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AF have an approximately 5-fold higher risk of stroke 
than those without AF.7 Therefore, the development of AF 
should be predicted at the early onset.

Artificial intelligence (AI) is gaining attention in preven-
tive medicine, and there is an urgent need for the detection 
and prediction of AF. AI methods can automatically 
identify obscure but significant patterns from individual 
clinical data to predict the clinical outcomes of a patient. 

A trial fibrillation (AF) is the most common 
arrhythmia, with a global prevalence estimated at 
high as 46.3 million, with annual increases of 3.8 

million cases in recent years.1–4 AF is associated with an 
increased risk of thromboembolic stroke and heart failure, 
which is not only life threatening, but can also result in 
severe sequelae, leaving patients with severe mobility 
impairments or requiring nursing care.5,6 Individuals with 
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Background: Atrial fibrillation (AF) is the most common arrhythmia and is associated with increased thromboembolic stroke risk 
and heart failure. Although various prediction models for AF risk have been developed using machine learning, their output cannot 
be accurately explained to doctors and patients. Therefore, we developed an explainable model with high interpretability and 
accuracy accounting for the non-linear effects of clinical characteristics on AF incidence.

Methods and Results: Of the 489,073 residents who underwent specific health checkups between 2009 and 2018 and were 
registered in the Kanazawa Medical Association database, data were used for 5,378 subjects with AF and 167,950 subjects with 
normal electrocardiogram readings. Forty-seven clinical parameters were combined using a generalized additive model algorithm. 
We validated the model and found that the area under the curve, sensitivity, and specificity were 0.964, 0.879, and 0.920, respectively. 
The 9 most important variables were the physical examination of arrhythmia, a medical history of coronary artery disease, age, 
hematocrit, γ-glutamyl transpeptidase, creatinine, hemoglobin, systolic blood pressure, and HbA1c. Further, non-linear relationships 
of clinical variables to the probability of AF diagnosis were visualized.

Conclusions: We established a novel AF risk explanation model with high interpretability and accuracy accounting for non-linear 
information obtained at general health checkups. This model contributes not only to more accurate AF risk prediction, but also to a 
greater understanding of the effects of each characteristic.
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prediction of AF using the information obtained from 
such checkups would help the general population to think 
about lifestyle or other factors related to the development 
of AF. The aim of this study was to develop and validate 
an interpretable model for the detection of AF, using data 
from specific health checkups, and to examine how clinical 
characteristics affect the risk of AF.

Methods
Study Participants
The study was a cross-sectional observational study that 
included 489,073 subjects aged ≥40 years who underwent 
community-based medical checkups between 2009 and 2018 
in Kanazawa City. All clinicians were sent a manual that 
followed the guidelines of each academic society, and the 
checkups were performed accordingly. During the checkups, 
clinicians conduct standard medical examinations, recording 
data such as height, weight, waist circumference, blood 
pressure, results of biochemical examinations, urinalysis, 
and resting 12-lead ECG. AF was diagnosed on the basis 
of the baseline ECG, according to Minnesota Codes.19 
Specifically, subjects diagnosed with Minnesota Code 8-3 
were classified as having AF, and those diagnosed with 
Minnesota Code 1-0-0 were classified as having a normal 
ECG. All ECG findings were recorded and stored by the 
Kanazawa Medical Association (KMA). Subjects with 
partially missing data and Minnesota Codes other than 8-3 
or 1-0-0 (Supplementary Figure 1) were excluded from the 

Some studies have demonstrated the high accuracy of AI 
models in the field of AF.8,9 However, the internal workings 
or the basis for decisions on inference results are not 
known by most users of such systems. The difficulty in 
explaining the results of and reasoning behind AI analysis 
is commonly referred to as a “black box”. Consequently, 
most models cannot explain their predictions and evidence 
to doctors and patients in clinical settings. However, doctors 
must use models that have both high accuracy and high 
interpretability when they explain diagnosis or treatment 
plans to patients.

Several algorithms have been proposed to explain the 
black box model.10–12 The most simple and easy to under-
stand algorithm is the generalized linear model (GLM). 
The GLM extends the linear model to the exponential 
family of distribution and is expressed as a linear form of 
the relationship between independent variables and the 
outcome. Meanwhile, the generalized additive model 
(GAM) is an extension of the GLM that allows non-
parametric forms of independent variables.13 The GAM is 
trained on linear predictors, such as the sum of each vari-
able’s non-linear functions.

Some AF prediction models have been proposed in 
prior studies, but few were developed with interpretable 
methodology. In addition, in Japan, specific health checkups 
started from 2008, and these are mainly conducted at 
clinics.14–18 However, an electrocardiogram (ECG) is 
considered an additional rather than mandatory item on 
these health checkups. An interpretable algorithm for the 

Figure 1.  Process used to develop the machine learning model. The Kanazawa Medical Association (KMA) database containing 
4,386 subjects with atrial fibrillation (AF) and 133,535 subjects with a normal electrocardiogram (ECG) was analyzed. The training 
dataset comprised subjects from 2009 to 2017, whereas the test dataset comprised subjects for whom data was obtained in 2018. 
After under-sampling and bootstrap sampling, the dataset was split into a training and out-of-bag (OOB) subset. A generalized 
additive model (GAM) or generalized linear model (GLM) was constructed using the training data, and the importance score was 
calculated using the OOB data. In all, 100 small models were developed as an ensemble, and their generalization performance 
was evaluated by using the test dataset.
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measured in blood samples within 24 h of collection using 
an automated clinical chemical analyzer: serum creatinine 
(s-Cr), estimated glomerular filtration rate (eGFR), serum 
uric acid, HbA1c, total cholesterol, triglycerides, low-
density lipoprotein cholesterol, high-density lipoprotein 
cholesterol (HDL-C), red blood cell (RBC) count, white 
blood cell (WBC) count, hemoglobin, hematocrit, platelet 
count, aspartate aminotransferase, alanine transaminase 
(ALT), γ-glutamyl transpeptidase (γ-GTP), and plasma 
glucose. Although the methods used for blood analyses 
were not calibrated between laboratories, the analyses were 
performed according to the methods for laboratory tests 
recommended by the Japan Society of Clinical Chemistry, 
which have been widely adopted by laboratories across 
Japan. Urinary protein, glucose, and occult blood were 
semiquantitatively examined and graded using 5 levels: 
“negative”, “trace”, “1+”, “2+”, and “3+”. In this study, 
urinary protein was analyzed as 3 levels (“negative”, “trace”, 

study.
The KMA collected and anonymized the data. This 

study was approved by the Ethics Committee of KMA 
(No. 16000003) and Kanazawa University (No. 2019-080), 
and was conducted in accordance with the Declaration of 
Helsinki and the ethical guidelines for human medical 
research. The data were exempt from informed consent 
because they were secondary data. Hence, an opt-out-style 
announcement regarding this study was issued on the KMA 
website (http://www.kma.jp/kenkyu/kenkyu_index.html).

Dataset and Features
The KMA database contains information on several clinical 
parameters, including physical observations and medical 
histories. Forty-seven variables, including age, sex, body 
mass index (BMI), waist circumference, systolic blood 
pressure (SBP), and diastolic blood pressure (DBP), were 
collected in the dataset. Moreover, the following were 

Table 1. Baseline Characteristics of Subjects in the Atrial Fibrillation (AF) and Normal Electrocardiogram (ECG) Groups in the 
Training and Test Datasets

Training (n=137,921) Test (n=35,407)

AF  
(n=4,386)

Normal ECG 
(n=133,535)

AF  
(n=992)

Normal ECG 
(n=34,415)

Age (years) 80±8**   70±12 79±8**   71±11

Male sex (%) 59.9 31.2 63.0 32.1

BMI (kg/m2) 23.1±3.6** 22.6±3.4 23.6±3.6** 22.8±3.4

WC (cm) 84.7±9.8** 82.8±9.7   86.1±10.3** 83.4±9.6

SBP (mmHg) 126±16** 127±16 125±16** 127±16

DBP (mmHg)   72±11**   73±10   73±11　　   73±10

Laboratory tests

  WBC (/μL)   5,506±2,027**   5,384±1,727   5,290±1,429　　   5,264±1,449

  RBC (×104/μL) 430±57　　 431±46 437±52　　 439±44

  Hemoglobin (g/dL) 13.3±1.9** 13.1±1.5 13.5±1.7** 13.4±1.4

  Hematocrit (%) 40.3±5.1** 39.7±4.0 40.9±4.7** 40.5±3.8

  PLT (×104/μL) 18.9±5.5** 22.5±5.9 19.8±5.4** 23.3±5.7

  Cr (mg/dL)   1.0±0.5**   0.7±0.3   1.0±0.4**   0.8±0.2

  eGFR (mL/min/1.73 m2)   58.3±17.6**   71.5±17.2   56.3±15.7**   67.5±15.3

  UA (mg/dL)   5.8±1.5**   4.9±1.3   5.7±1.5**   5.0±1.3

  AST (U/L)   26.3±12.4**   23.8±12.7   25.5±10.1**   23.7±10.8

  ALT (U/L)   20.5±12.5*　   20.4±14.5   20.1±11.0　　   20.7±13.0

  γ-GTP (U/L)   52.7±82.5**   32.6±50.8   45.9±81.6**   31.9±46.1

  HbA1c (NGSP; %)   5.7±0.7**   5.5±0.6   6.0±0.7**   5.8±0.6

  PG (mg/dL) 112±40** 102±30 112±37** 101±27

  TC (mg/dL) 180±35** 201±34 180±32** 202±34

  LDL-C (mg/dL) 104±29** 118±30 104±28** 117±29

  HDL-C (mg/dL)   54±16**   60±15   56±14**   62±16

  TG (mg/dL) 114±73** 119±74 107±60** 119±76

Urine tests

  Protein (%)

    (−)/(±) 62.6/16.3 80.5/11.9 65.4/16.9 81.8/11.3

    (+)/(2+)/(3+) 12.6/6.5/0.5 5.1/1.9/0.1 11.2/3.8/1.6 4.7/1.4/0.4

  Glucose (%)

    (−)/(±) 86.7/4.1 93.3/1.9 87.5/2.9 93.6/1.6

    (+)/(2+)/(3+) 3.2/4.3/0.4 1.8/2.1/0.3 3.7/2.0/2.8 1.7/1.1/1.6

  Occult blood (%)

    (−)/(±) 60.0/18.9 66.4/16.7 57.7/20.4 65.0/17.1

    (+)/(2+)/(3+) 11.6/7.7/0.4 9.5/6.4/0.4 12.1/6.0/2.6 10.1/5.6/1.8

(Table 1 continued the next page.)

http://www.kma.jp/kenkyu/kenkyu_index.html
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class probability output. We used the GAM or the GLM as 
the small model to compare them in terms of the difference 
in non-linear and linear coefficients (Figure 1).

The database was divided into 2 different datasets: a 
training set, comprising subject data collected from 2009 
to 2017, and a validation set, comprising data collected in 
2018. Data for the 2018 study participants were removed 
from the training dataset to avoid using information from 
the same subjects twice (Supplementary Figure 1).

The model was constructed by repeating the following 4 
steps for the number of ensemble members: (1) under-
sampling and bootstrap sampling; (2) training the small 
model; (3) calculating the generalized importance score with 
an out-of-bag (OOB) dataset; and (4) external validation 
with the validation dataset. First, a sub-dataset was 
constructed by using the under-sampling method to address 
class imbalance. After under-sampling, the training and 
OOB datasets were separated by repeat sampling with 
replacement named bootstrap sampling. Second, a small 
prediction model was constructed with the training dataset. 
Third, permutation importance scores were obtained with 
the OOB dataset to evaluate how much each feature 
contributed to the predictions of the model. Finally, the 
overall prediction and generalized importance scores 
were obtained by averaging the AF probability and the 
permutation importance score for every GAM, respectively. 
The generalization performance of the ensemble model 
can be evaluated in terms of the area under the receiver 
operating characteristic curve (AUC), sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV). Detailed methods are provided in the 
Supplementary Material.

and “others”), whereas urinary glucose and urine occult 
blood were analyzed as 2 levels (“negative” and “others”). 
A medical history of stroke, coronary artery disease (CAD), 
chronic kidney disease (CKD), and anemia was analyzed 
as past history based on self-reported questionnaire. A 
history of hypertension, diabetes, and dyslipidemia “under 
treatment” or “untreated” were assigned a value of 1 and 
others were assigned a value of 0. Physical findings such as 
jaundice, arrhythmia, heart murmur, crackles, hepatomegaly, 
edema, cervical tumors, neuropathy, malnutrition, and 
anemia were also included in the model.

Statistical Analysis for Clinical Background
Data are expressed as the mean ± SD or as percentages. 
Parameters were compared between the AF and normal 
ECG groups. Normality was evaluated using the Shapiro-
Wilk test. Data that were not normally distributed were 
compared using the Mann-Whitney U test. The variance 
of formally distributed data was evaluated using the 
Bartlett test; normally distributed data with equal variance 
were compared using Student’s t-test, whereas data without 
equal variance were compared using Welch’s t-test. Two-
sided P<0.05 was considered significant. Statistical analyses 
were performed using Python 3.8.3 programming language 
(Python Software Foundation, Wilmington, DE, USA) 
and SciPy 1.5.2.

General Process of Model Construction and Evaluation
This study adopted the ideas of the GAMensPlus algorithm 
combining the GAM and ensemble learning.20 Ensemble 
learning is a method of estimating the final prediction 
result by building several small models and averaging the 

Training (n=137,921) Test (n=35,407)

AF  
(n=4,386)

Normal ECG 
(n=133,535)

AF  
(n=992)

Normal ECG 
(n=34,415)

Past

  Hypertension (%) 59.3 38.8 63.6 41.4

  Diabetes (%) 16.9 10.7 18.4 11.2

  Dyslipidemia (%) 19.5 24.6 26.9 29.9

  Stroke (%) 23.4   6.6 19.8   5.5

  CAD (%) 63.0   8.7 63.9   7.6

  CKD (%)   2.9   0.8   3.1   1.1

  Anemia (%) 15.9 17.6 15.2 15.6

Exam

  Anemia (%)   1.1   0.6   1.2   0.3

  Jaundice (%)   0.1   0.0   0.0   0.0

  Arrhythmia (%) 57.3   0.3 57.6   0.3

  Heart murmur (%)   6.2   1.0   3.5   0.8

  Crackles (%)   0.8   0.5   1.2   0.3

  Hepatomegaly (%)   0.3   0.1   0.3   0.1

  Edema (%)   9.4   2.3   8.2   2.0

  Cervical tumors (%)   0.4   1.0   1.0   1.0

  Neuropathy (%)   2.9   1.4   1.7   0.8

  Malnutrition (%)   0.6   0.3   0.5   0.1

  Other (%)   8.7   4.7   5.8   3.0

Data are given as the mean ± SD or as percentages. *P<0.05, **P<0.001 compared with the normal ECG group. ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; BMI, body mass index; CAD, coronary artery disease; CKD, chronic kidney disease; Cr, creatinine; DBP, 
diastolic blood pressure; eGFR, estimated glomerular filtration rate; Exam, physical examination; γ-GTP, γ-glutamyl transpeptidase; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NGSP, National Glycohemoglobin Standardization Program; 
Past, past history; PG, plasma glucose; PLT, platelet count; RBC, red blood cell count; SBP, systolic blood pressure; TC, total cholesterol; TG, 
triglycerides; UA, uric acid; WBC, white blood cell count; WC, waist circumference.
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normal ECG (n=167,950) groups. Table 1 shows the 
baseline characteristics of subjects with AF and normal 
ECGs, divided into the training and validation subsets. 
Significant differences were observed between the AF and 
normal ECG groups for all variables, except for the RBC 
count in the training subset and DBP, WBC count, RBC 
count, and ALT in the validation subset.

Results
Subject Characteristics
Residents who underwent health checkups (n=489,073) 
were registered in the KMA database (Supplementary 
Figure 1). After applying the inclusion and exclusion criteria, 
the study subjects were classified into AF (n=5,378) and 

Table 2. Feature Importance Ranking and Scores Calculated on the Basis of Area Under the Curve (AUC), Sensitivity, and Specificity

Ranking AUC Score Sensitivity Score Specificity Score

 1 Exam arrhythmia 0.429 Exam arrhythmia 0.149 Exam arrhythmia 0.454

 2 Past CAD 0.177 Past CAD 0.121 Past CAD 0.144

 3 Age 0.073 Age 0.088 Hematocrit 0.051

 4 Hematocrit 0.054 Hematocrit 0.041 Age 0.034

 5 γ-GTP 0.030 γ-GTP 0.035 Hemoglobin 0.029

 6 Cr 0.029 Cr 0.032 ALT 0.024

 7 Hemoglobin 0.028 Hemoglobin 0.024 SBP 0.023

 8 SBP 0.021 HbA1c 0.023 Cr 0.022

 9 ALT 0.018 UA 0.020 γ-GTP 0.021

10 HbA1c 0.012 TC 0.019 Exam no symptoms 0.016

11 TG 0.011 SBP 0.018 TG 0.014

12 TC 0.010 Past stroke 0.018 DBP 0.011

13 UA 0.010 AST 0.016 eGFR 0.010

14 AST 0.009 PLT 0.016 TC 0.010

15 DBP 0.008 HDL-C 0.016 AST 0.009

16 eGFR 0.008 eGFR 0.015 UA 0.008

17 Past stroke 0.007 UP (1+, 2+, 3+) 0.015 Sex 0.008

18 RBC 0.006 ALT 0.015 WC 0.008

19 PLT 0.006 RBC 0.014 LDL-C 0.008

20 UP (1+, 2+, 3+) 0.006 BMI 0.014 HbA1c 0.007

21 Exam no symptoms 0.005 Past hypertension 0.014 RBC 0.006

22 HDL-C 0.005 DBP 0.013 PLT 0.006

23 BMI 0.004 UG 0.013 UP (1+, 2+, 3+) 0.006

24 UP(−) 0.004 UP(±) 0.013 PG 0.006

25 LDL-C 0.004 TG 0.013 UP(−) 0.006

26 Past dyslipidemia 0.004 Past dyslipidemia 0.012 Past stroke 0.005

27 WC 0.003 UP(−) 0.012 Past diabetes 0.005

28 UP(±) 0.003 UOB 0.012 Past dyslipidemia 0.005

29 Sex 0.003 LDL-C 0.011 UOB 0.004

30 PG 0.002 WBC 0.011 UP(±) 0.004

31 UOB 0.002 Past anemia 0.011 BMI 0.004

32 Past diabetes 0.002 Exam anemia 0.011 HDL-C 0.004

33 UG 0.001 Exam cervical 0.011 Exam edema 0.003

34 Past hypertension 0.001 Exam crackles 0.011 Exam heart murmur 0.002

35 Exam edema 0.001 Exam malnutrition 0.011 WBC 0.002

36 Exam heart murmur <0.001　 Exam jaundice 0.011 Exam others 0.002

37 Exam anemia <0.001　 Exam neuropathy 0.011 Exam crackles 0.002

38 Exam crackles <0.001　 Exam hepatomegaly 0.011 Exam anemia 0.002

39 WBC <0.001　 Exam heart murmur 0.011 Exam jaundice 0.002

40 Past anemia <0.001　 Past CKD 0.010 Exam neuropathy 0.002

41 Exam jaundice <0.001　 Past diabetes 0.010 Exam malnutrition 0.002

42 Exam neuropathy <0.001　 Exam edema 0.010 Past anemia 0.002

43 Exam others <0.001　 Exam others 0.010 Exam cervical tumors 0.002

44 Exam malnutrition <0.001　 Sex 0.009 Past CKD 0.002

45 Exam cervical tumors <0.001　 WC 0.009 Exam hepatomegaly 0.002

46 Past CKD <0.001　 PG 0.009 UG 0.002

47 Exam hepatomegaly <0.001　 Exam no symptoms <0.001　 Past hypertension <0.001　

UG, urinary glucose; UOB, urine occult blood; UP, urinary protein. Other abbreviations as in Table 1.
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of CAD, respectively. In addition, the trends for age and 
hematocrit revealed an overall positive relationship between 
the variable and AF incidence; in particular, the magnitude 
of the increase in risk with increasing age was high. The 
relationship between HbA1c and AF showed a J-shaped 
waveform, with a minimum around 5%, with HbA1c values 
>5% positively associated with the development of AF. In 
contrast, the relationship between AF and both hemoglobin 
and SBP exhibited a negative trend. Finally, the relationship 
between γ-GTP or s-Cr and the probability of AF was 
almost parallel between the GAM and GLM.

Discussion
We have developed and validated an explainable machine 
learning algorithm to predict AF, using clinical parameters 
obtained during health checkups. Using our model, we 
were able to detect incidents of AF with both high inter-
pretability and high accuracy based on the easily obtained 
clinical findings. Based on AUC, sensitivity, and specificity, 
the 9 most essential elements were found to be a physical 
examination of arrhythmia, a medical history of CAD, age, 
hematocrit, γ-GTP, s-Cr, hemoglobin, SBP, and HbA1c. 
Notably, we revealed non-linear relationships between 
these clinical parameters and the probability of AF.

The developed model has high detection ability, with 
correct diagnoses in 87.9% of AF subjects and 92.0% of 
subjects with normal ECGs. Because the NPV was 99.6%, 
ECGs may no longer need to be performed in cases that 
the model predicts to be “normal”. In addition, compared 
with complex methods, such as deep learning models or 

Feature Importance Ranking
Table 2 shows the generalized feature importance ranking 
and scores calculated by the GAM based on AUC, sensi-
tivity, and specificity. Physical examination of arrhythmia, 
a history of CAD, age, and hematocrit were the top 4 items 
in all evaluation metrics, with blood γ-GTP, s-Cr, and 
hemoglobin concentrations ranked among the top 10 items.

Predictive Performance
In this study we developed an explainable prediction model 
that set the number of ensemble members at 100. Figure 2 
shows the receiver operating characteristic curves for the 
final prediction in the validation dataset. The GAM (AUC, 
0.964; sensitivity, 0.879; specificity, 0.920; PPV, 0.242; NPV, 
0.996) was as accurate as the GLM (AUC, 0.962; sensitivity, 
0.876; specificity, 0.924; PPV, 0.249; NPV, 0.996).

Interpretation of Features
Figure 3 shows the relationship between 9 variables selected 
on the basis of the generalized importance score and the 
risk of having AF. Figure 3 shows average trends for the 
GAM and GLM, data distribution, and mean trends. 
Physical examination of arrhythmia, history of CAD, age, 
hematocrit, γ-GTP, s-Cr, hemoglobin, SBP, and HbA1c 
were selected as the 9 features with a high contribution to 
AUC, sensitivity, and specificity (Table 2). The relationship 
between the remaining 38 variables and the risk of AF is 
shown in Supplementary Figure 2. Both a physical finding 
of arrhythmia and a past history of CAD exhibited strong 
relationships with AF incidence compared with no 
arrhythmia on physical examination and no medical history 

Figure 2.  The area under the receiver 
operating characteristic (AUC) curve, 
with sensitivity and specificity, for the 
prediction of atrial fibrillation (AF) with 
the generalized additive model (GAM; 
blue line) and the generalized linear 
model (GLM; orange line).
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Figure 3.  The probability of atrial fibrillation (AF), as determined by the generalized additive model (GAM; red lines) or generalized 
linear model (GLM; blue lines), according to 9 clinical variables, namely: (A) arrhythmia on physical examination (Exam), (B) past 
coronary artery disease (CAD), (C) age, (D) hematocrit, (E) γ-glutamyl transpeptidase (γ-GTP), (F) creatinine, (G) hemoglobin, (H) 
systolic blood pressure (SBP), and (I) HbA1c. Arrhythmia on Exam (A) and past CAD (B) are regarded as binary variables, with 
trends shown as the mean ± SD. The remaining parameters (C–I) are regarded as continuous variables, with trends indicated 
by solid lines. The histograms show data distribution for each parameter (lighter shading indicating subjects with a normal 
electrocardiogram [ECG] and darker shading indicating AF subjects). The left axes show the AF risk transformed by the sigmoid 
function, and the right axes show data distribution. The closer the AF risk is to 1, the higher the likelihood of subclinical AF; 
conversely, the closer the risk is to 0, the less likely the parameter is associated with AF. Trends within a small distribution of data 
may be unreliable. In the GAM, suspicion of arrhythmia on Exam or having a medical history of CAD significantly increases the 
probability of AF compared with no arrhythmia on Exam and no medical history of CAD, respectively. The probability of AF 
increased with increasing age and hematocrit. The relationship between the probability of AF and γ-GTP, creatinine, and HbA1c 
values was almost parallel between the GAM and GLM, whereas there was a steady downward trend in the relationship between 
AF probability and increasing hemoglobin and SBP.
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other studies that enrolled and followed older subjects 
who started hemodialysis.30 In subjects receiving antihy-
pertensive treatment, a J-shaped relationship between SBP 
and AF was observed.31,32 In the present study, SBP in the 
range 100–120 mmHg was more likely to complicate AF 
than SBP above that range, and there was no J-shaped 
relationship between SBP and AF. We present 3 hypotheses 
regarding the negative correlation between SBP and AF: 
(1) low SBP may, indeed, increase the risk of AF via 
chronic coronary ischemia, myocardial proliferation, and 
fibrosis induced by inadequate coronary perfusion; (2) 
low SBP may be the result of AF or AF-related cardiac 
structural and functional abnormalities; and (3) subjects 
with higher SBP are more likely to receive better clinical 
care and more antihypertensive medications, which play 
an important role in the mutually affected relationship 
between hypertension and AF.

In terms of interpretability, the GAM captured more 
detailed trends for the clinical parameters than the GLM. 
For example, the slope of the relationship between age and 
AF risk was steep for those subjects in their 60 s, but the 
trend changed in subjects their 70 s and 80 s. BMI was 
associated with a higher probability of AF starting from a 
BMI around 25 kg/m2, which was defined as “overweight” 
in the Suita City survey.26 HbA1c also exhibited a J-shaped 
relationship with AF risk, with a stronger positive relation-
ship in for HbA1c 5–6.5%. The non-linear model for each 
clinical parameter developed using the GAM revealed part 
of the “black box” and helped understand the results of the 
prediction algorithm.

This study has several limitations. First, subjects with 
Minnesota Codes other than 8-3 and 1-0-0 were excluded 
(i.e., some subjects were classified as neither AF [Minnesota 
Codes 8-3] nor normal ECG [Minnesota Codes 1-0-0]). 
Indeed, approximately 150,000 subjects were excluded. 
The algorithm constructed by excluding that group may be 
less accurate when examined using the actual general 
population. It may be desirable to re-evaluate the true 
accuracy of our model in specific health checkups without 
an ECG test in the future as part of a prospective study.

Second, we achieved high accuracy in terms of AUC, 
sensitivity, and specificity. However, the PPV, representing 
the percentage of cases diagnosed as positive that are 
actually positive, was assessed as 0.242 in the GAM. This 
indicates that approximately three-quarters of the predicted 
AF subjects were normal ECG subjects who were misclas-
sified. Hill et al developed machine learning models for risk 
prediction of AF using routinely collected data.33 In that 
study, the final neural network model achieved a PPV of 
0.295, 0.183, and 0.115 to identify 25%, 50%, and 75% of 
diagnosed AF cases, respectively.33 In that study, there 
was a trade-off between sensitivity and PPV. However, we 
recommend using our model as screening test. We would 
strongly recommend that eligible subjects who test positive 
using our algorithm undergo a thorough an ECG. This is 
because approximately 25% of subjects may already have 
AF and could have a stroke at any time. This explainable 
model is expected to make physicians aware of AF compli-
cations even in the absence of ECG findings and prevent 
subjects from experiencing stroke and heart failure. Our 
model could detect persistent or chronic AF that appeared 
during medical examinations, but paroxysmal AF may be 
difficult to detect. However, high-risk subjects who are 
predicted to fall in the AF category in our model could 
undergo secondary examinations such as ECG and Holter 

random forest classifiers, our model has the advantage of 
explaining the non-linear association between the occur-
rence of AF and clinical parameters. Therefore, the highly 
accurate predictions made by our model may be explained 
in detail, using clinical parameters, to the general population 
who participated in the medical examinations. Several 
AF risk score prediction models have been reported previ-
ously.21–26 Those studies identified the following clinical 
variables as risk factors: age,21–24,26 BMI (height or 
weight),21–24,26 blood pressure (SBP, DBP, or the use of 
antihypertensive medication),21–24,26 lifestyle habits (smoking, 
drinking status),22–24,26 lipids (non-HDL-C),26 on medication 
for the treatment of diabetes,22,24 eGFR,25 hemoglobin,25 
heart disease (myocardial infarction and heart failure), 
CAD, cardiac murmur,21,22,24,26 and ECG findings (PR 
interval, left atrial enlargement, and left ventricular hyper-
trophy).21,22,24 Our model also extracted several variables 
(i.e., age, SBP, γ-GTP [liver function], HbA1c, a past 
history of CAD, kidney function [creatinine], and anemia 
[hematocrit, hemoglobin]) that are similar to the factors 
derived from previous studies. These previous studies 
used Cox proportional hazard regression models, in which 
the significance of the influence different factors have is 
determined on the basis of the β coefficients, hazard ratios, 
and confidence intervals. Expressing the results in terms of 
coefficients is easier to understand as a linear function, but 
how the impact will change with changes in the clinical 
parameters remains unclear. However, in our model, the 
contribution of each of the 9 important features could be 
better understood by considering each feature as a non-
linear function.

Arrhythmia on physical examination, a medical history 
of CAD, and age were recognized as significant risk factors, 
as reported previously. Lower hemoglobin levels and anemia 
were previously reported to contribute to the prediction of 
AF, but hematocrit also seems to be important. Although 
hematocrit is an index of the same RBC properties, a high 
hematocrit may be caused by relative polycythemia due to 
dehydration, which can also be assessed by s-Cr. The present 
study has shown that the risk of AF increased with increasing 
s-Cr. Both hematocrit and s-Cr may be explained as 
predictors of AF via dehydration. In our database, we did 
not include whether the subjects drank alcohol as a variable. 
However, γ-GTP could be used as a surrogate of alcohol 
consumption, which was detected as a risk factor for AF 
in the present study.

HbA1c ranging from 5% to 7% appeared to increase the 
risk of AF, and the effect of diabetes as a risk factor of AF 
was significant. Sandhu et al examined the differential 
associations between risk factors and the development of 
paroxysmal vs. non-paroxysmal AF.27 In that study, 
HbA1c quartiles (≤4.84%, 4.84 to ≤5.00%, 5.00 to ≤5.19%, 
>5.19%) and the occurrence of AF were analyzed, with 
higher HbA1c levels found to be preferentially associated 
with the early development of non-paroxysmal AF.27 
Iguchi et al also investigated whether the prevalence of AF 
was associated with HbA1c levels in Japanese adults.28 In 
that study, the presence of AF was associated with the 
HbA1c level, especially in subjects with HbA1c <6.5%. 
The results of the present study show that high HbA1c 
increases the risk of AF with respect to glycemic control.

Hypertension has been reported as a risk for AF in 
previous reports. A cross-sectional study enrolling elderly 
subjects suggested a negative relationship between SBP 
and AF prevalence.29 A similar trend has been observed in 
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Diseases 2012. J Atheroscler Thromb 2017; 24: 338 – 345.
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Yamagishi M, et al. Renal glucosuria is not associated with 
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community. Atherosclerosis 2017; 261: 111 – 116.

16. Tada H, Kawashiri MA, Yasuda K, Yamagishi M. Associations 
between questionnaires on lifestyle and atherosclerotic cardio-
vascular disease in a Japanese general population: A cross-sectional 
study. PLoS One 2018; 13: e0208135.

17. Tada H, Shibayama J, Nishikawa T, Okada H, Nomura A, Usui 
S, et al. Prevalence, self-awareness, and LDL cholesterol levels 
among patients highly suspected as familial hypercholesterolemia 
in a Japanese community. Pract Lab Med 2020; 22: e00181.

18. Tanaka Y, Tada H, Hara S, Hayashi K, Patel RB, Nishikawa T, 
et al. Association of proteinuria with incident atrial fibrillation 
in the general Japanese population. J Cardiol 2021; 77: 100 –  
105.
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of electrocardiographic findings. Littleton, MA: John Wright-PSG, 
1982.

20. De Bock KW, Van den Poel D. Reconciling performance and 
interpretability in customer churn prediction using ensemble 
learning based on generalized additive models. Expert Sys Appl 
2012; 39: 6816 – 6826.
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D’Agostino RB, et al. Development of a risk score for atrial 
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cohort study. Lancet 2009; 373: 739 – 745.
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Chambless LE, Crow R, et al. A clinical risk score for atrial 
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107: 85 – 91.

23. Everett BM, Cook NR, Conen D, Chasman DI, Ridker PM, 
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ECG to confirm the presence of AF.
We constructed an explainable AI system to detect 

current AF or normal ECG status and visualize the impact 
of clinical parameters, but the model cannot predict the 
future. The model is only designed to predict subjects with 
current AF complications in the general population. A 
useful method in terms of prevention could be, for example, 
a risk scoring system to predict the onset of AF within 3 
years. An explainable AF future prediction and diagnosis 
system would be even better if it could visualize, in an 
understandable way, which clinical parameters could be 
improved in high-risk subjects to prevent AF and by how 
much.

In summary, we established a novel AF risk prediction 
model by using data from physical observations, past 
histories, and general laboratory test results obtained 
during health checkups. Further, we expressed how clinical 
characteristics affect the incidence of AF with non-linear 
trends. Our model is expected to contribute not only to 
more accurate AF risk prediction, but also understanding 
of the effects of each parameter, potentially leading to 
personalized medicine.
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