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1. Introduction

Perovskite is a yellow, brown, or black minerals, have CaTiOs as
chemical formula, it obtains its name from mineral named as a cal-
cium titanium oxide and it revealed by Gustav Rose in the Ural
Mounts of Russia. The name Perovskite came after Lev Perovski
(1792-1856) who was the first discoverer in 1792 (Cheng and
Lin, 2010). Its crystal was first described in 1926 (Wenk and
Bulakh, 2004) and published in 1945 (Szuromi and Grocholski,
2017).

ABXj5 is the main formula for all Perovskite compound. In this
formaula A and B are two cations of very dissimilar bulks (Atta
et al., 2016), C is an octahedron ions surrounded the B ion and X is
an anion that bonds to both (Schaak and Mallouk, 2000). X is often
oxygen and other big ions such as halides, sulfides and nitrides are
probable. Numerous oxide compounds are known belonging to a
few perovskite-based homologous series (Tsunoda et al., 2003).

Perovskite oxides types (in their ideal form) are cubic or nearly
cubic in structure like other transition metal oxides which contains
the same formula (ABOs). At low temperature some phase transi-
tions may be occurs. Oxides class of compounds has wide potential
for many uses due to their structures crystal which are simple and
exceptional in their ferroelectric and dielectric properties.

Perovskites structures material exist in three types; the first one
contain localized electrons, the second contains delocalized
energy-band states, while the third can be a transition between
these two types (Szuromi and Grocholski, 2017). There are several
of perovskites structures types that exists in different form such as:
A;BO,4_ Layered perovskite, ABOs-perovskite, A,A'B,B'Og_ Triple
perovskite and A,BB'Og_ Double perovskite, etc. (Thomas et al.,
2017), the most abundant ones are MgSiO3 and FeSiOs,

In solid-state physics, perovskite oxides have been studied
because they put up most of the metal ions in the periodic table

due to its substantial number of different anions (Nagata et al.,
2013). These types of solids are significant in the field of electrical
ceramics such as; material science, astrophysics, particle accelera-
tors (Zhu et al., 2014) geophysics, fission-fusion reactors (Nagata
et al., 2013), refractories, heterogeneous catalysis environment
(Seyfi et al., 2009), etc.

Oxides and oxides-like types of perovskite have different prop-
erties such as; insulator-metal transition, ionic conduction charac-
teristics, dielectric, variation of solid-state phenomena, metallic,
and superconducting characters, it also have many applications
in physics and chemistry filed (Kreisel et al., 2000).

Perovskite-structured oxides can accept considerable substitu-
tions in one or both cationic sites (A and B sites) while retaining
their original crystal structures (Xu et al, 2009). Recently,
perovskite-structured ceramics have several extraordinary appli-
cations such as random access memories (Pengfei et al., 2017),
actuators, tunable microwave devices displays (Nenasheva et al.,
2004), piezoelectric devices (Protesescu et al., 2015), transducers,
wireless communications (Muralt et al., 2009), sensors, and capac-
itors (Kawamura et al., 2002).

In several applications perovskites proved to have great interest
due to their useful properties in surface acoustic wave signal pro-
cessing devices, electrochromic, switching, image storage, filtering,
and photochromic (Atta et al., 2016). Recently, halide perovskites
have drawn considerable attention in the fields of material explo-
ration (Pengfei et al., 2017) due to its great effectiveness of solid-
state solar.

2. Structure
Perovskite or perovskite-structure are used interchangeably.

This name is given to anything has the generic form ABX3; and
the same crystallographic structure. True perovskite is formed

o w

Fig. 1. Ideal cubic perovskite structure (ABO3).
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from oxygen, titanium and calcium, in the form CaTiO3 (Bradley,
2017; Jeon et al., 2015). Also it referred to a kind of ceramic oxides
having ABX formula. This compounds are classified into alkaline
metal halide Perovskites, inorganic oxide perovskites, and organic
metal halide perovskites (Chen et al., 2018).

The perovskite materials have a common structure termed as
ABX3, where “A” and “B” are cations have different sizes and “X”
is an anion which bonds to both. The ‘A’ atoms are bigger than
the ‘B’ atoms (Ono et al., 2017). The A and B locations may be
replaced by any metal or semimetal from the periodic table. In
all cases, the anion is oxygen, and can be any other could be found
at this position (Chen et al., 2018).

The atomic arrangements in perovskite structure are the first
found for the mineral perovskite calcium titanate, it have sub-
metallic to metallic luster cube like-structure beside deficient cleav-
age and hard tenacity, colorless streak or colors include orange,
black, brown, yellow and gray (Whitfield et al., 2016; Yi et al., 2019).

Ideally, the perovskite structure is described as cubic. The A
atoms form the corners of the cubic cells, B atoms are in the centre
in 6-fold coordination, surrounded by an octahedron of anions, the
oxygen atoms are situated in the faces’ centres, and the A cation in
12-fold cub- octahedral coordination.

In perovskite cubic unit cell (Fig. 1), atom A ion is a lanthanides
with larger radius or alkali earth metals (Khajonrit et al., 2018).
Generally, A cations are 12 fold coordinated by oxygen anions
and sits in corners of the cube at corner position (0, 0, 0) while oxy-
gen atoms are at the face center of the cubic lattice at position (12,
15, 0) but tetravalent B cations lie within oxygen octahedral, occu-
pies the body center position (V%, 4, ¥2). The structure is pictured as
a three dimensional network of regular corner linked BOg octahe-
dral (Tan et al., 2014).

The general formula as ABO; where, can be explained as; A and
B are cations of different size and O is the anion (Zhou et al., 2018).
The B atom has 6 fold co-ordination number and the A atom have
12 fold co-ordination number, the A site cation is slightly larger
than B cation. Atom B is found at the cube corner position and A
is at the body center while oxygen atoms are at face-centered posi-
tions (Zhou et al., 2018) but O is the oxygen ion has the ratio of
1:1:3.

Perovskite has highly stable structure, large number of com-
pounds, variation of properties, and various applied applications.
Key role of the BOg octahedral in ferromagnetism and Ferro-
electricity. Broad formation of solid solutions lead to material opti-
mization by structure control and phase transition engineering
(Zuo and Ding, 2017). A distinctive unit cell structure of a simple
perovskite compound is shown in Figs. 1-3.

The perovskite structure is stable when 0.89 <t < 1.06 (taking
Io = 0.14 nm). Ideal cubic structure only observed at room temper-
ature when t is close to 1. If A ions are small, t < 1, and tetragonal,
orthorhombic and rhombohedral deformations of structure due to
rotation and tilting of the BOg octahedral are observed.

Some changes may exist in perovskite ideal cubic form which
lead to the formation of orthorhombic, rhombohedral, hexagonal,
and tetragonal forms. Generally to fulfill perovskite formation,
two requirements should be exist those are electroneutrality and
Ionic radii requirements (Shi and Jayatissa (2018); Pandey et al.,
2017).

Other types of deformations are induced by the appearance of
spontaneous polarization in ferroelectric perovskites. The per-
ovskite structure provides the building blocks for the assembly of
other important crystal structures (Huang et al., 2017) such as:
Roddlesden-Popper phases (Cap+1TinO3n+1), Aurivillius compounds

Pm 3m

Oxygen Octaedra

Octaedral site B cations :
Nb, Ta, Ti, Zr, Fe, Mn, ....

Dodecaedral site A cations :
K. Na. Ca. Sr. Ba. Pb. Bi, Y, La,

Fig. 2. Cubic perovskite SrTiO3.

v

Ideal cubic perovskite
structure (SrTiO,)

Distorted perovskite
structure (CaTiO,)

Orthorhombic perovskite
ABO,

Fig. 3. The perovskite structures and deformations.
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Fig. 4. Comparison of (a) orthorhombic; (b) tetragonal and (c) cubic perovskite phases obtained from structural optimization of MAPbI3. Top row: a-c-plane and bottom row:

a-b-plane (Reprinted with permission).

((Bi202)**(Bim_1TimOsm+1)?> ") and oxygen-deficient brownmillerite
compounds (CaAlFeOs).

Perovskite halide construction depend on three issues: (1) the
constancy of the BXg octahedron expected by the octahedral factor
m, (2) neutrality of the charges between the cations and anions,
and (3) A, B and X the ionic radii are in agreement with the neces-
sities of the Goldschmidt tolerance factor (Conings et al., 2014).

Organometallic halide perovskites include a metal cation of car-
bon family, an organic cation, and a halogen anion. Methyl-
ammonium-lead-iodide (MAPbDI5) is the normally used perovskite
light absorber. Certain investigation substituted lead with other
metal ions due to its toxicity during device construction (Tan
et al., 2014; Bischak et al.,, 2017). In addition, several organic
cations, inorganic cations and halide anions have been used to
increase its stability and efficiency (Bischak et al., 2017).

Perovskite materials have different phases depending on their
temperature. If temperature is lesser than 100 K, they showed a
stable orthorhombic (y) phase. On the other hand, the tetragonal
(B) phase started to appear and replace the original orthorhombic
(v) phase (Bischak et al., 2017) when temperature increased to
160 K. Stable cubic (o) phase replaced the tetragonal (B) phase
when temperature increases 330 K. Fig. 4 displayes all those three
crystal structures (Korshunova et al., 2016).

3. Classification of perovskites

A classification of the perovskite-type structures on the basis of
the radii of the constituent metallic ions has been attempted by
several workers (Kuzmanovski et al., 2007). Due to the flexibility
of the ABO3 perovskite crystal structure in addition to its ability
to accommodate a wide range of cations with different oxidation
states.

The opportunity for several substitutions at the position of the
cations is the main characteristic of perovskites (Dimitrovska
et al., 2005) which lead to the occurrence of big groups of com-
pounds with dissimilar cations in B position (ABxB;_x03); with dif-

ferent cations in A position (AxA;_xBO3); and with substitution in
both cation position (AxA;_xBxBi_x03).

A and B cations valences are generally close to 2* and 4%;
respectively, but in some cases their valences will be 3* for both
elements only if the B*>* cation has a six coordination. The oxide
phases have been mainly divided into two types (Galasso, 2013),
and the detailed classification is shown in flowchart given in Fig. 5

1. Ternary oxide ABOs5 type and their solid solutions which on the
basis of oxidation states can be classified into A'*B>*0s,
AZ'B*05;, A3'B3'0; and oxygen and cation deficient species
(Galasso, 2013)

2. Newer complex type compounds (AB’xB”y) Oz where B’ and B”
are two different elements in different oxidation states (Bhalla
et al,, 2000) andx +y = 1.

The buckling of the (A03)*~ layers courses in the perovskite
structures due to distortion or displacement of the oxygen anion
array which caused by the valence variation at the A cation posi-
tion (Pengfei et al., 2017). This buckling lead to distortion of the
octahedra with B cations at the centers, in this case B cation must
have the flexibility to tolerate this effect (Huang et al., 2016). For
filling the B cation position, the transition metal elements are the
most suitable candidates due to its multi valency or the special
3d and 4d electron configurations. This is the reason that transition
metal oxides have perovskite-type structures and they usually
have extraordinary physical properties (Niu et al., 2015).

Compounds of perovskite complex type, A (ByBy") O3, can be
divided into four subgroups (Modeshia and Walton (2010)):

(a) Compounds with oxygen deficient phases, A (ByYBy") O3_,.

(b) Others which contain equal amounts of the two B elements
only, A (B'g5B"g5) O3

(c) Those in which contain the higher valence state element are
twice in value than the lower valence state element, A
(B'0.33B"067) O3,
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Ternary oxides and their solid
solutions where, A is large metal cation
and B is smaller

Oxygen
ANBSO 2 pd &fﬂ‘ion
s ATBYO, AMBO, deficient
phases
CaMnO,
LaFeO, g TEO
¢
catio,  BIMnO, s;\'o;‘ '
BATIO, ;"‘(f'gs =
“a) 00,
KNbO, CaMnOy
10,
AgTa0,

Oxide phases

A(B')¢:B" 390

newer complex A(AB’xB"y) 03 B'&B” are
two different elements in different
oxidation states and x +y=1

I T T 1
A(B'yB )0y A(B'yB"900;  ABB")0y,

Ba(Ndy -Wy0)04

Ba(Cag35Nby )0,

Ba(BiysTag<)0y

B‘(B'\B”\)Oh

Fig. 5. Classification of perovskite structure flowchart.

(d) Those which contain the higher valence state element in
twice values as much as lower valence state element, A
(B'0.67B"033) O3,

4. Properties

Perovskite materials exhibit many interesting properties due to
its characteristic chemical nature such as; their non-stoichiometry
of the anions and/or cations, the valence mixture electronic struc-
ture, the distortion of the cation configuration, and the mixed
valence (Kim et al., 2005).

The possibility of Perovskite to synthesizing multicomponent
by partial substitution of cations in positions A and B gives rise
to various complex types with peculiar properties such as;
Dielectric  properties, Optical properties, Ferroelectricity,
Superconductivity, Piezoelectricity, Multiferroicity, Colossal
magneto-resistance (CMR) and Catalytic activity(Kim et al., 2005).

4.1. Dielectric properties

Dielectric materials are the materials in which electro-static
fields can persevere for a long time (Niu et al., 2015). It showed a
great resistance to electric current channel below the action of
the applied direct current voltage and diverge sharply in their sim-
ple electrical properties from conductive materials. Layers of these
substances are generally inserted into capacitors to improve their
performance, and the term dielectric refers to this application
(Xiao et al., 2011).

Great dielectric permittivity or ferroelectric materials are of
massive importance as electroceramics for engineering and
electronics industry. Ferro-electricity is generally described by a
soft-mode model (Hoefler et al., 2017). Several routes have been
pursued to explain the dielectric and mechanical properties start-
ing from the simple structure BaTiO3 by the solid solution system
Pb (Zr,Ti)O3 to other distinct families of materials. These routes

care about the flexibility of chemical manipulation and submis-
siveness of the perovskites (Bhatti et al., 2016).

Relaxor ferroelectric is one of the routes, which show some
effects because of the to slow reduction processes for temperatures
above a glass transition (Xiao et al., 2011) such as; big dielectric
constants, a marked frequency dispersion and difference in dielec-
tric constant (Kim and Yoon, 2000).

General examples for relaxor ferroelectrics are lead lanthanum
zirconate titanate (PZT) and lead magnesium niobate (PMN). Ferro-
electrics can be considered as ferroelectric crystals (Zheludev,
2012) and both of its high dielectric constant and low dielectric
loss make perovskites one of the best candidates for tunable micro-
wave device applications and dynamic random access memory
(DRAM) (Dongling et al., 2012).

4.2. Optical properties

Perovskites have provide very special class of materials with
excellent optical and photoluminescence properties. Studying the
optical properties of single domain crystals of BaTiO3 at various
temperatures (Ohta and Hiramatsu (2018)) showed that the refrac-
tive index of the crystal was nearly a constant value (2.4 from 20°
to 90 °C & reached 2.46 at 120 °C) (Zhang et al., 2017). The single
crystal of BaTiOs, 0.25 mm thick was found to transmit from
0.5 to 6 . The optical coefficient of strontium titanate single
crystals was obtained from 0.20 1 to 17 1 in wavelength (Xin
et al,, 2019).

The optical density of CaTiO3; showed absorption characteristics
quite similar to those of SrTiO3 crystals with the exception that the
absorptions are shifted to shorter wavelengths (Zhang et al., 2008).
Both of these compounds have been considered for high tempera-
ture infrared windows. SrTiO3 is considered as an excellent mate-
rial for use with optically immersed infrared detectors (Jia et al.,
2003).

Some perovskites electro-optic coefficients of are nearly con-
stant with temperature (Pinel et al., 2004). Potassium tantalate
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niobate (KTN) is one of the perovskite oxides which has a large
room temperature electro-optic effect and wide-angle fast optical
beam scanner, therefore this type is not only useful to optical com-
munications, but also to various other products that use optical
beams, such as laser application.

Using of perovskite laser host materials is a great deal. Lumines-
cent properties of all uncommon earth ions in perovskite-type oxi-
des are highly stable and can work in various environments (Wang
et al., 2008) in addition to they conceded to be the best candidate
in field plasma display panel (PDP) devices and emission display
(FED) because they are suitably conductive to release electric
charges stored on the phosphor particle surfaces (Neeraj et al.,
2004). Phosphors of rare earth ions doped perovskite type oxides
(Dhahri et al., 2014) could be widely used in displays, X-ray
phosphors.

One of the environmental friendly photoluminescence (PL) is
BaZrOs3 which emits light in the visible region and prepared easily
at low cost (Di et al., 2018; Yagi, 2009). The property of PL makes it
promising for applications such as; scintillators, solid state light-
ning, field emission displays, green photocatalyst and plasma dis-
plays (Sayyadi-Shahraki et al., 2017).

4.3. Ferroelectricity

Ferroelectricity is the phenomenon that occurs when an exter-
nal electric field is applied to some materials leading to a sponta-
neous electric polarization (Retot et al., 2008; Cross, 2011). The
discovery of ferroelectricity in perovskite-based materials and
other barium titanate (BaTiOs3) opened up new different applica-
tion for ferroelectric materials, leading to significant interest in
other types of ferroelectrics (Morris, 2018; Lopez-Juarez et al.,
2011).

The ferroelectric materials have dielectric constant twice larger
in magnitude than those in ordinary dielectric. BaTiO3 is a well-
known ferroelectric material with relative dielectric constant, its
crystal at room temperature, exhibits no net polarization, in the
absence of an external field, even though the dipoles of adjacent
unit cells are aligned (Xu, 2011).

Ferroelectric property is used to several purposes such as; in
ultrasound imaging devices, fire sensors, infrared cameras, vibra-
tion sensors, tunable capacitors, memory devices, RAM and RFID
cards, input devices in ultrasound imaging, and a. make sensors,
capacitors, memory devices, etc. (Raghavan, 2015).

4.4. Superconductivity

Certain materials once cooled under a specific serious tempera-
ture exhibited zero electrical resistance and expulsion of magnetic
flux fields this phenomena called Superconductivity (Kittel, 2005).

The oxide perovskites structure type provides an excellent
structural framework due to the existence of superconductivity.
Perovskites which have Cu act as high-temperature superconduc-
tors. The first reported example of superconducting perovskites is
La-Ba-Cu-O perovskite and there are many more (Mourachkine,
2004). Perovskite oxides now eclipsed the use of Intermetallic
compounds as source of many superconducting materials such
as; cesium tungsten bronzes and Sodium, potassium, rubidium
(Cava, 2008).

Type 2 group Superconducting “perovskites” metal-oxide
ceramics are those compounds which have specific ratio of 2 metal
atoms to every 3 oxygen atoms (Morita et al., 2006). This type of
superconductors is contained of alloys and metallic compounds
(excluding for niobium, vanadium, and technetium), recently they
achieve higher transition temperature than Type 1 superconduc-
tors (Ishihara (2009)).

4.5. Piezoelectricity

Some materials have the capacity to produce an electric charge
in reaction to applied mechanical stress is known as Piezoelectric-
ity (Wang et al. 2004). Therefore, if definite crystals were subjected
to mechanical strain, they became polarized at a degree which is
proportional to the applied strain (Wang et al., 2006). On the other
hand, they have some changed when they were exposed to an elec-
tric field which is known as the inverse piezoelectric effect
(Brockmann, 2009).

There is a difference between piezoelectric and ferroelectric
materials, in the fires materials it requires some external impetus
while in the second there is spontaneous alignment of electric
dipoles by their mutual interaction. Therefore, all piezoelectric
are not ferroelectric but all ferroelectrics are piezoelectric.

Some synthetic piezoelectric materials are the piezoelectric
ceramics with the perovskite crystal structure (Aksel et al., 2011)
having a general formula of A%*B*0%3, Also there are naturally
occurring piezoelectric materials; quartz, cane sugar, collagen,
topaz, rochelle salt, tendon, etc.

Perovskites materials Piezoelectricity property have many valu-
able scientific application (Ye, 2008) such as; Cigarette lighter, Sen-
sors, Microphones, High voltage and power source, Pick-ups,
Pressure sensor, Force sensor, Strain gauge, Actuators, Piezoelectric
motors, Piezoelectric motors, Nano-positioning in AFM, STM,
Acuosto-optic modulators, Loudspeaker, Valves, Energy harvesting,
AC voltage multiplier (Kleckers, 2013).

4.6. Multiferroicity

Multiferroics include special class of materials showing concur-
rent ferroelectric, ferromagnetic, and ferroelastic ordering. The
specialty of these materials localized in their ability to simultane-
ous utilization of both their magnetization and polarization states,
a potential which make them excellent candidates for memory
devices and sensors (Spaldin et al., 2010; Ramesh and Spaldin,
2007).

Many multiferroics are transition metal oxides with perovskite
crystal structure, and include rare-earth manganite and ferrites
(Wang et al., 2010). These materials shows multiferroicity even
at room temperature (Kézsmarki et al., 2011). Bismuth ferrite, a
rhombohedrally distorted perovskite (compounds with multifer-
roics property) possesses both anti-ferromagnetic and ferroelectric
order for a widespread temperature range which is greatly above
room temperature (Singh et al., 2011).

Most of the ferromagnetic materials are generally metals and
they must be an insulator because the absence of insulators limits
the simultaneous occurrence of ferromagnetic and ferroelectric
ordering (Ghosh et al., 2019). The important requirement for ferro-
electricity is a structural distortion from the high symmetry phase
that removes the center of inversion and allows an electric polar-
ization (Fig. 6) (Zverev et al., 2014). It has been found that even
in the absence of any structural distortion, magnetic spin ordering
can produce ferroelectricity.

Multiferroics have great technological potential importance due
to the co-occurrence of magnetic order and ferroelectric polariza-
tion joint in a single-phase material (Eerenstein et al., 2006). Mul-
tiferroic materials open promising opportunities for spintronics
devices and designing novel microelectronic (Bai et al., 2005). It
has been found that even in the absence of any structural distor-
tion, magnetic spin ordering can produce ferroelectricity.

Multiferroicity, a co-occurrence of natural ferroelectric and fer-
romagnetic moments, is an uncommon phenomenon due to the
minor number of asymmetry magnetic point groups that permit
an unplanned polarization (Johnson and Radaelli, 2014).
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Fig. 6. Conditions required for ferroelectricity (polarization) and ferromagnetism (unpaired electron spin motion).

Multiferroic materials classified into Type I & type II Multifer-
roic. Type I includes the structures with nonpolar-to-polar phase
transition which responsible about the breaking of reversal equi-
librium leading to ferroelectricity at high temperatures. While in
type Il the primary order parameter is the staggered (antiferromag-
netic) magnetization (Liu et al., 2011). In addition, if the magnetic
ordering goes below a given temperature, it lowers both magneto-
structural coupling to the crystal structure (this gives rise to an
electrically polar state) and the symmetry group from polar mag-
netic phase to a nonpolar parent phase making wrong ferroelec-
tricity therefore ferroelectric order and magnetic factors are
closely joined (Francis et al., 2016).

4.7. Colossal magneto resistance (CMR)

Colossal magneto resistance (CMR) is a property of particular
materials (mostly manganese-based perovskite oxides) that allows
them to change their electrical resistance in the presence of a mag-
netic field (Lu et al., 2004). The discovery of this property (CMR)
affect the divalent alkallne earth ion doped perovskite manganite
RE;_AExMnOs, where AE represents divalent alkaline earth ions
(Ca, Sr, Ba) and RE is trivalent rare-earth (La, Pr, Sm, etc.) (Garg
et al., 2009).

Magnetic phases are observed depending on the orbital occu-
pancy of the manganese ions and the associated orbital order, dif-
ferent. In these compounds, ordering temperatures of similar
magnitude for both degrees of freedom because their orbitals
and spins are strongly coupled (Feroze et al., 2017).

On the other hand, magnetic frustration, low dimensionality,
and quantum effects lead to very peculiar phase graphs with or
without magnetic long range order. In unfulfilled lattices the
degeneracy of the magnetic zero state can be frequently lifted by
second order energy scale or quantum fluctuations (Tokura,
2006). Generally, CMR effect is closely related to its manganites
which are correlated electron systems with interplay among the
lattice spin, Jahn-Taller effect, charge & orbital degrees of freedom,
electronic phase separation, charge ordering, etc. (Rojas-Cervantes
and Castillejos, 2019).

4.8. Catalytic activity

Perovskites displayed exceptional catalytic action and great
chemical stability therefor it includes in the catalysis of changed
reactions. Also, it can be defined as an oxidation or oxygen-
activated catalyst and as a model of active sites (Roni, 2018).

The perovskite structure showed high catalytic activity in addi-
tion there stability allowed the preparation of several compounds
from elements with uncommon valence statuses or a great extent
of oxygen lack (Roni, 2018). They also can act as motor exhaust gas
catalyst, cleaning catalyst, and intelligent automobile catalyst for

Table 1
Some properties of perovskite oxides.

Typical property Typical compound

BaTiO3, PdTiO3

Pb(Zr, Ti)Os, (Bi, Na)TiO5

ReOs, SrFe03, LaCrO3, LaCoOs, LaNiO3

Lag oSrp.1Cu03, YBa,Cu307, HgBa,Ca,Cu,0g
La(Ca)AlO3 BaZrOs, CaTiO3, SrZrOs,
BaCeOs, La(Sr)Ga(Mg)0s,

LaMnOs, LaFeOs3, La;NiMnOg

LaCoOs3, LaMnOs3, BaCuO3

Lag gSrg 4C003, LaggCag,MnO3

Ferromagnetic
Piezoelectricity
Electrical conductivity
Superconductivity

Ion conductivity

Magnetic property
Catalytic property
Electrode

various catalytic environmental reactions. Some Perovskite types
(containing Cu, Co, Mn, or Fe) showed catalytic action to the
straight decay of NO at high temperature due to the occurrence
of oxygen deficiency and the simple removal of the surface oxygen
in the a shape of a reaction product (Nishihata et al., 2005).

Perovskite revealed a great effect as a vehicle catalyst; intelli-
gent catalyst, removal of CO &NO, effective catalyst and Not com-
busted hydrocarbons. It can show redox properties to reserve
unlimited scattering state (Singh et al., 2007) and when oxidation
occurs fine metal bits of Pd will formed with radius of 1-3 nm. This
lead to partial replacement of Pd into and sedimentation from the
structure of the perovskite under decreasing and oxidizing states
showing a great scattering state of Pd. This cycle improved the
long-standing reliability of Pd through the pollutants elimination
from the exhaust gas. The great stability of the perovskite structure
and the unlimited spreading state of Pd were the cause of calling it
as intelligent catalyst (Wang et al., 2014) (see Table 1).

5. Synthesis

All the usual physical or chemical properties of perovskite oxi-
des ceramic are used for synthesizing perovskite. Conventional
ceramic methods built on solid phase reactions at high tempera-
tures are usually used to obtain these materials (Sharm et al.,
2018).

Usual synthesis of ceramics using solid phase reactions which
has many drawbacks due to repeatedly ground and heated of metal
oxides or the corresponding salts before calcinations (Varma et al.,
2016). These drawbacks are in the form of inhomogeneity of the
products, presence of defects which interferes with luminescence,
incorporation of chemical impurities during repeated grinding and
heating operations and coarseness of particles which makes them
unsuitable for coatings (Eerenstein et al., 2006).

To improve synthesis methods and avoid these disadvantages
to get pure materials several new methods have been developed
(Zaharii, 2012) such as: Co-precipitation method, Solid-state reac-
tions, Hydrothermal synthesis, Pechini method, Gas phase prepara-
tions, Sol-gel method, Low temperature solution combustion
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method, Microwave synthesis, PVD methods - laser ablation, MBE
and Wet chemical methods (Nieto et al., 2007).

5.1. Co-precipitation method

The precipitation of metal salts is a method which is frequently
used for the synthesis of simple oxides (Ecija et al., 2012). Precip-
itation occurs after adding a chemical reagent which decrease the
solubility limit. Co-precipitation happens when different cations in
solution precipitate simultaneously.

For the simultaneous precipitation of all cations and obtaining
perfect homogeneous products it is essential to control the tem-
perature, concentration, pH and solution homogeneity. Ammonia,
ammonium oxalate, urea and ammonium carbonate are some of
the popular reagents used for precipitation. The formation of oxide
compounds, insoluble in solutions occurs due to the thermal
decomposition of the hydroxides, organic or carbonates salts
(Pérez-Coll et al., 2003).

5.2. Solid-state reactions

In solid-state reactions, both of the raw materials and the last
products are solid therefore all reagents such as carbonates,
nitrates, oxides can be mixed with the stoichiometric ratios
(Shandily et al., 2016). Using solid-state reactions Perovskites can
be synthesized by mixing oxides or carbonates of the B-site and
A- metal ions in the perovskite formula ABO; at the essential pro-
portion (Kamihara et al., 2008) and required at temperatures of
>2/3 m.p. at a time up to ten hours to obtain the last product with
the desired composition (Ecija et al., 2012).

All ingredients are ball milling effectively in a milling media of
isopropanol or acetone. The acquired product is dried at 100 °C and
left in air to calcinate for 4-8 h at 600 °C under alternating temper-
ature (warming/cooling rates 2 °C/min). The obtained samples are
ground and sieved and re-calcinated again at 1300-1600 °C for 5-
15 h under the alternating temperature as before (rate is 2 °C/min)
to insure the formation of single phase of perovskite. The achieved
samples then grinded and sieved (Danks et al., 2016).

5.3. Hydrothermal synthesis

The hydrothermal synthesis principle of is carry out the reac-
tion in the aqueous solution or suspense the precursors at high
temperature and pressure. Crystalline powders can be obtained
in this method without calcination (Esposito, 2019). This method
previously used to synthesize and check the thermodynamic con-
stancy of BaTiOs; and other perovskites but now the particle size
and shape (by using it) can be changed through controlling the
reaction temperature, pH time and concentration of reactants
(Miron, 2008).

Recently, BaTiO3 started to be synthesized at low temperatures
using this method by using an electric field in a hydrothermal shell
at specific temperatures (100 and 200 °C), after this some
researcher manage to synthesized it using an electric field to fur-
ther reduction of the hydrothermal synthesis temperature
(Shandily et al., 2016).

5.4. Pechini method

The Pechini method, the polymeric precursor method, or the
method of mixed liquids are the same name for one synthesis
method (Shandily et al., 2016) which allows the synthesis of oxi-
des, with an excellent control of the stoichiometry of reaction
products and the reactants, and showed high reproducibility and
homogeneity of the reaction mixture (Esposito, 2019).

The principle of this method is the construction of a chelate by
the reaction of changed cations and introduced it into the system
as soluble salts with a carboxylic acid (Koyanagi and Bohme,
2006). The resulting solutions containing metal salts and citric acid
which when mixed with a desired ethylene glycol and heated
(80-100 °C) gives a clear solution. Further heating to higher tem-
perature (150-250 °C) leading to the occurring of condensation
reaction involving COOH and OH groups, which leads furthermore
leading to the formation of a polyester “resin”, in which metallic
cations are distributed uniformly in the resin mass (Abbas et al.,
2014).

5.5. Gas phase preparations

Gas phase reaction or transport reaction used for the admission
of perovskite films with a specific thickness and structure
(Koyanagi and Bohme, 2006). Gas phase admission can be classi-
fied to three types of deposition at: at the crystallization tempera-
ture under suitable atmosphere (i), an intermediate temperature of
873-1073 K then post-annealing treatment (ii), and a low sub-
strate temperature then post- annealing at high temperature (i)
(Danks et al., 2016).

YBa,Cus0;_ films is one of the Yttrium barium copper oxide
which can be made by the co-evaporation of Y, Cu, and BaF, then
hardening at high temperatures in O, atmosphere and wet with
water vapor to reduce the hardening time and substrate interface
(Boston et al., 2014). Magnetron sputtering, Laser ablation, molec-
ular beam epitaxy, thermal evaporation, dc sputtering, and elec-
tron beam evaporation techniques were developed for gas phase
deposition (Tuan et al., 2019).

5.6. Sol-gel method

Sol-gel alkoxide route is a prominent method in the field of
ceramics. Several perovskites phases were probably the first such
non-silicate ceramics ever made by this techniques (Kemnitz and
Noack, 2015). The metallic alkoxides are available commercially
for a large variety of metals from which hybrid materials are
obtained by reactions in the presence of organic compounds
(Zheludkevich et al., 2005). The processing of oxide compounds
by alkoxide route is based on the hydrolysis and poly-
condensation of metallic alkoxides (Kessler et al., 2006).

Sol gel method were usually applied to many of the aluminate,
titanate, and complex mixed cation phases and broadly used to
prepare nanosized materials (Sunde et al., 2016), but its applica-
tion is limited due to the stability of its precursor system and it
is difficult to control the chemical composition of complex oxides.
Sol-gel techniques have attracted broader courtesy particularly for
making thin films at low temperatures. Sol-gel procedure in aque-
ous medium uses inorganic salts and chelating agents of carboxylic
acids or polyol as precursors (Feinle et al., 2016).

5.7. Low temperature solution combustion method

The low temperature combustion synthesis (LCS) technique is a
novel time saving and energy effective method for the synthesis of
ultra-fine powders (Srivastava, 2012). It is based on gelling, some
organic fuel, and combustion of an aqueous solution containing
salts of the desired metals, giving a voluminous fluffy product with
large surface area (Wang et al., 2008).

There are several advantages of this method, so low tempera-
ture combustion synthesis has been adopted in the preparation
of CaSiO3 ceramic (Popa and Calderén-Moreno, 2009).
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5.8. Microwave synthesis

Microwaves are gradually used as a fresh synthetic way in solid
State Chemistry. The usage of microwave irradiation is a hopeful
alternative heat source for the synthesis of perovskite oxides
(Alammar et al., 2017). This method offer a time savings and mas-
sive energy when compared to the other method of ceramic syn-
thesis. Microwave synthesis of perovskite oxides can be achieved
by numerous procedures such as Joining microwave heating with
other synthetic techniques such as sol-gel or combustion, Irradia-
tion of a solution in an autoclave and Direct irradiation of a mixture
of the solid reactants (Prado-Gonjal et al., 2014).

There are two methods of microwave synthesis, these are
microwave-assisted hydrothermal synthesis & solid-state micro-
wave, the solid-state microwave is narrow to “simple” composi-
tions only while the combining of microwaves with other
methods such as combustion, hydrothermal synthesis, or sol-gel
permits for enhanced stoichiometric control of complex doped
phases (Schmidt et al., 2015).

Joining solvothermal synthesis and microwave heating result in
novel morphologies and metastable phases. Perovskite oxide mate-
rials properties as superconducting, dielectric, ferromagnetic, fer-
roelectric, and multiferroic systems play very important rule in
there synthesis using microwave techniques (Zhu, 2009). The sim-
plicity and speed of microwave synthesis so it became attractive
for Pb-containing perovskite, because it minimizes the Pb-loss
(Alammar et al., 2017).

5.9. Roll of PVD methods - laser ablation, MBE

One of the most promising techniques is Pulsed-laser deposi-
tion (PLD) which is used for the creation of excellent matrixes,
complex-oxide, heterostructures, and well measured interfaces.
The use of a pulsed laser to make the stoichiometric changes the
material from a solid source to a substrate (Christen and Eres,
2008).

PLD has been used broadly in the development of those high-
temperature cuprates and many other multipart oxides, especially
compounds that cannot be gained via an equilibrium route. The
method has been successful for the film synthesis of Y-type mag-
netoplumbite. The process of laser ablation has been considered
widely because of its importance in laser machining (Willmott,
2004).

5.10. Wet chemical methods (solution preparation)

Wet-chemical methods is an efficient accurate synthesis
technique for synthesising the redox state of double-perovskite
compound. These procedures involving the sol-gel preparation,
co-precipitation of metal ions using different precipitating agents
and thermal treatment (Selbach et al., 2007).

This method opened new guidelines for molecular construction
in the production of perovskites, and it characterized by its sim-
plicity, reduced sintering time, mass production, high level of
repeatability, lower temperature than solid-state reactions, better
flexibility in thin films forming, superior homogeneity, better-
quality reactivity, improved control of stoichiometry, purity, parti-
cle size, and a low industrialization implementation cost (Taylor
et al., 2019).

Wet Solution methods were categorized built on the methods
used for solvent removal. Two classes for this method were recog-
nized: the first one is one the separation of the solid & liquid
phases in which first precipitation followed by filtration, centrifu-
gation, etc. (i) while the second one is for solvent removal and in
this thermal treatment such as evaporation, sublimation, combus-
tion, etc., (ii). There are some aspects must be taken in thought in

solution methods like solubility, purity, toxicity, solvent compati-
bility, choice of probably inert anions, and finally cost (Kumar
and Chand, 2018; Tarale et al., 2013).

6. Applications

Perovskite oxides type are have wide applications due to its
stable structure, large number of compounds, variety of properties
(Deka et al., 2014). Inorganic perovskite type oxides are attractive
nanomaterial for varied applications due to its large number of
compounds, very stable structure, variety of properties and several
practical applications. Some of these compounds nanomaterial are
wildly applied in catalysis of many chemical engendering fields.
The activity of these oxides as catalyst is better than any other
transition metals and precious metal oxides.

Depending on Perovskite oxides distinct variety of properties
they became useful for various applications such as; Thin film
capacitors, Non-volatile memories, Photo-electrochemical cells,
Recording applications, Read heads in hard disks, Spintronics
devices, Laser applications, For windows to protect from high tem-
perature infrared radiations, High temperature heating applica-
tions, Thermal barrier coatings, Frequency filters for wireless
communications, Non-volatile memories, Sensors, actuators and
transducers, Drug delivery, Catalysts in modern chemical industry,
Ultra-sonic imaging, ultrasonic & underwater devices (Ottochian
et al., 2014). Some more important applications of different per-
ovskite structured are listed in Table 2.

Recently, they utilized in electrochemical sensing of alcohols,
acetone, glucose, gases, amino acids, H,0,, sensitivity, excellent
reproducibility, unique long-term stability, anti-interference abil-
ity and neurotransmitters exhibiting good selectivity, etc.. In addi-
tion, some perovskites are worthy applicants for the development
of effective anodic catalysts for direct fuel cells viewing high cat-
alytic performance (Kumar and Chand, 2018). Some details of the
application are summarized in the following.

6.1. Sensors and biosensors

6.1.1. Gas sensors

There are a sum of necessities that the resources used as gas
devices must content such as hydrothermal constancy, good simi-
larity with the target gases, suitable electronic structure, resistance
to poisoning, and alteration with existing skills (Christen and Eres,
2008).

Perovskite oxides used as gas sensors like semiconductors,
LaFeOs; and SrTiOs. They are interesting materials as gas sensors
for their ideal band gap, thermal stability, and size difference
between the cations of B-- and A sites. Perovskites materials which
contain cobaltates, titanates, and ferrites were applied as gas sen-
sors for spotting CO, NO,, methanol, ethanol, and hydrocarbons
(Taylor et al., 2019).

6.1.2. Glucose sensor

It is important to determined H,0, and glucose in numerous
fields in our live such as in food, pharmaceutical products and
clinic. H,0, is oxidizing agents in many neutrinos and industries.
Glucose also is the basic metabolite in many of the living organ-
isms and in clinical check of diabetes mellitus, and universal
healthiness problem. Therefore it is important to have excellent
sensitive biosensors for determination both H,0, and glucose
(Ottochian et al., 2014).

Although there are different types of enzymatic work as glucose
sensors but these enzyme lack the stability due to its basic nature
in addition its action was greatly affected by poisonous chemicals,
temperature, humidity, etc. consequence, there must be searching
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Some important applications perovskite structured and their properties.

Reference compound

Properties

Existing and potential applications

Notes

BaTiO3

Ferroelectricity, high dielectric constant,
piezoelectricity

(Ba,Sr)TiO3 Non-linear dielectric properties
Pb(Zr,Ti)03 Piezoelectricity, Ferroelectricity
Bi4Ti30q2 Ferroelectric with high Curie temperature
(Ko.sNag5)NbOs3, Ferroelectricity, piezoelectricity

Nag sBio5TiO3
(Pb,La)(Ti,Zr)0O3 Transparent ferroelectric
BiFeO3 Magnetoelectric coupling, high Curie

PbMg; 3Nb;/303

temperature
Relaxor ferroelectric

SrRuO3 Ferromagnetism
(La, A)MnOs3 Ferromagnetism, spin-polarized electrons,
A=Ca, Sr, Ba giant magnetoresistance
SrTiO3 Incipient ferroelectricity, thermoelectric
power, metallic electronic conduction
when n-doped, mixed conduction when p-
doped, photocatalyst
LaGaOs3 Oxyde-ion conduction
Baln,0s5

BaCeOs, BaZrOs

Proton conduction

(La,Sr)BO3 Mixed conduction, catalyst
(B =Mn, Fe, Co)

LaAlO3 Host materials for rare-earth luminescent
YAIO3 ions,

Multilayer ceramic capacitors (MLCCs),
embedded capacitance, PTCR resistors,
Tunable microwave devices
Piezoelectric transducers and actuators,
ferroelectric memories (FERAMs)
High-temperature actuators, FeRAMs

Lead-free piezoceramics

Optoelectronic devices
Magnetic field detectors, memories

Capacitors, actuators

Electrode material for epitaxial
ferroelectric thin films

Magnetic field sensors, spin electronic
devices

Alternative gate dielectric material,
barrier layer capacitors, photoassisted
water splitting, substrate for epitaxial
growth,

Electrolyte in solid oxide fuel cells (SOFCs)

Electrolyte in protonic solid oxide fuel
cells (P-SOFCs)

controlled oxidation of hydrocarbons,
Cathode material in SOFCs, membrane
reactors, oxygen separation membranes,
Substrates for epitaxial film deposition,
Lasers

Most widely used dielectric ceramic
Tc=125°C

Used in the paraelectric state

PZT: most successful piezoelectric
material

Aurivillius compound

Tc=675°C

Performances not yet comparable to PZT
but rapid progress

First transparent ferroelectric ceramic
Most investigated multiferroic compound.
Tc=850°C

frequency-dependent properties, High
permittivity, large electrostrictive
coefficients,

Multifunctional material

Baln,Os is an oxygen deficient perovskite
with brownmillerite structure.
High protonic conduction at 500-700 °C

Used for SOFC cathodes

for stable, sensitive, simple, and selective non-enzymatic glucose
sensor such as inorganic perovskite oxides (Jia et al., 2015).

This sensor have perfect electrocatalytic activity toward glucose
and H,0, oxidation in alkaline medium due to the occurrence of
huge amount of active sites in the modifier.

6.1.3. Neurotransmitters sensor

In the mammalian central nervous system, dopamine (DA) is an
essential catecholamine neurotransmitter. The deficiency of this
transmitter lead to Parkinson’s disease; therefore, its detection is
very important but there are very big problem in detection of DA
which is the interference of ascorbic acid (AA) and uric acid (UA)
with its detection (Jia et al., 2015). Therefore, it is very important
to find sensitively and selectively detector to DA even in presence
of high concentration of AA and UA.

After electrode modified of SrPdO3 (CpE/SrPd0Os3) it became very
good electrochemical DA sensor in living liquids with exclusive
long-term constancy and low discovery limit even in the occur-
rence of high level of AA and UA, it also can sense DA in human
urine samples with full selectivity recovery, precision, accuracy,
and detection limit (Zhang et al., 2013).

6.2. Solid oxide fuel cells

Fuel cells are used as substitutes to ignition engines due to their
possibility to reduce of the environmental pollution. They uses
specific type of chemical compound as energy source which trans-
fer to electrical energy like battery. Fuel cells are more acceptable
for use due to their effectiveness, spread nature, zero noise pollu-
tion, low emissions and its use in future hydrogen fuel economy.
There are numerous categories of fuel cells but solid oxide fuel cell
are the greatest common samples of fuel cells (EI-Ads et al., 2015).

Due to the variances of electrical conductive characteristics of
perovskites, they are selected as an active component in SOFC
(Wang et al., 2012) because they exhibited its properties of electri-
cal conductivity which is comparable to that of metals with high
ionic conductivity, and perfect mixed ionic and electronic conduc-
tivity (Atta et al., 2013).

6.3. Catalyst

Perovskite oxides used universally as catalyst in new chemical
manufacturing, showing suitable solid-state, surface, and morpho-
logical properties (Thirumalairajan et al., 2013). Several per-
ovskites oxides proved to have excellent catalytic activity to
different reactions like hydrogen evolution, reduction reactions,
and oxygen evolution (Lianghao et al., 2015).

6.4. Solar cells

One of the green source of energy is solar energy because it can
be used in replace of the fossil fuels energy. Solar radiation can be
transform to electrical energy in a suitable way building numerous
uses for solar energy. It can be perfectly changed into electricity
using photovoltaic solar cells which built on silicon. The disadvan-
tage of silicon built solar cell is its high price of electricity produced
from it, so develop solar cell with low cost is needed (Wang et al.,
2012; Li et al., 2016).

Solar cells created on organic/ inorganic solid-state methyl
ammonium lead halide hybrid perovskite are in used because it
presented better points such 20% lower cost than that of traditional
silicon solar cells in addition to the availability of the raw materials
(Jin et al, 2013). Perovskite showed outstanding essential
properties for photovoltaic applications like suitable band gap,
excellent stability, long hole-electron diffusion length, high
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absorption coefficient, high carrier mobility & transport, low tem-
perature of processing, charge carriers with small effective mass
and easy processing steps (Bao et al., 2015).

7. Conclusion

The unique perovskite structure has the potential to provide a
wealth of novel compounds based on A and B site occupancy,
which gives rise to a wide range of materials systems with unique
properties and wide applications. Several methods were used as
synthesizing methods of perovskites compounds such as; Co-
precipitation method, Solid-state reactions, Hydrothermal synthe-
sis, Pechini method, Gas phase preparations, Sol-gel method, Low
temperature solution combustion method, Microwave synthesis,
Roll of PVD methods - laser ablation, MBE, Wet chemical methods.
The variety of perovskite compounds synthesizing methods pro-
vided materials for many commercial and special technologies in
addition to great range of electrical, magnetic, optical and mechan-
ical properties over a wide-ranging temperature.

Depending on Perovskite oxides distinct variety of properties
they applied sensors and biosensors for detection of alcohols,
hydrogen peroxide pollution, glucose in diabetic patient, and neu-
rotransmitters due to their catalytic routine permanency, high sen-
sitivity to detect minor compounds, selectivity for tested
compounds, and inability to be interfere with other compounds.

Also, they showed electronic conductivity, the oxide ions move-
ment through the crystal lattice, differences on the content of the
oxygen, chemical stability, photocatalytic, thermoelectric, and
dielectric properties. Some perovskites are capable for the
improvement of effective anodic catalysts for direct fuel cells
showing high catalytic performance.
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