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ABSTRACT: Herein, we report the first catalytic one-step synthesis of cyclopropenium cations (CPCs) with readily available
alkynes and hypervalent iodine reagents as carbyne sources. Key to the process is the catalytic generation of a novel Rh-carbynoid
that formally transfers monovalent cationic carbynes (:*C-R) to alkynes via an oxidative [2+1] cycloaddition. Our process is able to
synthesize a new type of CPC substituted with an ester group that underpins the regioselective attack of a broad range of carbon and
heteroatomic nucleophiles, thus providing a new platform for the synthesis of valuable cyclopropenes difficult or not possible to

make by current methodologies.

yclopropenium cations (CPCs), discovered by Prof.
Ronald Breslow in the late 1950s,' > are the smallest
member of the Hiickel aromatic systems. These aromatic cations
with two s-electrons delocalized over three 2p orbitals are
known to have considerable thermodynamic stability and
molecular strain (Figure 1A). The highly stable tris-
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Figure 1. Catalytic synthesis of cyclopropenium cations.

(dialkylamino) CPC derivatives have recently found applications
as electrophotocatalysts,” gene delivery agents,” catholytes for
nonaqueous redox batteries,” or liquid crystals.” However, CPCs
have been largely underappreciated in organic synthesis, despite
their potential as three-carbon building blocks in the
construction of complex architectures.
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One of the main reasons is that the majority of synthetic
strategies toward CPCs, developed between the 1950s and
1980s, rely on multistep sequences and show limitations in
efficiency. Those methods require the synthesis of cyclopropene
derivatives that lead to the CPC upon (pseudo)halide, nitrile,
carbonyl, or hydride abstraction with strong Lewis/Brensted
acids."”® Alternative approaches based on functionalizations of
alkynes with chlorocarbenes generated from chlorodiazirines
under UV light irradiation” or with a cationic metal-carbyne
[(17°-C4H;)(CO),Mn=CPh]" show very limited scope (only
two examples are described in the latter case).'” In addition to
this, nonsymmetrical CPCs are likely to react with poor
regioselectivity in nucleophilic events. In fact, pioneering work
by Padwa showed that reactions between CPCs and Grignard
reagents provided mixtures of regioisomers.ll

Herein, we would like to disclose the invention of a one-step
Rh-catalyzed process for the preparing of CPCs that combines
readily available alkynes and hypervalent iodine reagents as
formal cationic carbyne sources (Figure 1B)."> The process
showed a broad scope of a new class of CPCs substituted with an
ester group that, upon treatment with a diverse range of
nucleophiles, provided access to valuable and elusive classes of
cyclopropene derivatives. B

Our research group is focused on the development of a
carbyne transfer platform in organic synthesis using tailored
hypervalent iodine reagents'* as carbyne synthons.'> The
catalytic activation with dirhodium carboxylate catalysts'®
provides access to Rh-carbynoids (int-1) (Figure 2),°04 4
novel class of Rh-carbene species substituted with an ester group
and a hypervalent iodine moiety as outstanding nucleofuge.'”
Such species have the ability to emulate the carbene/
carbocation behavior of a monovalent cationic carbyne (:*C—
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Figure 2. Mechanistic hypothesis.

R) and provide a transient cyclopropyl-I™ intermediate upon
alkene cyclopropanation. Recently, we questioned whether we
could exploit our Rh-catalyzed carbyne transfer platform for the
discovery and development of the first one-step and catalytic
synthesis of cyclopropenium cations (Figure 2). We hypothe-
sized that the catalytically generated Rh-carbynoid (int-1) could
intercept alkynes and provide cyclopropenyl-I™ intermediates
(int-2) that, upon an ionization process that occurs with the
departure of the IV leaving group, would lead to a new class of
CPC substituted with an ester group.

With this mechanistic proposal in mind, we evaluated the
teasibility of this idea using 1-phenyl-1-propyne, a broad range of
commercial Rh, catalysts, and diazomethyl-based hypervalent
iodine reagents 2 (see Supporting Information for full
optimization studies). Taking into account the possible
instability and reactivity of the desired CPC, we employed
1,3,5-trimethoxybenzene as external nucleophile to quantify the
efficiency of the transformation. To our delight, after extensive
optimization studies, we were able to find that pseudocyclic
reagent 2a and the Du Bois catalyst'” Rh,(esp), (1 mol %) led to
cyclopropene 3a* with excellent efficiency (94% yield, >20:1
r.r.) (Table 1). The only regioisomer observed comes from the
selective attack of the nucleophile to the cyclopropenium carbon
atom substituted with the ester group.

During the optimization of the reaction, we observed that
other sterically demanding catalysts worked well (Table 1, entry
1); however, Rh,(OAc), or the more electrophilic Rh,(TFA),
was not competent (entries 2, 3). The nature of the hypervalent
iodine reagent played also a key role in the efliciency of the
transformation. The use of triflate as counterion provided a
moderate yield of 3a* (entry 4). However, although full
consumption of linear reagent 2¢ was observed, no conversion
to the desired product was detected (entry S). On the other
hand, cyclic reagent 2d was inert to catalytic diazo activation
with Rh,(esp), (entry 5). Only upon addition of Zn(OTf)2 as
the additive, a well-known activator of cyclic I () reagents, * was
a moderate yield of 3a* observed (entry 6). We also found that
higher reaction temperatures could give product 3a* but with
lower efficiency (entry 7).

Table 1. Optimization Studies™”

OMe
PFa
CozEt 1 mol% ha(esp)z MeO O
JO CH20I2 -60 °C >} oMe
50 min, then CO,Et
1,3,5-trimethoxybenzene Ph
-60 °C, 10 min 3a* (>20:1rr)
(1.3 equw) R = CHZCOZEt 94% isolated yield
entry deviation of reaction conditions yield“3a*, %
1 Rh,(OPiv), instead of Rh,(esp), 93
2 Rh,(OAc), instead of Rh,(esp), 4
3 Rh,(TFA), instead of Rh,(esp), 0
4 2b instead of 2a 50
S 2¢,d instead of 2a 0
6 2d used with Zn(OTf), instead of 2a 60°
7 reaction carried out at —50 °C 81

“Reactions performed with alkyne 1a (0.2 mmol, 2.0 equiv), reagents
2 (0.1 mmol, 1 equiv), Rh catalyst (I mol %), and 1,3,5-
trimethoxybenzene (4 equiv) in CH,Cl, (0.067 M). Yields are
reported on the basis of '"H NMR analysis using CH,Br, as the
internal standard. 0.5 equiv of Zn(OTf), was used.

OTf

| COEt CO,Et CO,Et
O----1 TfO—I—< o—I|
X N | N, \P3
s A C R e
4 P _—
2b 2c 2d
R = CH,CO,Et

During the optimization process, we observed that the
addition of 2a to la and Rh,(esp), at —60 °C provided the
formation of a slurry, which quickly turned into a clear solution
after the addition of 1,3,5-trimethoxybenzene. We believed that
this observation suggested the potential formation of either
intermediate int-2 or CPC 3a. Initial experiments performed to
isolate the intermediate at room temperature were unsuccessful;
however, slow addition of dry hexane at —60 °C and quick
filtration provided a white solid, which was subjected to
spectroscopic analysis using mono- and bidimensional nuclear
magnetic resonance (*H, C, F, *'P, '"H-"*C NMR, CD;NO,
as solvent), IR, and HRMS. The three deshielded signals at
171.5, 166.7, and 156.0 ppm observed in the *C NMR spectra
clearly referred to the cyclopropenium carbon atoms, thus
confirming the formation of 3a (86% yield) (Table 2). 3a could
be stored at —20 °C under argon for at least 1 month without
detectable decomposition and can be handled at room
temperature without the need of a glovebox.

Encouraged by the results, we next aimed to develop the scope
of our catalytic protocol for the synthesis of CPCs 3 by
examining a wide range of alkynes (Table 2). In case the CPC
was difficult to isolate, it was transformed to the corresponding
cyclopropene 3* with 1,3,5-trimethoxybenzene. We were
delighted to observe that our process worked well for alkynes
with aryl rings substituted with synthetically useful function-
alities such as halogens (3b—e, 31—n), acetoxy (3f), phenyl (3g),
CF, (3h), ester (3i), alkene (3j), and methyl (3k) in para, meta,
and ortho positions as well as naphthalene (30,p) and
heterocycle cores (3q*).

Alternative primary alkyl groups such as ethyl (3r), sec-butyl
(3s), chloroalkyls (3t*, 3u), benzyl (3v¥), and alkyl groups
functionalized with protected amines (3w*) or alcohols (3x*,
3y) were well tolerated. Secondary alkyl substituents like
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Table 2. Scope of the Catalytic Synthesis of Cyclopropenium Cations 3“

OMe
PFe 1 mol% Rh,(esp)
{0 COR _rTee MeO O
| | O--- -|—< CH,Cl,, -60 °C, 50 min B>—Cco,R o
RO.C™0 N N2 then o > OMe
2 | addition of hexane PFs CO,R
Z or 1,3,5-trimethoxybenzene
1 2 3 (28 examples) 3* (11 examples)
. ; R=F, 3b 81% N
© e R=Cl, 3c 67% Ve, €
CO,Et /—gycoza R =Br, 3d 73% [@>—Cco,Et CO,Et = [&>—CO,Et
9 e R=1,3e 68% o o
PF PF, ’ PF,
7\ 6 7\ 6 R = OAc, 3f 67% j\  PFe 7\ 6
\—/ \/_/— R=Ph, 3g 63% o — \—/
— f
3a 86% (78%)° R=CF5 3h 63%% O 3j56% R = Me, 3k 59% R=Cl, 3m 57%
R = CO,Me, 3i 60% \ R =Br, 31 59% R=Br,3n 76%
Me Me R =Et, 3r 68%
= sec- 0
CO.Et @ CO,Et R R = sec-Bu, 3s 59%
o o R=CHCl 3t 75% ~ COE
PFs PFs COELR = (CHyCl, 3u 63% | | N0
7\ o X -
/ \— | PH PF; R =CHyPh, 3v* 73% Y PFe
_ N R = CH,NPhth, 3w* 71% .
Ts R = (CH,),OTBDPS, 3x* 45% 3y 76%
30 79%° 3p 68%° 3q* 54% 24 ’
Me <] [T < >
Me— ™ — Me,
COLE CO,Et CO,E COEt )%COzEt
) ) o Q -
PH %Fe Ph PFg Ph PFs Ph PFe Me PFg “»
- ccbe
3z 76%% 3aa 48%' 3ab 62% 3ac* 75% 3ad 46%9 (77%)>9 2151106
pd Me
Me Me | Ph n Me 0 Me
&>—CO,R -
D>—CO,Et
>—co,Et COEt COE 2 o 9 o O
Me ? vd  BE \ ®F ved  BE 6 Me—"" PFq
PFg 6 6 6 R = Me, 3aj 63% Me
. R = i-Pr, 3ak 85%
3ae 64%9 3af* 34%9 3ag* 66%¢ n=1 3ah* 81%%9 o _pp 300 830, 3am* 51%9  Me

n =2, 3ai* 71%%9

“Performed with alkyne 1 (0.26 mmol, 1.3 equiv), hypervalent iodine reagents 2 (0.2 mmol, 1.0 equiv), CH,Cl,, —60 °C, S0 min, 1,3,5-

trimethoxybenzene (0.8 mmol, 4.0 equiv) was added for the synthesis

of 3*. ®Yield of the reaction to give 1.08 g of 3a and 1.10 g of 3ad. “1.5 mol

% catalyst. %2 mol % catalyst. “Reaction carried out at —63 °C. 1.5 equiv of alkyne. $2.0 equiv of alkyne.
Y Y q Y q Y

isopropyl required an increment on the catalyst loading (2 mol
%) and alkyne (1.5 equiv) (3z); however, cyclic derivatives such
as cyclopropyl (3aa), cyclobutyl (3ab), and cyclohexyl (3ac*)
worked well under the standard conditions. Alkynes substituted
with tertiary groups like tert-butyl or trimethylsilyl provided
traces of the desired CPCs. On the other hand, while alkynes
substituted with two alkyl groups were well tolerated (3ad—ai*),
diphenylacetylene was unreactive and terminal alkynes such as
phenylacetylene provided mixtures of products difficult to
identify.”” We also demonstrated that alternative ester
substituents at the hypervalent iodine reagents were possible
(3aj—al, 3am*). Finally, it is worth highlighting that CPC 3a
and 3ad were prepared in >1 g without compromising the
efficiency of the process.

We next turned our attention to evaluate the reactivity of our
cyclopropenium cations with a broad range of carbon and
heteroatomic nucleophiles aiming to develop a novel synthetic
route to cyclopropenes (Table 3). These highly strained, three-
membered unsaturated carbocycles are well known for their
unique potential as versatile building blocks in organic synthesis
that can undergo nucleophilic or electrophilic additions,

substitutions, rearrangements, cycloadditions, and ring-opening
reactions, delivering pharmaceutical-relevant scaffolds like
cyclopropanes or complex structures,” but also as biorthogonal
reagents for chemical biology applications.”

Considering that the nucleophilic attack of 1,3,5-trimethox-
ybenzene to 3a proceeds with outstanding regioselectivity, we
hoped that alternative nucleophiles could behave analogously.
We were delighted to observe that a variety of commercial or
readily available aryl, alkyl, vinyl, and alkynyl Grignard reagents
provided instantaneous access to cyclopropenes 4—19 as single
regioisomers and in high efliciency with simple reaction
conditions (CH,Cl,, 0 °C, 2—15 min). Moreover, alternative
nucleophiles such as boronic acid (20), organozinc (21),
organosilicon (22, 23), carbonyl (24, 25) and isocyanide
nucleophiles (26) performed well, and in many cases, no
chromatographic column was needed to obtain the correspond-
ing cyclopropene product.

It is worth highlighting that our methodology with cyclo-
propenium cations provides a new approach to the synthesis of
complex cyclopropenes™® and solutions to challenges observed
in metal-catalyzed carbene transfer with diazo acetates to

16739 https://doi.org/10.1021/jacs.2c07769
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Table 3. Synthesis of Tri- and Tetrasubstituted Cyclopropenes by Nucleophilic Attack”

Me,

Nucleophiles Ve Nu

CO,Et )><

€]
CH,Cl,, 0 °C CO,Et

R 2Llo, 2
PFe 2-15 min R
3a (R = Ph), 3ad (R = Me) 4-38
A carbon nucleophiles

with ArMgBr or ArMgBr-LiCl

OMe
. a we, {2
M
4 95% : Me, Q OMe >
Ny O 5 72% >
g 1,6 77% CO,Et > pr/  COE
3% R b/ COaEt

single regioisomer
observed in all reactions

with RMgBr or RMgBr-LiCl

R=Me, 14 77%
R =iPr,15 59%

R=H Y& R R=1BU, 16 24%
E:g )>< R = CH,Ph, 17 75%
B R =vinyl, 18 89%
R=CO.Et, 7 4 prl OO R I CECH, 19 33%
CO,Et R=CN, 8 72% _ o Ar = 3,5-bis(trifluoromethyl)phenyl, 12 70% -
PH 2 R=Ph,9 61% 11 50% Ar = phenanthren-9-yl, 13 67%
R =Me, 10 43%
with p-MeCgHB(OH),b  with Et,Zn with TMS-allyl with TMS-CN with acetone with diethylmalonate with C=NfBu
64 2 2 pyridine oxide/H,O
Me
o} EtO,C o)
M M M M M M
Me O E Me © / \ CN 4 4 CO,Et 4 NH¢Bu
} Me
Et Et Et Et Et Et
CO,Et pr/  CO2 pr/  CO2 pr/  CO2 pr{ €02 prf  CO2 pr/  CO2
PH
20 62% 21 73% 22 91% 23 88% 24 83% 25 92% 26 55%
B heteroatomic nucleophiles
with NH,Boc? with imidazole? with imidazo[1,2-a]pyridine with 2-pyridone® with methanol? with HFIP?
]
N /N CF
7 "N < Me 3
M \ Me, M
°\_ NHBoc Me @ Vel oN J N °\_ OMe 0_<
> BF ° o
6 CO,Et
PH CO,Et o CO,Et - CO,Et PH CO,Et PH CO,Et PH 2
27 85% 28 51% 29 96% 30 89% CCDC 2191638 ° 31 92% 32 73%
with
diphenylphosphine with PPh3 with dimethyl sulfide with 1-phenyl-1H- with TMSNCS with TBABH,4
oxide? tetrazole-5-thiol
Ph
o { N~ Me
Me __Ph Me @ Me, Me, N Me, H
Pl o S \ SCN
)>< o PPhy SWe; S j>< —<\N’N )>< )><
]> ( PFe ]: ( CO,Et
CO,Et CO,Et CO,Et 2
o " o/ COZE . o/ COZE - 2 o 2 PH
33 72% 34 92% CCDC 2191860 35 94% 36 77% 37 93% 38 46%

“Performed with 3 (0.1 mmol), carbon or heteroatomic nucleophiles (0.15—0.2 mmol), CH,Cl,, 0 °C, 2—15 min. bCSZCO3 (0.1 mmol) was added

as base. Yields are reported on the basis of isolated pure product.

internal alkynes. Catalytically generated metal-carbenes sub-
stituted with alkyl or allyl groups undergo faster f-hydride
migration”* or intramolecular cyclopropanation,” respectively,
before the intermolecular cyclopropenation of the internal
alkyne takes place.

The remarkable promiscuity observed of our CPCs to react
with carbon nucleophiles encouraged us to question whether
heteroatomic nucleophiles could work. If successful, such
reactions would provide access to a type of tetrasubstituted
cyclopropenes not possible to make by any reaction currently
available, because of the lack of heteroatom-substituted
diazoacetates or alternative carbene sources.”® We were
delighted to observe that a selection of commercial nitrogen,

oxygen, phosphorus, and sulfur nucleophiles provided cyclo-

propenes 27—37 with high efficiency. In addition, a reaction
carried out with tetrabutylammonium borohydride provided
trisubstituted cyclopropene derivative 38 by the regioselective
hydride attack to 3a.””**

Notably, all kinds of heteroatomic nucleophiles underwent
regioselective attack to the cyclopropenium carbon atom
substituted with the ester group. The reactions provide access
to a plethora of novel cyclopropene derivatives with unknown
reactivity, which promise applications in reaction discovery and
in the construction of complex skeletons.”

Finally, in order to provide an explanation of the outstanding
and intriguing regiocontrol observed in the nucleophilic
addition to CPCs 3, we calculated the geometry optimization
and LUMO map using SPARTAN 20 at the ®b97xd/6-31G(d)

https://doi.org/10.1021/jacs.2c07769
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level. In Figure 3, it can clearly be appreciated that the carbon
atom substituted with the ester group has the highest LUMO

Figure 3. LUMO map of 3a (method: ®B97X-D, basis set: 6-31G(D)).

coefficient among the cyclopropenium carbon sites, thus
suggesting that nucleophilic attack occurs under orbital control.

In summary, we have discovered and developed the first
catalytic synthesis of cyclopropenium cations based on the
formal transfer of monovalent cationic carbynes (:*C—R) to
readily available alkynes from a catalytically generated Rh-
carbynoid. This type of group transfer process is uncommon for
metal-carbyne complexes, which mainly evolve via [2+2]
cycloadditions with alkynes.””'® Our process accesses pre-
viously unknown ester-substituted CPCs, which can be handled
outside of a glovebox, from a broad range of internal aryl- and
alkyl-substituted alkynes. The synthetic utility of our CPCs has
been demonstrated by the regioselective attack of a broad range
of carbon and heteroatomic nucleophiles that provided valuable
cyclopropenes. Several of those compounds cannot be made by
current approaches due to the lack of appropriate diazoacetate
reagents as carbene sources or limitations in current method-
ologies. Current studies are focused on exploiting novel
cyclopropenium reactivity for asymmetric synthesis and other
applications.
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