenic
therapies from early stage resistance involving mainly tumor cells to late stages related
to the adaptation of the microenvironment.
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INTRODUCTION

Angiogenesis is the formation of new blood vessels from pre-existing ones (Hanahan and Folkman,
1996). It is a crucial physiological process that occurs throughout the life time, from the embryo
to establish an adequate vasculature for growing and developing organs, to adults during wound
healing or ovarian cycle (Folkman and Shing, 1992; Wilting and Christ, 1996; Hazzard and Stouffer,
2000; Tonnesen et al., 2000). Angiogenesis is tightly regulated and disruption of any part of this
process induces various disorders, such as psoriasis, diabetic retinopathy, and cancer (Nishida
et al., 2006; Walsh, 2007; Crawford et al., 2009; Heidenreich et al., 2009). Angiogenesis involves
migration, proliferation and differentiation of endothelial cells (ECs). During the angiogenic
cascade, stable vessels undergovascular permeability and a basement membrane degradation by
the matrix-metalloproteases (MMPs) liberating extracellular matrix-sequestred growth factors. In
response to these growth factors, ECs proliferate and migrate to assemble as lumen-bearing cords
with branching structure (Figure 1; Bryan and D’Amore, 2007). Angiogenesis is a tightly balanced
mechanism regulated by both pro-angiogenic and anti-angiogenic factors. In tumors, this balance
shift toward pro-angiogenic factors sustaining angiogenesis.

One of the first relationships between angiogenesis and cancer was introduced 55 years ago
when Ehrmann and Knoth (1968); Greenblatt and Shubi (1968), P highlighted for the first time,
that tumors secrete substances targeting ECs that stimulate angiogenesis. Three years later, Judah
Folkman observed that the growth of solid tumors relies on this process (Folkman, 1971, 1972). The
newly formed vascular network supplies tumor with oxygen, nutrients and growth factors. Based
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FIGURE 1 | The physiological angiogenic cascade. Stable vessels (A) undergo a vascular permeability allowing extravasation of plasma proteins (B). MMPs degrate
the extracellular matrix liberating growth factors (C). ECs proliferate and migrate (D) and undergo morphogenesis and assemble as lumen-bearing cords (E).

on these observations, Folkman proposed that inhibiting
angiogenesis through ECs inhibition should constitute a
promising anti-cancer treatment, by preventing nutrients supply
and oxygen to tumors. This original concept stipulated that ECs
are normal cells incapable of genetic plasticity as compared to
tumor cells. Therefore, destruction of the blood vessel should
have lead to tumor cell asphyxia and thereafter complete tumor
regression. This concept was confirmed by the discovery of
several angiogenic factors, such as transforming growth factor-
α and β (TGF-α and TGF-β), angiopoietin, epidermal growth
factor (EGF), platelet-derived growth factor (PDGF) and vascular
endothelial growth factor (VEGF)A (Schreiber et al., 1986;
Ferrara and Henzel, 1989; Levéen et al., 1994; van Cruijsen et al.,
2005; van Meeteren et al., 2011; Fagiani and Christofori, 2013).

In 1989, the discovery of VEGFA, one of the most
important angiogenic factors, by independent teams was a real
breakthrough in understanding the mechanisms of angiogenesis
(Keck et al., 1989; Leung et al., 1989; Guyot and Pagès, 2015). Four
years later, the first monoclonal neutralizing antibody directed
against VEGFA was described by the team of N. Ferrara, the
winner of the Lasker Award few years laters for the use of
these antibodies in eye pathologies especially wet age-related
macular degeneration (Kim et al., 1993). This antibody inhibited
the growth of experimental models of rhabdomyosarcoma,
glioblastoma and colorectal and prostate cancers (Kim et al.,
1993; Asano et al., 1995; Warren et al., 1995; Borgström
et al., 1998). These promising anti-tumoral effects led to the
development of bevacizumab (Avastin R©), a humanized anti-
VEGFA monoclonal antibody (Presta et al., 1997). Bevacizumab
by specifically inhibiting the binding of VEGFA to its receptor
VEGFR2 present on ECs, blocks signaling pathways involved
in ECs proliferation and subsequently tumor angiogenesis

(Shih and Lindley, 2006). In 2004, bevacizumab was approved by
the Food and Drug Administration (FDA) as part of combination
therapy for metastatic colorectal cancers (Hurwitz et al., 2004).
Since 2008, bevacizumab was approved for the treatment of
non-small-cell lung, breast, kidney and ovarian cancers in
combination with standard chemotherapy (Sandler et al., 2006;
Harshman and Srinivas, 2010; Russo et al., 2017). The strong
competition in the field led to the development of alternative
strategies to inhibit angiogenesis. Since VEGF receptors possess
a tyrosine kinase domain, several companies developed small
ATP mimetics to inhibit the activity of tyrosine kinases receptors
involved in angiogenesis (Qin et al., 2019). Another strategy
was designed to inhibit the activity of mTOR, a kinase activated
in response to the stimulation of receptors (Faes et al.,
2017). The inhibitor molecules sorafenib (Nexavar R©), sunitinib
(Sutent R©), everolimus (Afinitor R©), temsirolimus (Torisel R©), have
for instance been extensively studied in several metastatic
cancers (Ebos and Kerbel, 2011; Motzer et al., 2013; Patel
et al., 2016; Faes et al., 2017). Sorafenib and sunitinib were the
first multikinase inhibitors to be approved, in the therapeutic
arsenal for metastatic renal cell carcinoma (RCC) and advanced
hepatocellular carcinoma management on the base of increased
progression free survival (PFS). However, the impact of these
treatment on overall survival (OS) was limited (Yang et al., 2003;
Sandler et al., 2006; Miller et al., 2007; Kerbel, 2008; Escudier
et al., 2010). Moreover, they induced detrimental side effects
such increased blood pressure and hand and foot syndrome
(Motzer et al., 2013).

Renal cell carcinoma became a paradigm for the development
of more efficient and less toxic agents. Hence, axitinib whose
affinity for targets equivalent to those of sunitinib was higher,
presented equivalent therapeutic effects with reduced toxicity
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(Motzer et al., 2013). New drugs were also developed for the
treatment of RCC including pazopanib (Votrient R©), vandetanib
(Caprelsa R©) or lenvatinib (Lenvima R©) (Llovet et al., 2008;
Escudier et al., 2014; Motzer et al., 2015; Rizzo and Porta, 2017).
Lenvatinib exploited the inhibition of Fibroblast Growth Factor
receptors that are key in endothelial cell proliferation.

Several tumor cells aberrantly expressed VEGFRs and
exhibit exacerbated genetic plasticity following anti-angiogenic
therapies that is highlighted by several mechanisms of
adaptation/resistance. The crosstalk between tumor and
stromal cells allows escape mechanisms counteracting the effects
of anti-angiogenic therapies.

The objective of this review is to present an overview of
the different resistance mechanisms to angiogenic therapies,
from the earliest to the late ones, including tumor and stromal
cells adaptation. The different mechanisms were divided into
“immediate early” resistance mainly reffering to adaptation of
tumor cells following exposure to the drug for few minutes/hours;
into “early” resistance reffering to days/weeks after treatment
exposure and into “late” one occuring several months/years
after the treatment and depending on metastasis (Figure 2).
Understanding the different spatiotemporal mechanisms leading
to such resistance is essential to propose innovative therapeutic
strategies for patients presenting innate or acquired resistances.

“IMMEDIATE-EARLY” RESISTANCE TO
ANTI-ANGIOGENIC

Redundant Angiogenic Pathways and
Hypoxia
Angiogenic redundancy is one of the earliest mechanisms
leading to refractoriness or acquired resistance to anti-angiogenic
therapies mainly targeting VEGFA and its receptors. Although
VEGFA is the best known angiostimulatory protein, angiogenesis
can be triggered by several growth factors including angiopoietins
(ANGs), epidermal growth factor (EGFs), fibroblast growth
factors (FGFs), hepatocyte growth factor (HGF), transforming
growth factors (TGFs), placental growth factor (PlGF) or stromal
cell-derived factor 1 (SDF1) (Xin et al., 2001; Bergers and
Hanahan, 2008; Pardali et al., 2010; Brooks et al., 2012; Fagiani
and Christofori, 2013). Except PlGF, which binds to VEGF
receptors, all these angiogenic factors signal through different
receptors expressed at the membrane of ECs (van Beijnum et al.,
2015). This diversity of growth factors extents the toolbox of
tumors to create blood vessels. Breast or pancreatic cancers
for example rely on these angiogenic factors rather than on
VEGFA and are poor responders to bevacizumab (Casanovas
et al., 2005). Moreover, preclinical and clinical studies showed
that anti-VEGFA antibodies and tyrosine-kinase inhibitors of
VEGF receptors stimulate the production of these different
growth factors (van Beijnum et al., 2015; Falcon et al., 2016;
Haibe et al., 2020).

Preclinical studies for instance demonstrated an increase of
SDF1 and PlGF in mice treated with anti-VEGFR2 compounds
(Ebos et al., 2007; Fischer et al., 2007). The prolonged use

of anti-VEGFR2 antibodies in transgenic mice models of
pancreatic cancer stimulated the expression of ANG1 and FGFs.
This increase correlated with a shorter survival (Casanovas
et al., 2005). Comparable results were reported in head and
neck squamous cell carcinoma (HNSCC) xenografts models.
Indeed, microarray analysis, showed increased levels of FGF2
and its receptor (FGFR3) in bevacizumab-resistant tumors
(Gyanchandani et al., 2013). These results were extended
to lung cancer models resistant to angiogenesis-inhibitors,
overexpressing EGFRs and FGFRs (Cascone et al., 2011). Clinical
studies conducted on bevacizumab-treated colorectal cancer
patients evidenced an increase of circulating PlGF, SDF1 and
HGF levels (Willett et al., 2005; Kopetz et al., 2010). Equivalent
results were obtained for glioblastoma patients treated with
cediranib/Recentin R©, a tyrosine kinase inhibitor of the VEGFR1,
VEGFR2 and VEGFR3 (Batchelor et al., 2007, 2010). FGF and
SDF1 increased expression was correlated with tumor relapse in
cediranib-treated glioblastoma patients.

Angiopoietin-2
Angiopoietins belong to a family of protein controlling vascular
maturation during developmental and pathophysiological
angiogenesis (Stratmann et al., 1998; Jeansson et al., 2011;
Thurston and Daly, 2012). The predominant angiopoietins are
ANG1 and ANG2. ANG1 mediates migration and survival of
endothelial cells through binding to Tie2 receptor found on ECs
of blood vessels and monocytes, whereas ANG2 promotes cell
death and vascular regression (Hanahan, 1997; Maisonpierre
et al., 1997). VEGFA and ANG2 promote neovascularization
and ANG2 plays a key role in tumor relapse following anti-
VEGFA treatment (Asahara et al., 1998). In preclinical models of
anti-VEGFR-treated tumors, upregulation of ANG2 stimulates
vascular remodeling and sprouting (Crawford and Ferrara, 2009).
This observation was supported by clinical studies showing that
patients suffering of colorectal cancers who are poor responders
to bevacizumab, exhibit high serum levels of ANG2 (Ogawa
et al., 2004; Goede et al., 2010). Equivalent results were obtained
for melanoma and breast cancer patients treated with anti-
angiogenic therapies. Increased serum level of ANG2 correlated
with disease progression (Sfiligoi et al., 2003; Helfrich et al.,
2009). Preclinical studies recently showed that simultaneous
blockade of VEGFA and ANG2 inhibits angiogenesis and tumor
growth (Brown et al., 2010; Kienast et al., 2013; Schmittnaegel
et al., 2017; Wolf and Langmann, 2019). Clinical trials using
such combination are ongoing for the treatment of metastatic
colorectal cancers (NCT01688206, NCT02141295). Recently,
the vanucizumab, a bispecific anti-ANG2/anti-VEGFA antibody
has been evaluated in a phase I study. Vanucizumab displayed
acceptable safety profile and encouraging anti-tumor activity
(Hidalgo et al., 2018).

Fibroblast-Growth Factors
Fibroblast-growth factors belongs to a family of 22 cell-
signaling proteins involved in a broad variety of processes.
FGF binds to tyrosine kinase receptors (FGFRs), expressed on
tumor and stromal cells including endothelial cells, cancer-
associated-fibroblasts or myeloid cells infiltrating tumors
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FIGURE 2 | The adaptation to anti-angiogenic therapies; a clock ticking mechanism. Immediate-early resistance occuring within minutes to few hours following
anti-angiogenic treatment involved angiogenic redundancy, glycosylation of VEGFR2, metabolic adaptation and sequestration of drugs in lysosomes inducing
incomplete autophagy. Early resistance occurs during the following days after treatment and involved BMDCs, stromal cells recruitment into the tumor mass and
ECs. The heterogeneity of ECs mediates resistance. Finally, within months following therapy, tumors adopt neovascularization strategies and increased
lymphangiogenesis triggering metastasis and poor outcome in patients.

(Beenken and Mohammadi, 2009; Ornitz and Itoh, 2015). The
FGF pathway promotes cancer progression and angiogenesis
by activating RAS/RAF/MEK//ERK and PI3K/AKT/mTOR
pathways (LaVallee et al., 1998; Hart et al., 2000). FGFs
and FGFRs up-regulation, are involved in mechanisms of
resistance to anti-VEGFA therapy (Casanovas et al., 2005;
Kopetz et al., 2010). VEGFR2 inhibitors induce FGF2 expression
and accelerate the growth murine pancreatic neuroendocrine
tumors (Casanovas et al., 2005). Clinical studies on glioblastoma
furthers confirmed this observation (Batchelor et al., 2007;
Lee et al., 2019).

The proangiogenic role of FGF and its involvement in
resistance to VEGFA inhibitors constitute a strong rationale
for the development of inhibitors targeting the FGF and
VEGFA pathways. The combined inhibition of FGF2 and
VEGFA was highly efficient in preclinical models of head and
neck carcinoma or pancreatic tumors (Casanovas et al., 2005;

Gyanchandani et al., 2013). FGFR inhibitors notably restore
the sensibility to bevacizumab in experimental models
in mice suggesting a promising therapeutic combination
(Gyanchandani et al., 2013). However, clinical investigations
failed to demonstrate the relevance of this association (Norden
et al., 2015; Semrad et al., 2017). Lenvatinib, a multiple receptor
tyrosine kinase inhibiting the VEGFRs, FGFRs, and PDGFRs
has shown promising therapeutic effects against various solid
tumors and should be considered for counteracting resistance to
anti-angiogenic agents (Suyama and Iwase, 2018).

Plateled-Derived-Growth Factor
In the 1970’s several groups demonstrated the existence of
growth factors for fibroblasts and smooth muscle cells derived
from platelets (Paul et al., 1971; Bowen-Pope and Ross,
1982). These factors were named platelet-derived-growth factors
(PDGF) and were one of the first growth factors to be
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characterized. By binding to their receptors PDGFRs, PDGFs
are major mitogens for many cell types and actively participate
in angiogenesis (Papadopoulos and Lennartsson, 2018). In
cancer, PDGFs exert autocrine loops that stimulate tumor cell
proliferation, and paracrine signaling for angiogenesis (Liu et al.,
2011; Manzat Saplacan et al., 2017). Upregulation of PDGF
was evidenced in glioblastoma patients following anti-angiogenic
therapy (Liu T. et al., 2018). The blockade of PDGFR pathway
increases the sensibility to VEGFA-neutralizing treatment, giving
the rationale for new therapeutic opportunities. However,
imatinib, a PDGFR inhibitor, in combination with bevacizumab,
failed to demonstrate efficacy in renal cell carcinoma (RCC)
patients (Hainsworth et al., 2007; Rock et al., 2007). Despite an
increase of PFS, the VEGFRs and PDGFR inhibitor sunitinib is
not curative for RCC patients (Motzer et al., 2009).

Based on the redundancy in angiogenic pathways, limited
benefits to patients were observed by targeting a single angiogenic
growth factor or its receptor. This redundancy is at the origin
of innate or acquired resistance, by activation of alternative
proliferation/survival pathways. Inhibition of ANG2-, FGF-
or PlGF-mediated signaling pathways with those of VEGFA
overcomes aspects of resistance to VEGFA blockade, but a
sustained inhibition remains to be demonstrated.

Transforming Growth Factor-β
The Transforming Growth factor-β (TGF-β) family regulates
cell proliferation, differentiation and apoptosis (Massagué, 2000).
In tumors, the role of TGF-β is ambivalent with tumor
suppressive effects in early stage, thereafter switching toward
tumor progression at later stages (Derynck et al., 2001). TGF-
β induces the production of extracellular matrix and stimulates
tube formation by ECs therefore inducing angiogenesis (Ferrari
et al., 2009). Upregulation of TGF-β expression was reported
in mice models of glioma resistant to anti-VEGF therapy
(Park et al., 2016). Inhibition of TGF-β in hepatocellular
carcinoma (HCC) and glioblastoma revealed anti-angiogenic
benefit offering the rational to combine anti-TGF-β agents with
anti-VEGF (Fransvea et al., 2009; Comunanza and Bussolino,
2017). The combination of galunisertib, a small inhibitor of
TGF-β with sorafinib led to durable response in mice models of
breast cancer (Holmgaard et al., 2018). TGF-β is also a major
inducer of cancer associated fibroblast (CAF) development and
fibrosis that are determinant in tumor aggressiveness. Targeting
two hallmarks of cancer with one molecule probably explain the
therapeutic response.

Combining anti-VEGF/VEGFR therapies to inhibitors of
alternative angiogenic pathways appears relevant. However, the
toxicity of such approach is an important issue. Treatment
targeting concomitantly VEGFR and receptors involved in
relapse is another option. One of the best example was the
approval of cabozantinib (Cabometyx R©) an inhibitor of VEGFR
but also of cMET and AXL to actors involved in relapses after
sunitinib treatment. Cabozantinib was approved as a second
line treatment for RCC patient experiencing progression on
sunitinib (Choueiri et al., 2016). It showed also a better efficacy
as compared to sunitinib for RCC patients with poor or
intermediate risk (Choueiri et al., 2017).

Hypoxia, a Key Mediator of Angiogenic
Redundancy
Hypoxia arises from the combination of high proliferative
and metabolic rates with abberant tumor vascularisation with
poor oxygen delivery (Semenza, 2014). Beside redundant
pro-angiogenic pathways, tumor hypoxia is considered as
an “immediate early” response to anti-angiogenic therapy.
Although anti-angiogenic therapies reduce and normalize tumor
vasculature, limiting tumor hypoxia, alternative theory defends
an increased intra-tumor hypoxia (Kerbel and Folkman, 2002;
Jain, 2005). Hypoxia plays an important role in resistance to
conventional therapies leading to the selection of more aggressive
stem cells and a shorter survival (Harris, 2002; Wilson and
Hay, 2011; Chen et al., 2018). Indeed, anti-angiogenic agents
induce intra-tumoral hypoxia and a concomitant stabilization
of the hypoxia-inducible factors 1 and 2 alpha (HIF1/2α).
HIF1 is considered as a tumor suppressor whereas HIF2 is
considered as an oncogene. HIF1α is a major transcriptional
regulator of angiogenic factors. It transactivates hundreds of
pro-angiogenic genes, including growth factors (VEGFA, PlFG,
FGF-2, PDGF) and their receptors (VEGFRs) (Hirota and
Semenza, 2006; Rapisarda and Melillo, 2009). Moreover, HIF1
inhibits the production of anti-angiogenic factors, exacerbating
angiogenesis (Hanahan and Folkman, 1996; Laderoute et al.,
2000). Hence, HIF1 exerts also potent transcriptional inhibition
especially following a long exposure in hypoxic conditions
(Hantelys et al., 2019).

Hypoxia and HIF1 activation also trigger EMT and metastasis
by regulating the expression of key genes such as c-MET, CXCR4,
and lysyl oxidase (LOX), events occurring later as discussed above
(Joseph et al., 2018). Moreover, the hypoxic microenvironment
generated following anti-angiogenic therapy stimulates β1-
integrin expression, a well-known marker of resistance to cancer
treatments (Foubert and Varner, 2012) which is consistent with
its upregulation in clinical specimens of bevacizumab-resistant
glioblastoma (Cordes and Park, 2007). Preclinical studies in mice
models of glioblastoma demonstrated also the implication of
β1-integrin in resistance to angiogenic therapies (Sidorov et al.,
2016). The tumor microenvironment is hypoxic and the active
metabolism of tumor cells induces the release of CO2 and lactate
(Parks et al., 2013). The effect of hypoxia on tumor metabolism is
detailled in the tumor metabolic adaptation part below.

The important role played by HIF in tumor aggressiveness
stimulated the development of HIF inhibitors especially HIF2
that has oncogenic properties. Such treatments dissociate the
HIF2α HIF1β dimer and consequently inhibit the transcriptional
activation of HIF2. This treatment was successfully used in
a multi-treated RCC patients (Chen W. et al., 2016). Hence,
this treatment combined with classical anti-angiogenic drugs or
immunotherapies (see below) is promising and should be further
validated (Martínez-Sáez et al., 2017).

Autophagy and Lysosomal Sequestration
Autophagy is a physiological process involving the sequestration
of unnecessary or dysfunctional cell components and their
degradation in lysosomes (Mizushima, 2007; Janku et al., 2011;
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David, 2012). In pathophysiological conditions, autophagy is an
adaptative response to stress. In cancer, autophagy acts as a
double-edged sword by serving as a pro-survival or pro-death
process (Mathew et al., 2007). Autophagy plays an important
role in enabling tumor cells to overcome harsh conditions arising
from the microenvironment following treatment (Chandra
et al., 2019). By enhancing the survival of tumor cells, it
is indeed now considered as an important mechanism of
resistance to cancer drugs (Li et al., 2017; Desantis et al.,
2018). Hypoxia-induced autophagy favor the survival of hypoxic
tumor cells (Brahimi-Horn et al., 2011). Two mechanisms drive
hypoxia-dependent autophagy; the non-selective and the selective
autophagy extensively reviewed (Chandra et al., 2019).

A cytoprotective role of autophagy was supported by several
preclinical studies using radiation or imatinib as anti-cancer
strategies (Miyazawa et al., 2010; Gewirtz, 2014). Resistance to
sorafenib in hepatocellular carcinoma was attributed to increased
activation of mTOR or Akt pathway triggering autophagy and
cell survival (Zhai et al., 2014; Luan et al., 2019). The pro-
tumoral role of autophagic processes in mediating resistance to
anti-cancer treatments in HCC was highlighted by combining
sorafenib to autophagy inhibitors (Shimizu et al., 2012; Lin et al.,
2013; Hwang et al., 2015). These preclinical studies gave the
proof of concept to initiate clinical trials combining inhibitors of
autophagy to sorafenib.

In addition to tumor cells, stromal cells use autophagy as
a mechanism of resistance to anti-angiogenic drugs. ECs, the
direct targets on anti-angiogenic therapies, are inevitably exposed
to drugs via the blood stream. Hence, resistance to sunitinib
depends at least, on autophagy processes in ECs (Wu et al.,
2020). Sunitinib-resistant RCC display an increased number
of lysosomes allowing an enhanced sequestration of the drug
which limits its therapeutic activity by isolating the drug from
its cytoplasmic targets (Giuliano et al., 2015). The basic pKa
of sunitinib induces its lysosomal sequestration., It prevents its
accessibility to the tyrosine kinase domains of the receptors
targeted by the drug (VEGFR1, 2, 3, PDGFR, CSF1R and cKIT),
limiting the efficacy of the treatment.

Tumor Metabolic Adaptation
The updated “Hallmarks of cancer: The Next Generation”
includes the deregulation of cellular energetics as a key actor
of tumor progression (Hanahan and Weinberg, 2011). Over
the last decades, tumor hypoxia, by shaping cell metabolism
was demonstrated as a key actor of tumor adaptation to anti-
angiogenic therapies. Tumor cell metabolism and angiogenesis
are tightly regulated by hypoxia (Semenza, 2014). Several
genes involved in glycolysis are under HIF1 control, such as
GLUT1, GLUT3, PDK1 or LDHA (Favaro et al., 2011). The
more hypoxic the cell, the more glycolysis is used, leading to
pyruvate production. Instead of entering the tricarboxylic acid
cycle, most of pyruvate is converted to lactate. This excess of
lactate diffuses in the extracellular environment and is picked
up by oxygenated cells, that revert the lactate to pyruvate
and enhance their oxidative phosphorylation (Cassim et al.,
2020; Parks et al., 2020). Consequently, their need for glucose
decreased, and more glucose is available for the more hypoxic

area of tumors (Nakajima and Van Houten, 2013). Following
sunitinib treatment, the establishment of this symbiotic loop
allows the proliferation of the remaining viable cells despite the
dramatic increase of hypoxia following angiogenesis inhibition
(Pisarsky et al., 2016).

In addition to low oxygen, increased acidification is also a
hallmark of hypoxic tumors. It plays a key role in resistance to
anti-cancer therapy (Erra Díaz et al., 2018). While mammalian
cells protect their cytosol from acidification through expression
of membrane transporters and exchangers such as the Na+/H+
exchanger (L’Allemain et al., 1985) and the monocarboxylate
transporter 1 (Halestrap and Price, 1999), hypoxic tumors
have developed additional mechanisms to regulate their pH.
In solid tumors, the transcription of carbonic anhydrase (CA)
IX is controled by HIF1. CAIX catalyzes the hydration of
carbon dioxide (CO2) into H+ and bicarbonate (HCO3−)
which is rapidly uptaken into cell by Na+-HCO3− transporters
sustaining alkaline pHi compatible with cell survival (Parks
et al., 2013). In bevacizumab-resistant glioblastomas, increased
levels of CAIX and of c-MET were observed (Jahangiri et al.,
2013). Analysis of bevacizumab-resistant glioblastoma further
revealed modifications in the expression of genes regulating cell
metabolism, with (i) an increase of glycolysis-involved genes
and (ii) a decrease of genes regulating oxidative phosphorylation
(Kumar et al., 2013). Soluble CAIX is also correlated with a poor
response to bevacizumab in breast cancers (Janning et al., 2019).
Moreover, hypoxia leads to AMPK activation, inducing the
metabolic switch from glycolysis to oxidative phosphorylation
(McIntyre and Harris, 2015). Following anti-angiogenic therapy,
tumor metabolism shifts from glycolysis to lipid consumption
allowing tumor relapse (Sounni et al., 2014). Several clinical
trials combining metabolism-targeting or hypoxia-targeting
drugs with anti-angiogenics are ongoing (McIntyre and
Harris, 2015). Recently, exciting novel concepts involving
dual blockade of angiogenesis and metabolic adaptation have
emerged and could revert the resistance to anti-angiogenic drugs
(Jiménez-Valerio and Casanovas, 2017).

Recent findings demonstrated that metabolic reprogramming
also occurs in TECs. TECs display upregulation of anabolic
pathways in comparison to normal ECs. Unbiased meta-analysis
revealed that Aldh18a1 and Sqle were consistently induced in
TECs raising the possibility to identify specific targetable TECs
markers (Rohlenova et al., 2020).

Glycosylation–Mediated Resistance
Activation of angiogenic receptors also occurs independently
of ligand binding, therefore constituting another mechanism
of insensitivity to cancer therapies. This process depends in
part on galectins. They belong to a family of carbohydrate-
binding proteins displaying high affinity for beta-galactoside
(Camby et al., 2006). Galectin-1 is overexpressed in tumors
and its expression correlated with metastatic dissemination and
immune-escape (Hsu et al., 2013). Tumors refractory to anti-
VEGFA treatments exhibit enhanced angiogenesis. Anti-VEGFA
treatment and hypoxia increased galectin-1 production. Galectin-
1 binds to N-glycans glycoproteins on endothelial cells, including
VEGFR2. This binding prolongs the presence of VEGFR2 at the
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cell surface and promotes angiogenesis without VEGFA binding
(Croci et al., 2014; Stanley, 2014). Further clinical investigations
are needed to consider galectins as relevant targets for anti-
angiogenic therapies.

Matrix Metalloproteinases
Matrix metalloproteinases (MMPs) play a key role in
angiogenesis and in tumor progression (Deryugina and
Quigley, 2010). MMPs can be pro- or anti-angiogenic depending
of their categories. On the one hand, MMP-3 and MMP-7 display
anti-angiogenic properties (Deryugina and Quigley, 2010). On
the other hand, MMP-2 and MMP-9 promote the release of
VEGFA from the ECM sustaining angiogenesis (Bergers et al.,
2000). MMP-1 induces matrix remodeling and migration of
ECs (Chun et al., 2004). Hence, it is now established that MMP
inhibitors can induce tumor progression by favoring tumor
angiogenesis. Therefore, MMP inhibitors combined to inhibitors
of angiogenesis should be considered as a therapeutic option
(Winer et al., 2018).

Tumor Stroma
Tumors are a complex association of cancer cells as well as a
stromal compartment with cellular and noncellular components.
Tumor stroma plays crucial roles in tumor progression and
in resistance to treatments. The dense tumor stroma can
limit the access of therapeutic agents to their target due to
fibrosis, high interstitial pressure and degradation of drugs by
stromal enzymes (Valkenburg et al., 2018). The rigid extracellular
matrix can reduce blood vessel density, creating a barrier that
drugs cannot perfuse (Olive et al., 2009). In parallell, the high
interstitial pressure in tumor microenvironment affects drug
delivery (Provenzano and Hingorani, 2013). Beside these effects,
the cytochrome P450, expressed by fibroblasts, metabolizes toxic
molecules including therapeutic drugs contributing to agressive
behaviors of tumors (Hirth et al., 2000). In mice models of lung
cancer, treatment with bevacizumab led to acquired resistance
via upregulation of VEGFA, FGF2 and its receptor FGFR2
and PDGFR in stromal cells (Mitsuhashi et al., 2015). It now
becomes evident that cancer therapies should include strategies
to target and constrain the tumor stroma. Some agents targeting
CXCR4, TGF-β or hyaluronic acid are currently under clinical
consideration (Valkenburg et al., 2018).

EARLY RESISTANCE TO
ANTI-ANGIOGENIC THERAPIES

Recruitment of Local Stromal Cells
Cells constituting the tumor environment play a key role in the
resistance to angiogenesis inhibitors, especially cancer-associated
fibroblasts (CAFs) and pericytes.

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts are the principal component of
the stroma within the tumor microenvironment. They exhibit
diverse functions including matrix remodeling, crosstalk with
tumor, endothelial or immune cells, promoting tumorigenesis.

CAFs notably allow the recruitment of endothelial progenitors
cells (EPCs) and bone-marrow-derived cells (BMDCs) through
SDF1 expression and stimulation of its receptor CXCR4 on EPCs
(Orimo et al., 2005). The role of EPCs and BMDCs are discussed
in the next part. CAFs also promotes angiogenesis through the
expression of galectin-1, VEGFA, FGF, HGF or PDGF (Tang
et al., 2016; Wang et al., 2019). In tumor cells deficient for
VEGFA, CAFs produce VEGFA to sustain angiogenic processes
(Dong et al., 2004). CAFs isolated from anti-VEGFA resistant
tumors, exhibit high levels of ANG2, and PDGF promoting
tumor growth (Crawford and Ferrara, 2009). The pro-angiogenic
and pro-invasive role of CAFs in resistance to antiangiogenic
drugs can also arise from metalloproteinases (MMPs) production
(Sternlicht et al., 1999; Boire et al., 2005).

Blocking the pro-angiogenic role of CAFs with an anti-
FGF-2 125I-radiolabeled antibody resulted in the inhibition of
HCC tumor growth and decreased angiogenesis (Wang et al.,
2012; Hu et al., 2016). Lenvatinib (Lenvima R©), which inhibits
VEGFRs has a potent anti-angiogenic effect and inhibits also
FGF receptors involved in anti-angiogenic resistance. It is now
used in the therapeutic arsenal against kidney tumors (Motzer
et al., 2016). Brivanib from Bristol Myers Squibb, an anti-VEGFR
and FGFR, increased the PFS of 43 patients with recurrent
endometrial cancers in a phase II clinical trial (Powell et al., 2014;
Hosaka et al., 2018).

Pericytes
Blood vessels are composed of two interacting cell types: the
ECs, forming the inner face of vessels, and perivascular cells,
called pericytes. Pericytes are peri-endothelial cells that directly
interact with ECs, regulating vessel diameter, permeability and
therefore the blood flow (Bergers and Song, 2005). Recruitment
of pericytes by ECs relies, at least, on the PDGF-PDGFR
signaling (Abramsson et al., 2003). Pericytes negatively regulate
the proliferation of ECs promoting maturation of neo-vessels
(Orlidge and D’Amore, 1987). In preclinical models of glioma
or RCC, an increased tumor blood vessel coverage by pericytes
following sunitinib or bevacizumab treatments was observed
(Norden et al., 2009; Cao et al., 2013; Pinto et al., 2016).
Residual tumor vessels, in a preclinical model of colorectal
cancer, were heavily covered by pericytes following treatment
with Anti-ANG2 antibodies (Thomas et al., 2013). Moreover,
the number of vessels covered by pericytes following sunitinib
was correlated to aggressiveness of RCC (Cao et al., 2013).
Pericyte coverage enhances tumor resistance to these therapies
through limited ECs proliferation and through the availability
of survival signals (Orlidge and D’Amore, 1987). These different
mechanisms highlight the role of pericytes in the resistance to
anti-angiogenic treatments observed in the clinic. Therefore,
inhibiting blood vessels maturation by targeting blood vessel
coverage by pericytes is a relevant strategy to overcome the
resistance to anti-angiogenic therapies. Inhibition of PDGFR by
imatinib and sunitinib in combination with anti-VEGFR showed
anti-tumor effects on experimental tumors in mice (Pietras
and Hanahan, 2005). FGF2/FGFR2 signaling and PDGF/PDGFR
signaling crosstalk to enhance pericyte proliferation and
recruitment (Hosaka et al., 2018). PDGF stimulates the
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pericytes-fibroblast transition, which contributes to metastatic
processes (Hosaka et al., 2016). Therefore, inhibition of PDGF-
mediated recruitment of pericytes showed potent anti-tumor
effects (Thijssen et al., 2018). Hence, disrupting pericytes
support, by using an anti-PDGFR and destabilizing pre-
existing tumor vasculature with an anti-VEGFR, is an attractive
strategy to overcome tumor refractoriness to conventional anti-
angiogenic therapies.

Recruitment of Bone-Marrow
Derived-Cells (BMDCS)
Anti-angiogenic therapies normalize vessels but also increase
intra-tumoral hypoxia leading to the recruitment of bone
marrow-derived cells (BMDCs) (Jain and Duda, 2003).
Infiltration of BMDCs in tumors has been linked to tumor
progression and angiogenesis for several years (Jain and
Duda, 2003). As above-mentioned, anti-angiogenic therapies
stimulate the production of pro-angiogenic factors (VEGFA,
Angiopoietins, FGFs). However, the stress induced by the
treatment stimulates inflammatory pathways involved in the
production of cytokines such as SDF1, IL-8 or granulocyte
colony-stimulating factor (G-CSF). These cytokines trigger
the recruitment of BMDCs that exhibit high plasticity and
pro-angiogenic potential limiting the efficacy of anti-angiogenic
drugs (van Beijnum et al., 2015).

CD11b+ Gr1+ Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs), also known as
CD11b+ Gr1+ cells are composed of a mixed population
including neutrophils, macrophages and dendritic cells
displaying immunosuppressive and pro-tumorigenic capacities
(Yang et al., 2004; Marigo et al., 2008; Crawford and Ferrara,
2009). Preclinical and clinical studies evidenced an increased
number of MDSCs in cancers, promoting tumorigenesis and
angiogenesis (Yang et al., 2004; Serafini et al., 2006; Diaz-
Montero et al., 2009). The infiltration of tumors by MDSCs
is therefore correlated with a poor outcome in patients. It
participates in mechanisms of resistance to anti-angiogenic
therapies (Shojaei and Ferrara, 2008). Indeed, tumors resistant
to anti-VEGFA-treatments presented increased infiltration
of MDSCs in comparison to anti-VEGFA sensitive tumors
(Shojaei et al., 2007a). The presence of tumor infiltrating
Th-17 cells induces the expression of G-CSF by CAFs and
increased production of IL-6 and SDF1 by CAFs and tumor
cells, allow the recruitment of MDSCs (Shojaei and Ferrara,
2008; Shojaei et al., 2009). Upregulation of G-CSF by resistant
tumors triggers prokinectin-2 (Bv8) overexpression in the
bone marrow (BM). Bv8 induces the migration of progenitor
cells from the BM to the tumor. Anti-Bv8 antibodies reduce
MDSCs recruitment and inhibit tumor growth and angiogenesis,
suggesting a role of Bv8 in relapses following anti-VEGFA
treatment (Shojaei et al., 2007a,b). Moreover, hypoxia induces
resistance to sunitinib in glioblastoma, breast and metastatic
RCC by increasing the recruitment of MDSCs to the tumor
niche (Finke et al., 2011; Piao et al., 2012). In agreement with
these observations, depletion of MDSCs sensitized tumors to

anti-angiogenic therapies, highlighting their pivotal role in
resistance (Holmgaard et al., 2016).

Among the MDSCs population, increased tumor-infiltration
by neutrophils promote resistance to bevacizumab. Neutrophils
induce Bv8-dependent tumor angiogenesis independently from
the VEGFA signaling. Preclinical studies demonstrated that
blockade of Bv8 decreases the recruitment of MDSC and
angiogenesis (Shojaei et al., 2007b; Piao et al., 2012).

Macrophages, specialized phagocytic cells, also display
plasticity and shape their phenotype in response to
environmental conditions, making them a relevant candidate
for treatment resistance (Ruffell and Coussens, 2015; Sarode
et al., 2020). The first relationship between macrophages
and angiogenesis was proposed in Knighton et al. (1983).
Depending on their localization and on their polarization
profiles, macrophages are pro- or anti-tumoral actors (Cheng
et al., 2019). Recruitment of macrophages in tumors is induced
by several cytokines including VEGFA or M-CSF. Macrophages
secrete growth factors such as VEGFA or EGF triggering
angiogenesis (van Beijnum et al., 2015). They also secrete matrix
metalloproteases, and physically associate with ECs, promoting
angiogenesis. In several preclinical studies, anti-VEGFA
therapies reduced macrophage infiltration (Salnikov et al., 2006;
Dineen et al., 2008). Nevertheless, specific macrophages with
immunoglobin-like and EGF-like domains, the Tie-2-expressing
macrophages (TEM), are recruited in hypoxic zones and by
ANG2 (Murdoch et al., 2007). TEM also promote angiogenesis
and tumor progression in hypoxic environment, through
upregulation of HIF1α (De Palma and Naldini, 2011). Therefore,
macrophages contribute to anti-angiogenic resistance. Although
ANG2 inhibitors do not prevent the recruitment of TEM, they
decrease their activity, illustrated by a downregulation of growth
factors production and a decrease of their physical association
with blood vessels (Mazzieri et al., 2011).

These results suggest that BMDCs are therapeutic targets for
counteracting tumor refractoriness to anti-angiogenic therapies.
Inhibition of the SDF1 pathway notably prevents BMDCs
tumor infiltration and overcomes such resistance (Liu et al.,
2010). Equivalent results were obtained with anti-Bv8 antibodies
(Hasnis et al., 2014). Clinical studies recently demonstrated
that plasma TEM are predictive markers of anti-angiogenic
treatment failure in colorectal and ovarian cancers (Jayson et al.,
2018). However, clinical investigations consisting in preventing
tumor-infiltration of TEM are needed to further consider this
therapeutic perspective.

Endothelial Progenitors Cells
The discovery of endothelial progenitor cells (EPCs) in adults
and their putative vascular-promoting properties has generated
debate in the field of vascular biology (Pasquier and Dias, 2010).
EPCs were first isolated in 1997 by Asahara et al. (1997) EPCs
are subtypes of stem cells that originate from the bone marrow.
A controversy concerning their origin, their isolation and their
functioning still exists. EPCs have high proliferative potential,
capable of differentiation into mature ECs, therefore contributing
to neovascularization and angiogenesis (Asahara et al., 1997;
Reale et al., 2016). Several surface markers (CD133, CD34,
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and VEGFR2) characterize bone marrow derived-EPCs. They
acquired CD31 and CD146 expression during their transport
to the blood. They become mature ECs in the target tissues
where they expressed VEGFR2, CD31, CD136, VE-cadherin,
eNOS and von Willebrand factor (Puente et al., 2013). EPCs
have a dual role in promoting angiogenesis into the tumor tissue;
they regulate the angiogenic process through the production
of growth factors and provide structural function in sprouting
nascent vessels (Puente et al., 2013). The main chemo-attractants
for EPCs in tumor tissue are VEGFA and SDF1, released by
ECs, cancer cells and CAFs (Orimo et al., 2005; Grunewald
et al., 2006). When recruited, EPCs promote angiogenesis by
differentiating in ECs and by incorporating newly formed blood
vessels (Puente et al., 2013). Anti-angiogenics, through hypoxia
and HIF1α activation lead to the production of VEGFA and
SDF1 by tumor cells triggering mobilization and recruitment
of EPCs (Ceradini et al., 2004). Activated EPCs secrete pro-
angiogenic factors leading to limited effects of anti-angiogenic
therapies. Although the precise mechanism of EPCs-induced
neovascularization remains poorly understood, recent studies in
non-small-cell lung carcinoma (NSCLC) demonstrated a key role
of histone deacetylase 7 (HDAC7) in the regulation of angiogenic
genes (Wei et al., 2018). Nevertheless, the therapeutic implication
of EPCs still remains to be elucitated.

Heterogeneity of Tumor Endothelial Cells
Heterogeneity of tumor endothelial cells (TECs) contributes
to resistance to anti-angiogenic therapy (Maishi et al., 2019).
TECs cover the inner surfaces of tumor blood vessels and
are consequently directly exposed to anti-angiogenic drugs.
TECs differ in several points from normal ECs. They display
cytogenetic abnormalities, upregulation of pro-angiogenic factors
and expression of stemness genes leading to drug resistance
(Hida et al., 2004; Maishi et al., 2019). TECs express high levels
of VEGFR1, VEGFR2, VEGFR3, and Tie-2 leading to strong
responses to their respective angiogenic ligands (Alessandri
et al., 1999; Bussolati et al., 2003). Moreover, TECs produce
nonconventional growth factors such as biglycan, LOX and
pentraxin, sustaining angiogenesis processes (Maishi et al., 2019).
These observations led to the development of LOX inhibitors.
Inhibition of LOX and biglycan reduces tumor metastasis
suggesting the relevance of LOX targeting (Yamamoto et al., 2012;
Osawa et al., 2013).

The hypoxic tumor microenvironment stimulates the
expression of stemness genes in TECs, such as stem cell antigen
1 (Sca-1), MDR-1 and aldehyde lactate deshydrogenase (ALDH),
leading to resistance to paclitaxel and to fluorouracil (5-FU)
(Xiong et al., 2009). The vascular stem cells, that constitute a
minor population in tumors, were suggested to contribute to
tumor resistance to conventional chemotherapy and to anti-
angiogenic treatments. Indeed, TECs derived from HCC are also
more resistant to sorafenib, in comparison to human umbilical
vein endothelial cells (HuVECs) (Xiong et al., 2009).

Transforming growth factors can originate from
dedifferentiation of tumor cells, monocytes or from EPCs
contributing to high heterogeneity and to resistance to anti-
angiogenic treatments. Although cancer cells acquired drug

resistance is well documented, the heterogeneity of TECs must be
considered as a major actor. Recent single cell RNA-sequencing
studies revealed endothelial cell heterogeneity following anti-
VEGF therapy (Zhao et al., 2018). TECs can be classified
into tip-like, transition and stalk-like cells. The sequencing of
56,771 endothelial cells from human/mouse (peri)-tumoral lung
cells revealed different phenotypes following anti-angiogenic
treatment. Tip-like signatures correlated with patient survival
and tip-like TECs were most sensitive to anti-VEGF therapies
(Goveia et al., 2020).

Among TECs-targeting therapies, inhibitors of CXCR4 were
scrutinized since TECs are CXCR4-enriched populations is
associated with a poor outcome in HCC. Inhibition of CXCR4
induces promising anti-tumor response mainly by preventing
recruitment of BMDCs in the tumor mass and must be
considered as a future therapeutic option (Kioi et al., 2010).

Extracellular Vesicles
Metastatic dissemination of cancer cells relies on several
parameters and notably on the bi-directional communication
between primary tumor and future metastatic tissues. This
crosstalk essentially involves the production of particles by cancer
or stromal cells. These particles are known as Extracellular
vesicles (EVs). EVs carry onco peptides, RNA species or lipids
from donor to recipient cells, triggering phenotypic changes of
the future pre-metastatic niches (Xu et al., 2018). EV stimulate
angiogenesis by transporting growth factors (VEGFA, PDGF,
FGF-2), transcription factors (STAT3 and STAT5) or micro-
RNAs (Todorova et al., 2017).

Recently, the emergence of EVs as a novel player of drug
resistance has gained interest. EVs transfer drugs from resistant
to sensitive cells triggering cell resistance (Maacha et al., 2019).
VEGFA contained in EVs correlates with disease progression
in bevacizumab treated patients, raising the possibility that
resistance to bevacizumab relies on this process (Ko et al., 2019).
Moreover, bevacizumab could be shed and exported by EVs
leading to therapeutic escape (Simon et al., 2018).

LATE RESISTANCE

The Angiogenic-Dormancy as an
Intrinsic Resistance Mechanism
Metastases can remain for months or years in a quiescent,
dormant state, in the tissue they colonized. These micro-
metastases constitute a residual disease characterized by the
persistence of tumor cells, undetectable by conventional
diagnostic techniques. The tumor dormancy can be defined
as the lag in tumor growth occurring between primary tumor
formation and the appearance of clinically detectable metastases
(Yadav et al., 2018). The presence of disseminated tumor cells
(DTCs) in bone marrow of prostate-cancer and breast-cancer
patients have been reported before the development of overt
metastases (Banys et al., 2012; Lam et al., 2014). Three molecular
mechanisms characterize tumor dormancy: mitotic arrest,
immunological and angiogenic dormancy (Senft and Ronai,
2016). The angiogenic dormancy may explain the reasons why
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angiogenic therapies simply delay tumor progression. More than
20 years ago, pharmacological inhibition of angiogenesis was
found to induce dormancy in several mouse models (Holmgren
et al., 1995; O’Reilly et al., 1996). The supposed but unproven
“angiogenic switch” is supposed to play a key role in the
maintenance of the dormancy, since dormant cells upregulate
angiogenesis inhibitors such as thrombospondin-1 (TSP-1)
(Senft and Ronai, 2016). Despite the lack of clinical evidences,
the “angiogenic switch” of dormant cells has to be considered in
cancer relapse following treatment arrest.

Induction of Cancer Stem Cells
Cancer stem cells (CSCs) constitute a small population of cells
within tumor exhibiting abilities of self-renewal, differentiation
and high tumorigenicity potential. They play a key role in the
initiation of cancer and in the metastatic cascade. In 2003, CSCs
were first identified in human breast and brain cancers (Al-Hajj
et al., 2003; Singh et al., 2003). CSCs express CD44, CD24, CD29,
CD90, CD133 and aldehyde deshydrogenase (ALDH1) allowing
their identification (Yu et al., 2012). CSCs drive angiogenesis in
hypoxia and HIF mediates CSCs proliferation and self-renewal
(Tong et al., 2018). CSCs was suggested to give rise to endothelial
cells and thus neovascularization processes (Fujita and Akita,
2017). Moreover, CSCs can differentiate in pericytes, supporting
tumor vessel function (Cheng et al., 2013).

Their tumor initiating properties and their metastatic
potential suggest that CSCs are involved in resistance to
therapies. Conventional treatments including chemo- and
radiation therapies generate the production of CSCs promoting
tumor escape (Chen X. et al., 2016; Li et al., 2016; Liu L.
et al., 2018). CSCs are actors of anti-angiogenic resistance.
Preclinical studies on experimental models of breast cancers
showed that sunitinib and bevacizumab increase the CSCs
populations through HIF1 activation (Conley et al., 2012). These
results indicate that administration of anti-angiogenic agents
accelerate tumor growth by increasing CSCs population. Several
CSCs-targeting therapies are currently under development.
Inhibition of ALDH1 prevents CSCs enrichment and reduces
tumor formation of experimental triple-negative breast cancer
and NSCLC in mice (Schech et al., 2015; MacDonagh et al.,
2017). Evaluation of CD44, CD133 or Hedgehog inhibitors are
currently under considerations for further clinical developments
(Shibata and Hoque, 2019).

Induction of Epithelial-Mesenchymal
Transition and Invasion
Epithelial-mesenchymal transition (EMT) defines the acquisition
of characteristics of invasive mesenchymal cells by epithelial
cells. EMT is implicated in tumor invasion and metastasis
and correlates with poor clinical outcome in several solid
tumors (Mittal, 2018). During the EMT process, epithelial cells
lose their phenotypes, with a downregulation of E-cadherin
and α-catenin and acquire mesenchymal markers (N-cadherin,
vimentin, fibronectin) leading to cell mobility and invasiveness
(Zeisberg and Neilson, 2009). Several signaling pathways induce
EMT (TGF-β, Wnt, Notch), by controlling the transcription

factors Snail, Slug, ZEB1/2 and Twist (Garg, 2013). Hypoxia
and HIF1α are also well-known drivers of EMT. The expression
of Twist and Snail, the downregulation of E-cadherin and the
induction of vimentin promoting tumor invasiveness, have been
reported following anti-angiogenic treatments (Cooke et al.,
2012; Maione et al., 2012). Similarly, enhanced invasiveness
and growth capacity of glioblastoma and RCC cells have been
demonstrated following VEGFA inhibition (Grepin et al., 2012;
Lu et al., 2012). This enhanced invasion abilities led to metastatic
dissemination, a later step discussed in part 3.

Several studies highlighted the role of the tyrosine kinase
receptor c-MET in promoting tumor invasiveness and metastasis
in response to anti-angiogenic therapies (Pàez-Ribes et al., 2009;
Lu et al., 2012; Sennino et al., 2012).

Although sunitinib and anti-VEGFA decreased tumor
volume, invasiveness, hypoxia and EMT markers are increased
(Ebos et al., 2009; Mizumoto et al., 2015). In addition, c-MET
and the phosphorylated active forms of c-MET also increased
as a consequence of treatment-induced hypoxia. The c-MET
pathway is one of the most investigated pathways in the field of
resistance to anti-angiogenic therapies. Its stimulation through
HGF binding, triggers the activation of the RAS/RAF/MEK/ERK,
PI3K/AKT/mTOR, and STAT3 pathways promoting tumor
growth and invasiveness (Jeon and Lee, 2017). Bevacizumab-
treated glioblastoma patients have increased relapse in
comparison to bevacizumab-untreated patients. This clinical
observation was recently linked to the upregulation of c-MET
and phospho-c-MET (Jahangiri et al., 2013). Hence, c-MET
is a robust actor of anti-angiogenic resistance by promoting
EMT-like phenotype and invasiveness in glioblastoma. This
observation has subsequently led to development of c-MET
inhibitors. Cabozantinib, a promising multi-kinase inhibitor of
c-MET, VEGFR2, and AXL, improves overall survival of RCC
patients with bone metastases (Motzer et al., 2018).

Lymphangiogenesis Induction
Historically, lymphatic vessels were considered as passive
participants in metastatic dissemination, only acting as channels
for tumor cells transit. Nowadays, it becomes evident that
lymphatic vessels have an active role in promoting metastasis.
The first pro-lymphangiogenic factors identified more than
20 years ago were the VEGFC and VEGFD that bind to
VEGFR3 expressed on lymphatic endothelial cells triggering
lymphangiogenesis (Joukov et al., 1996; Yamada et al., 1997).
Overexpression of VEGFC and VEGFD increases the number of
tumor-associated lymphatic vessels and the incidence of lymph
node metastases (Christiansen and Detmar, 2011). Moreover,
overexpression of VEGFC and VEGFD is correlated to intra-
tumoral lymphatic vessel density, lymph node metastasis and
poor outcome in patients with melanoma and breast cancers
(Mohammed et al., 2007; van der Schaft et al., 2007). More
recently, HGF, c-MET, Tie-2, PDGF and FGF were also identified
as pro-lymphangiogenic factors (Christiansen and Detmar,
2011). Immunohistochemical analysis of tumor samples showed
that lymphatic vessel invasion (LVI) correlated with lymph node
metastasis (Christiansen and Detmar, 2011). Moreover, tumor
cells through the expression of chemokine receptors exploit
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the lymphatic network to form metastases. Indeed, CXCR4
and CCR7 expressed on human breast cancer cells promote
metastasis to organs expressing their respective ligands, SDF1
and CCL21 (Müller et al., 2001). CXCR4 is upregulated by
hypoxia. Since dissemination to distant organs is governed by
the SDF1 gradient, CXCR4/SDF1 antagonists inhibited lymph
nodes spreading of cancer cells in experimental tumors in mice
(Müller et al., 2001).

Drugs destroying blood vessels stimulate the development
of tumor lymphatic vessels contributing to treatment failure.
Tumors from sunitinib-treated RCC patients in a neoadjuvant
setting exhibit increased lymphatic vessels and increased
lymph node invasion. This detrimental effect is explained
at least by the stimulation of VEGFC expression following
sunitinib administration (Dufies et al., 2017a). Indeed, sunitinib
stimulate vegfc gene transcription, mRNA stability and protein
production and the subsequent VEGFC-dependent development
of lymphatic vessels. Moreover, hypoxia upregulated VEGFC
expression (Morfoisse et al., 2014; Ndiaye et al., 2019).
Lymphangiogenesis participates in treatment failure and its
targeting can be considered in the therapeutic arsenal but only
for advanced tumors.

Microenvironment Shaping by Cytokines
The central role played by VEGFA plus ELR+CXCL cytokines
and especially CXCXL8/IL-8 was first documented by Sparmann
and Bar-Sagi (2004) in colon cancers. The role of ELR+CXCL
and their receptors-CXCR1/2 on tumor cell proliferation,
angiogenesis and microenvironment adaptation following anti-
angiogenic therapies was highly documented (Vandercappellen
et al., 2008). The pro-inflammatory interleukin (IL-1 β stimulates
CXCL7 production in RCC models resulting in tumor growth
(Grepin et al., 2012; Grépin et al., 2014). CXCL7 is a predictive
marker of sunitinib efficacy in RCC (Dufies et al., 2017b). CXCL5
in response to lysosomal sequestration of anti-angiogenic drugs
plays also a key role in resistance to anti-angiogenic in renal and
breast cancers (Giuliano et al., 2019). Inhibitors of CXCR1 and
CXCR2 efficiently inhibit the growth of experimental HNSCC
and RCC by decreasing tumor cell proliferation, angiogenesis and
inflammation (Dufies et al., 2019).

Novel Neovascularization Modalities
Beside angiogenesis, new vascular networks are generated by
the attraction of endothelial progenitor cells, intussusseptive
angiogenesis, vessel co-option and vasculogenic mimicry.

Vessel Co-option
Tumor can use alternative ways to obtain blood supply, and
therefore counteracting the effects of anti-angiogenic therapies.
Tumor cells can hijack pre-existing blood vessels of the
surrounding non-tumoral tissue and migrate along these vessels.
This process, which occurs in the absence of angiogenic growth
factors, is called vessel co-option (Kuczynski et al., 2019).
Basically, the cancer cells migrate along the surface of pre-existing
vessels leading to their incorporation in the tumor mass. Vessel
co-option has been extensively reported in histopathological
specimens of lung, liver and brain cancers (Nakashima et al.,

1995; Pezzella et al., 1997; Offersen et al., 2001; Winkler et al.,
2009; Yao et al., 2018). This process sustains the growth of brain
metastases emerging from melanomas, liver and breast cancers
(Leenders et al., 2004; Kuczynski et al., 2016, 2019).

A major question is whether vascular co-option constitutes
an intrinsic resistance or does it occur as an acquired resistance
mechanism following therapy. Inhibition of VEGFA promotes
cancer invasion, inducing vessel co-option in vivo. Mechanistic
studies identified the actin-related protein, Arp2/3, c-MET,
ZEB2- and WNT- EMT dependent signaling as promoters of
cell motility and vessel co-option (Navis et al., 2013; Depner
et al., 2016; Frentzas et al., 2016). Simultaneous blockade of
VEGFA and ARP2/3, VEGFA and c-MET or VEGFA and
ZEB2 suppresses tumor invasion (Sennino et al., 2012; Depner
et al., 2016; Frentzas et al., 2016). Other therapeutic approaches
include the blockade of cell-adhesion receptors, since tumor
cells adhere to endothelial cells during co-option. Hence, a β1-
integrin inhibitor combined with bevacizumab induced sustained
anti-tumor response in bevacizumab-resistant glioma xenografts
(Carbonell et al., 2013; Jahangiri et al., 2014).

The prognostic value of vessel co-option in cancer patients
remains to be elucidated. Bevacizumab-treated colorectal cancer
patients with liver metastases demonstrated a limited response
due to vessel co-option (Frentzas et al., 2016). Combining
cell-motility or cell-adhesion inhibitors with anti-angiogenic
compounds deserves to be considered as a therapeutic alternative.

Vasculo Mimicry
The vasculo-mimicry is defined as the formation of vascular-like
structures by non-vascular cells. In 1999, it was first reported
that tumor can dedifferentiate and form vascular-like structure
(Maniotis et al., 1999). Later, vasculo mimicry has been described
in several tumor types such as breast, ovarian cancers or Ewing
sarcoma (Sood et al., 2001; Shirakawa et al., 2002; van der
Schaft et al., 2005). This dedifferentiation is accompanied by the
acquisition of endothelial features such as VE-cadherin or Tie-
2 expression (Maniotis et al., 1999). In addition, HIF1α is an
important regulator in the process of vasculo-mimicry (Delgado-
Bellido et al., 2017). Despite this dedifferentiation, tumors remain
refractory to anti-angiogenic therapy (van der Schaft et al., 2004).
Bevacizumab elicits vasculo-mimicry of tumors leading to tumor
escape and metastasis (Xu et al., 2012). Sunitinib stimulates
vasculo-mimicry by differentiating tumor cells to endothelial-
like cells (Serova et al., 2016; Sun et al., 2017). Nevertheless,
further studies are needed to clarify the correlation between
vasculo-mimicry and resistance to anti-angiogenic therapies.

Increased Metastasis Rate
The ultimate consequence of the resistance of anti-angiogenic
therapies is the increased rate of metastasis. As developed in the
previous parts, anti-angiogenesis therapies lead to (i) intrinsic
reprogramming of tumor cells with upregulation of alternative
pro-angiogenic pathways, increased of lymphangiogenesis-
related genes and processes and initiation of EMT (ii)
conditioning the microenvironment, with the recruitment
of local- and bone marrow-derived cells or used novel
neovascularization modalities. All of these mechanisms lead
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to increased metastatic rate. Ten years ago, Ebos et al.
(2009); Pàez-Ribes et al. (2009) were the first to describe
the association between anti-angiogenesis drugs and increased
distant metastases. Preclinical models of breast cancers showed
that sunitinib enhance lung and liver metastasis (Ebos et al.,
2009). Anti-angiogenic treatments can make the host more
permissive for metastatic seeding. Sunitinib-treated mice exhibit
vascular changes such as reduced pericyte coverage and increased
leakiness of normal vessels (Chung et al., 2012; Maione et al.,
2012; Singh et al., 2012). Therefore, these systemic actions
facilitate the creation of a metastatic niche at distance from
the primary tumor.

Increased metastasis rate following anti-angiogenic therapies
are highly variable and depends on several parameters such as the
type of treatment, the dose and the schedule. Singh et al. (2012)
showed that sunitinib enhanced the agressiveness of tumor cells
whereas the use of an anti-VEGF antibody did not. Chung et al.
(2012) further demonstrated that inhibition of VEGF signaling
by antibodies does not promote metastasis, in contrast to small
molecule RTK inhibitors at elevated-therapeutic drug dosages.
Dosing and scheduling of anti-angiogenic administration can
also induce resistance. Short-term and high dose of sunitinib
increased growth of breast cancer and enhance liver and lung
metastasis (Ebos et al., 2009). In contrast, treatment with low dose
of sunitinib did not induce metastasis (Welti et al., 2012).

CONCLUSION AND FUTURE OF
ANTI-ANGIOGENIC THERAPIES

Angiogenesis processes, through the establishment of a new
vascular network, are an important contributor to tumor
development and metastatic dissemination. Once the tumor
has reached 1-2 mm2, the core of tumors become hypoxic
and tumor cells counteract hypoxia by the production of
angiogenic growth factors. Among them, VEGFA is one of the
most important. Targeting the VEGFA/VEGFRs represented a
great breakthrough in the therapeutic management of cancer
patients. Unfortunately, complete responses are rare, and tumors
counteract this inhibition through different processes. The
molecular mechanisms of resistance are not fully understood
and deciphering them has gained interest. It is now evident
that several mechanisms exist. They involve a wide range of
processes; (i) the earliest, with the upregulation of genes involved
in angiogenic redundancy, EMT or the lysosomal sequestration
of drugs, to the latest (ii) with an adaptation of the tumor
microenvironment, reflected by the recruitment of progenitors
cells, lymphangiogenesis, and adapted neovascularization
modalities. All these mechanisms allow tumor metastasis and
serve as limitations to anti-angiogenic drug efficacy.

Hence, combining treatments targeting tumor cells and cells
of the tumor microenvironment should limit resistance and
should improve patients’ survival. One of the first and of the
obvious way of resistance involves angiogenic redundancy by
multiple growth factors as suggested by the anti-tumoral effects
of FGF inhibition and bevacizumab (Casanovas et al., 2005;
Gyanchandani et al., 2013). Although combining anti-angiogenic
therapies may improve benefit, the other alternative pathways

lead to resistance. Moreover, the balance between therapeutic
efficacy and toxicity must be evaluated before administration
to patients. Another therapeutic strategy consists in targeting
BMDCs or pericytes and CAFs in addition to tumor cells. This
approach seems relevant since BMDCs and local stromal cells
blockade leads to an impairment of tumor growth (Bergers and
Hanahan, 2008; Crawford and Ferrara, 2009; Liu et al., 2010).
The treatment of patients with diffuse-type giant tumor cells with
a CSF-1 antibody elicits objective response (Ries et al., 2014).
This result raises the possibility to combine this antibody to
anti-angiogenic agents.

Another promising therapeutic strategy consists in targeting
lymphangiogenesis and angiogenesis. Lymphangiogenesis
induced by anti-angiogenesis dedicated compounds gives rise to
node metastasis, leading at term to an increased metastatic rate
and poor outcome in patients (Dufies et al., 2017a). Moreover,
these lymphatic vessels play a key role in the cancer-induced
immune tolerance. Indeed, tumor associated lymphatic vessels
upregulated Program-Death Ligand 1 (PDL1) inhibiting T cell
activation and therefore anti-tumor response (Dieterich et al.,
2017). Recently, the anti-PDL1 antibody, avelumab combined
with axitinib was compared to sunitinib for advanced RCC.
The progression free survival was 13.8 months and significantly
higher than sunitinib alone (8.4 months) (Motzer et al.,
2019). A phase III study comparing the anti-PDL1 antibody,
atezolizumab, plus bevacizumab versus sunitinib was assessed in
metastatic RCC and confirmed these results (Rini et al., 2019b, 3).
Among the tested combinations, the anti-PD1, pembrolizumab
plus axitinib combo improved the PFS but also the OS of RCC
patients (Rini et al., 2019a).

Nevertheless, despite their effects on PFS and OS, these
combinations are not curative. The development of animal
models mimicking the tumor microenvironment as well as
preclinical evaluations of combo therapies are urgently needed
to improve patients PFS and OS. To reach the “Golden Age”
of tumor treatment as defined by Hsieh et al. (2017) new
treatment options are needed either to improve the therapeutic
effects of anti-angiogenics and immunotherapies or by inhibiting
new relevant pathways involved in innate refractoriness or
acquired resistance. The current anti-cancer strategies are based
on the inhibition of a specific target playing a key role in
tumor development [example: EGFR (lung cancers); HER2
(breast cancers); BRAF (melanoma)]. Because of relapses on
these strategies, combinations with conventional chemotherapy
[taxanes (breast) platin salts (lung)] or other targeted therapies
like anti-angiogenics or immunotherapies have entered in the
therapeutic arsenal. However, the second strategy often combined
different toxicities and cannot be administered at long terms,
limiting the therapeutic index. However, the “magic bullet” does
not exist because cancers integrate several mechanisms of evasion
to one treatment. Hence, instead of inhibiting several targets
with several drugs, the ideal strategy relies on the use of one
inhibitor targeting multiple hallmarks of cancers, i.e., tumor cell
proliferation/stemness, angiogenesis, chronic inflammation, and
immune tolerance.

By destroying the vascular network, antiangiogenic therapies
efficacy should have cause vascular network destruction leading
to tumor cells asphyxia and nutrient starvation. Moreover,
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antiangiogenic treatments should have targeted only normal
endothelial cells that cannot undergo genetic plasticity, a specific
property of tumor cell adaptation to treatments. However,
aberrant expression, by tumor cells, of receptors inhibited by
antiangiogenic drugs stimulated the genetic adaptation of tumor
cells mainly through epigenetic modifications. For example,
EZH2 a specific histone methyl transferase is a driver of
sunitinib resistance in kidney cancers (Adelaiye-Ogala et al.,
2017). In addition to tumor cells, tumor endothelial cells
undergo epigenetic modifications crucial for adaptation to the
antiangiogenic therapies (Ciesielski et al., 2020).

The correlation between the efficacy of antiangiogenic drugs
and tumor grade was also a neglected parameter. Controversial
results emerged from their efficacy in non-metastatic versus
metastatic kidney cancers. Whereas they are the standard of
cancer for metastatic tumors their efficacy as an adjuvant therapy
gave conflicting results. The ASSURE trial (NCT00326898)
showed no survival benefit relative to placebo whereas the
S-TRAC trial showed that sunitinib in an adjuvant setting
prolonged the disease free survival for more than 1 year (Haas
et al., 2016; Ravaud et al., 2016). These complex features supposed
that anti-angiogenic drugs affect other cells than ECs. Hence,
the drugs indirectly affect immune cells. Sunitinib for example
reverses immune suppression (Finke et al., 2008). In this process,
myeloid derived suppressor cells are one of the main targets
of sunitinib (Ko et al., 2009). Moreover, inhibition of VEGFA
or VEGFR decreased the expression of immune checkpoints
involved in immune tolerance, by T cells (Voron et al., 2015).
Hence, the crosstalk between angiogenesis and immune cells
explain the efficacy of combining antiangiogenic drug to immune
checkpoint inhibitors (Motzer et al., 2019; Rini et al., 2019b).
Immunetolerance is most of the time encountered in advanced
tumors in which angiogenesis is key for metastatic spreading.
The relevance of inhibiting angiogenesis was based on these
extreme cases. However, blood or lymphatic vessels vehiculate
active cytotoxic immune cells to prevent the development of low-
grade tumors that did not undergo immune tolerance. Hence,

favoring the development of lymphatic vessels through injection
of VEGFC decreased the growth of experimental glioblastoma by
enabling immunosurveillance (Song et al., 2020). Hence, these
experiments completely revisited the notion that angiogenesis is
systematically detrimental. The hypothesis that vessels must be
normalized in cancer had emerged during the last decade (Goel
et al., 2011). This hypothesis stipulates that normalization of
tumor vessels will shape the tumor microenvironment leading to
the control of tumor progression and to the improvement of the
therapeutic response (Martin et al., 2019).

With the advent of the immunotherapy, the blockage of
angiogenesis should be reconsidered and the “blasting missil”
must be discovered.

It is now evident that targeting only one mechanism involved
in cancer development is insufficient. The cancer Hallmarks
described by Hanahan and Weimberg probably shape the future
treatments to increase the percentage of complete remissions.
What is the ideal strategy? Targeting at the same time different
Hallmarks with already approved therapies or to find targets that
drive concomitantly the different Hallmarks? If these targets exist,
a specific inhibitor will serve as a “blasting missile” to destroy the
tumor. The reality is probably an intermediate option.
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