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Abstract

Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) 

known as Crohn’s disease and ulcerative colitis have shown strong evidence of association to the 

major histocompatibility complex (MHC). This region encodes a large number of immunological 

candidates, including the antigen-presenting classical HLA molecules1. Studies in IBD have 

indicated that multiple independent associations exist at HLA and non-HLA genes, but lacked the 
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statistical power to define the architecture of association and causal alleles2,3. To address this, we 

performed high-density SNP typing of the MHC in >32,000 patients with IBD, implicating 

multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn’s disease and 

ulcerative colitis. Significant differences were observed between these diseases, including a 

predominant role of class II HLA variants and heterozygous advantage observed in ulcerative 

colitis, suggesting an important role of the adaptive immune response to the colonic environment 

in the pathogenesis of IBD.

Meta-analyses of genome-wide association studies (GWAS) have recently shown that 

Crohn’s disease (CD) (MIM266600) and ulcerative colitis (UC) (MIM191390) share the 

majority of the 163 known genetic risk factors for IBD, with the MHC being one of the 

notable exceptions4. Data from these GWAS, however, have had insufficient variant density 

to define the association signals within the MHC. Targeted studies of IBD with higher 

variant density within the MHC region but with modest sample sizes have indicated that 

multiple independent associations are likely to exist at human leukocyte antigen (HLA) 

genes and non-HLA genes, with the most consistent associations being to HLA class II loci, 

mainly HLA-DRB1 and HLA-DQB1, with some reports of association at the HLA-C class I 

locus and potentially also at non-HLA genes2,3,5–8. In the current study we generated high 

quality genotypes for 7,406 SNPs within the MHC region on a total of 18,405 patients with 

CD, 14,308 patients with UC and 34,241 controls subjects. Using this SNP data, we imputed 

and benchmarked the genetic variation within the class I (HLA-B, HLA-C, and HLA-A) and 

class II (HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-

DPA1 and HLA-DPB1) HLA genes at the level of classical HLA alleles and amino acid 

positions (please refer to the Online Methods).

As a first step to defining the nature of the association to CD and UC within the MHC, we 

performed univariate analyses of the SNPs, classical HLA alleles, and HLA amino acids. 

These analyses revealed a very large number of variants across the MHC region with 

significant association to these phenotypes (Fig. 1), with major peaks of association centered 

in and around the classical HLA genes, suggesting a role for classical HLA alleles in CD 

and UC risk. This observation is consistent with gene-based analyses, which show strong 

association at the HLA genes for both UC and CD (e.g. P<1×10−300 for HLA-DRB1 in UC) 

(Supplementary Table 1). In particular, these analyses demonstrated a role of HLA-DRB1 

that cannot be attributed to other HLA genes, with evidence of residual association in class I 

and class II regions (Supplementary Table 1). In order to be more quantitative, we 

calculated the variance explained by the class I and class II alleles. Whereas the contribution 

of class I and class II alleles are relatively equivalent in CD, not only is the overall impact of 

HLA on disease risk greater in UC, but the alleles in the class II region have nearly three-

fold greater impact than class I alleles (Fig. 2). Moreover, these analyses have revealed that 

classical HLA alleles explain three- to ten-fold more of the disease variance than that 

explained by the index SNPs that were previously identified (~3% vs ~0.3% in CD; ~6% vs 

~2% in UC) (Fig. 2).

Specifically, in our univariate analyses, the most significant association in CD is to HLA-

DRB1*01:03 (P<4×10−62, OR= 2.53), with a p-value over 10 orders of magnitude more 
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significant than the next best associated variants in the region. Importantly, HLA-

DRB1*01:03 has an effect in CD which is statistically independent from the other most 

associated variants in the MHC, as shown by reciprocal conditional logistic regression 

(Supplementary Fig. 1). In the UC univariate analysis the single most significant variant is 

a non-coding SNP (rs6927022, P<5×10−153, OR=1.49) near HLA-DQA1, previously 

identified in the recent meta-analysis of GWAS 4; while multiple additional variants show 

highly significant association, most are correlated to this top signal (Fig. 1 and 

Supplementary Fig. 2). Strikingly the next strongest independent association is to HLA-

DRB1*01:03, having a much greater OR (P<1×10−120, OR=3.63; Pcond<2×10−89, OR=3.06) 

(Supplementary Fig. 2). Reciprocal conditioning on HLA-DRB1*01:03 did not abolish the 

effect seen at rs6927022 (P<9×10−123, OR=1.43), indicating that these have mostly 

statistically independent effects in UC. Taken together, our analyses point to HLA-

DRB1*01:03 as likely being causal in both diseases, with additional causal alleles in the 

class II and class I regions. Given this observation, it is probable that additional alleles 

within HLA-DRB1 contribute to IBD risk.

We thus examined an HLA-DRB1-centric model and identified seven HLA-DRB1 alleles 

with independent effects on CD risk (study-wide significance threshold of 5×10−6) 

(Supplementary Table 2). Moreover, when controlling for these seven HLA-DRB1 alleles, 

we identified only a single additional class II allele (HLA-DPA1*01:03) independently 

associated with CD. Using the same conditional logistic regression framework for the 

analysis of the class I locus, we identified seven class I HLA alleles that are significantly 

associated with CD, after conditioning on the eight class II alleles (Fig. 3 and 

Supplementary Table 2). This HLA-DRB1-centric model explains about 2% of disease 

variance (Fig. 2). In UC, we identified a total of 12 HLA-DRB1 alleles, 1 HLA-DPB1 allele 

and 3 class I alleles (Supplementary Table 3) that can explain the association to the MHC 

and which account for about 5% of disease variance (Fig. 2).

As can be seen in Figure 3, for many of the alleles identified in the HLA-DRB1-centric 

model, a few other candidate alleles in class I or class II can be considered. In particular, 

multiple HLA-DRB1 alleles have equivalent associations at HLA-DQA1 and HLA-DQB1 

(e.g. HLA-DQA1*03:01 is equivalent to HLA-DRB1*04 and HLA-DRB1*09 alleles in UC) 

equally supporting a role for genetic variation within HLA-DQA1 and/or HLA-DQB1 in 

disease susceptibility, particularly for UC (Fig. 3). However, several of the alleles in these 

models, including HLA-DRB1*01:03, do not have any such proxies and thus are strong 

candidates for being causal (Fig. 3). Further dissection of these class II correlated signals for 

identifying potential causal alleles may only be feasible in admixed or ethnically diverse 

populations 9. Further refinement may also be possible by examining the impact of clinical 

sub-phenotype and associated autoimmune co-morbidities on observed associations, 

although functional studies will be needed to infer causality. For the present analysis we 

were able to assess the impact of colonic vs. non-colonic inflammation, and found that 

HLA-DRB1*01:03 is associated with colonic CD and that HLA-DRB1*07:01 is associated 

with the absence of colon involvement (Supplementary Fig. 3), in line with previous 

suggestions10. This explains the shared associations for CD and UC at HLA-DRB1*01:03 
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and strongly suggests that this allele is critically involved in determining the colonic 

immune response to local flora.

Given that classical HLA alleles consist of combinations of specific amino acids at multiple 

positions, we tested whether the association to disease could be better explained by single 

amino acid positions. Indeed we observed very strong association signals at many single 

amino acid variants in CD (e.g. five amino acids of HLA-DRβ at positions 67, 70 and 71) 

and in UC (e.g. 4 amino acid variants of HLA-DQα at positions 50 and 53 and 215 and 4 

amino acid variants in HLA-DRβ at positions 98 and 104) and also performed per position 

omnibus analyses that confirm the predominant association to HLA-DRβ position 11 in UC, 

as previously reported 5, and to HLA-DRβ position 70 in CD (Supplementary Tables 4–5 
and Supplementary Fig. 4). While the hypothesis of a positional effect is appealing, the 

interpretation of these position-based tests is not straightforward in the context of likely 

multiple causal alleles (Supplementary Note on amino acids, Supplementary Table 6 and 

Supplementary Fig. 5). Furthermore in this study the amino acid-based models did not 

capture the association at HLA-DRB1 in a more parsimonious way than the HLA allele-

based models (Supplementary Note on amino acids). To further explore the basis for the 

observed HLA associations, we performed three-dimensional protein structure modeling 

followed by analysis of the electrostatic properties of the binding groove of associated 

(P<10−4) and common (frequency>1%) HLA-DRB1 alleles. These analyses suggest that 

HLA-DR alleles associated with increased risk of UC and CD, share common structural and 

electrostatic properties within or near their peptide binding groove that are largely distinct 

from those of HLA-DR alleles associated with decreased risk of UC and CD (Fig. 4).

While we performed the primary analyses based on a dose effect model, our sample size 

allowed us to investigate the effects further, by testing for non-additive effects. In fact we 

found significant departure from additive effects in UC, but not for CD (Fig 5a–c). 

Specifically, we found evidence of decreased heterozygosity in UC patients for genotyped 

and imputed variants across the MHC and at HLA genes, mostly in class II (Supplementary 
Tables 7–8). This heterozygote advantage could be explained by an enrichment of dominant 

protective and recessive risk alleles11, that is absent or much less important in CD (Fig. 5 

and Supplementary Fig. 6). Notably, we also detected multiple overdominant effects in 

UC, the strongest of which is captured by HLA-DRB1*03:01 (Fig. 5, Supplementary Fig. 

6–7, and Supplementary Table 9). This allele is mostly found on the ancestral haplotype 

8.1, a relatively common (~5–10%) haplotype that is conserved in European populations and 

that is implicated in other immune diseases 12–14. The overdominance effect of this 

haplotype in UC is possibly due to the presence of both dominant protective and recessive 

risk alleles, which would be consistent with the reported recessive risk of this haplotype in 

the UC-related biliary disease primary sclerosing cholangitis (Supplementary Fig. 8–
9) 15,16. Analogous with an infectious paradigm 11, these data may suggest that decreased 

HLA class II heterozygosity may impair the ability to appropriately control colonic 

microbiota in UC.

Although there is a significant challenge in defining the causal alleles for CD and UC in the 

MHC given the LD structure in the region, a number of conclusions can be drawn regardless 

of the models tested. First, the high density mapping of this region in a large cohort revealed 
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the significant contribution of the MHC to disease risk, a contribution that is not apparent in 

the previous GWAS. Second, for both CD and UC it would appear that variation within 

HLA genes as opposed to variation in other genes within the MHC plays a predominant role 

in disease susceptibility. Third, while the contribution of class I and class II HLA variants to 

disease risk is relatively equivalent in CD, HLA class II variation plays a more important 

role in UC. Fourth, in contrast to the majority of non-MHC susceptibility loci being shared 

between CD and UC, most associated HLA alleles have a predominant role in either CD or 

UC, with very few having shared IBD risk Fig. 6). Finally, the decreased heterozygosity in 

UC suggests that the ability to recognize a broader set of antigens, potentially of colonic 

microbial origin, is important to mount protective immunity.

Online Methods

Genotype dataset

The cohorts used in the current study were collected from 15 countries across Europe, North 

America, and Australia, and have previously been described4. In total 19,802 CD cases, 

14,864 UC cases and 34,872 controls of European ancestries, from the International IBD 

genetics consortium (IIBDGC; www.ibdgenetics.org), were included in the study.

Genotyping of the IIBDGC cohorts was performed in 34 different batches across 11 

different genotyping centers, and additional genotyping data for 5,815 controls was obtained 

from the International MS Genetics Consortium (IMSGC)17. All participating centers 

received approval from their local and national institutional review boards, and informed 

consent was obtained from all participants in the study. All DNA samples included in the 

study were genotyped using the Immunochip custom genotyping array (Illumina, San Diego, 

California, USA)4,18.

Genotype calling and quality control

After an initial genotype calling using Illumina’s Bead Studio and a first stage of quality 

control, all data was centrally recalled using optiCall v.0.6.219. OptiCall clustering was 

performed for each batch separately, with a Hardy-Weinberg Equilibrium (HWE)-threshold 

of 1×10−15, HWE blanking disabled and a genotype call threshold of 0.7. HWE was 

calculated conditional on predicted ethnicity, and related individuals were removed from 

this calculation.

After recalling, a single unified QC procedure was performed across all genotyping batches, 

including the IMSGC controls. Variants that either failed the Hardy-Weinberg Equilibrium 

test in unaffected individuals, had different missing genotype rates in affected and 

unaffected individuals, or had significantly different allele frequencies across the batches 

based on false-discovery rate (FDR) threshold of 10−5 for each test were removed. We also 

removed variants that had missing genotype rate >2% across the entire collection, or > 10% 

in any single batch. Variants that only failed one QC criteria in a single batch were set to 

missing in the failed batch. Individuals were removed if they showed a missing genotype 

rate >2%, had a significantly higher or lower inbred coefficient (F) (plink)20 at FDR <0.01, 

and showed a high level of relation (PI_HAT ≥ 0.4) calculated on IBS distance between all 

individuals. The coefficient of inbreeding and inter-sample relationships were calculated on 
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a LD-pruned dataset of independent variants. In order to control for population stratification 

while avoiding the possible bias introduced by the enrichment of associated alleles in the 

dataset, principal components were computed on control samples, based on a set of 18,123 

independent (LD-pruned) SNPs across the Immunochip, and then applied to the affected 

samples. To generate the LD-pruned SNPs, we removed variants in long range LD and 

pruned the common variants (MAF>0.05) three times (plink20). Genomic inflation factor (λ) 

was estimated from a set of 3120 “null” SNPs (chosen based on GWAS of schizophrenia, 

psychosis and reading/mathematics ability), using different subset of principal components. 

Based on these and investigation of contribution of individual SNPs to the components 

(loadings), we selected to use the first five principal components to control for population 

stratification (Supplementary Fig. 11).

For the purpose of this study, the chr6:25Mb-34Mb region, encompassing MHC region, was 

extracted from the post-QC Immunochip dataset. In total, after QC, 18,405 CD cases, 14,308 

UC and 34,241 healthy controls subjects were successfully genotyped for 8,001 SNPs within 

the MHC region.

Imputation of missing genotype data

Missing genotype data, from failed genotype calls or failed QC in single batches, were 

imputed using the Beagle SNP imputation package(v.3.0.4); imputation was performed 

using only the high density information contained within the dataset, no external reference 

dataset was used21.

Imputation of HLA alleles

In order to avoid cohort specific asymmetry in the dataset, variants that failed QC in only 

one genotyping batch were removed before imputation of HLA alleles. Imputation of HLA 

alleles was done using two independent HLA imputation pipelines HLA*imp222 and 

SNP2HLA (v2)23; imputation of polymorphic amino acid positions and SNP variants was 

performed using SNP2HLA (v2). A set of additional SNP variants were also included using 

version 1 of SNP2HLA, which used a different reference dataset and imputed SNP variants 

not found in the SNP2HLA (v2) reference dataset.

Imputation accuracy

To benchmark HLA imputation results generated by HLA*IMP2 and SNP2HLA, we used 

two cohorts from the current study (Italian and Norwegian) for which classical HLA typing 

was available. The Italian dataset consisted of 450 ulcerative colitis cases and 280 controls 

for which 4-digit HLA types at HLA-A, HLA-B, HLA-C, HLA-DQB1 and HLA-DRB1 

generated by Sequence-based typing (SBT)24. The Norwegian dataset contained 244 

ulcerative colitis cases and 254 controls with 2-digit HLA types and a subset of 92 cases and 

250 controls with 4-digit HLA types at HLA-DRB1 generated at the Oslo University 

Hospital. We only considered individuals of whom both HLA alleles were successfully 

typed at 2- and 4-digit resolution at the locus under validation. For validation of HLA allele 

imputations, we compared imputation results of HLA*IMP2 and SNP2HLA to the lab-

derived types in a locus-specific and allele-specific manner. We calculated per locus 
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concordance (Supplementary Table 10) and sensitivity, specificity, positive predictive 

value, negative predictive value and accuracy for each allele (Supplementary Table 11).

Let’s denote true positives, true negatives, false positives and false negatives by TP, TN, FP 

and FN, respectively. Given our analyses were performed using expected allele doses from 

posterior probabilities, we used the expected doses for computation:

where xi and yi are respectively the typed and imputed dose for individual, and the sum over 

all individuals gives the TP, FP, TN and FN (Supplementary Table 11). For a given HLA 

allele, we calculated sensitivity, specificity, positive predictive value, negative predictive 

value and accuracy using the usual definitions:

For a given locus, we calculated the concordance as TPall/(total number of chromosomes) 

(Supplementary Table 10).

Final dataset

As an additional QC step, we performed manual cluster inspection for any genotyped SNPs 

in the region tagging (r2>0.8) imputed SNPs, amino acid variants and HLA alleles reported 

in our proposed models for CD and UC.

In order to not duplicate HLA alleles in our dataset, and given the mostly equivalent 

imputation quality of the 2 pipelines, we opted to keep HLA imputations for HLA-A, HLA-B, 

HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 derived from 

the SNP2HLA pipeline since amino acid and additional SNPs were also obtained from this 

pipeline, whereas the HLA allele information for the HLA-DRB3, HLA-DRB4, and HLA-

DRB5 genes were obtained from the HLA*imp2 pipeline.

Genotyped SNPs variants, as well as imputed SNPs, HLA alleles and amino acid variants at 

polymorphic amino acid positions were combined into a single dataset for analysis. Variants 

with a minor allele frequency of less than 0.05% in controls and variants showing 

imputation quality (INFO) score <0.5 were removed from the analyses. The final dataset 

contained 8,939 SNP variants, 138 4-digit resolution HLA alleles, 90 2-digit resolution HLA 

alleles and 741 single amino acid variants.

Goyette et al. Page 8

Nat Genet. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Heterogeneity

In order to evaluate heterogeneity of effects and allele frequencies between subgroups of 

different European ancestry, we clustered the individuals into relatively large population 

subgroups. These clusters were determined using k-means on the principal components. 

Based on the decline within cluster sum of squares, we determined that the optimal choice 

for the number of clusters (k) was in a range of 6–10. For each value of k in this range, we 

compared the clustering obtained to self-reported country of origin, when available. The 

objective was to be able to identify known population structures, while keeping 

homogeneous group in a single cluster. Based on these criteria, we stratified the dataset into 

9 clusters (Supplementary Fig. 12). For every reported variant, we evaluated and illustrated 

heterogeneity of effect sizes between these 9 clusters using forest plots (Data on 

heterogeneity of effects is available on http://www.medgeni.org/goyette_nature_gen_2015).

Association testing and conditional analyses

Unless otherwise stated, all analyses were corrected for five principal components and 

performed in R (v 2.15.2) on expected allele counts (additive dose from posterior 

probability)(see Supplementary Tables 4, 12 and 13 for primary univariate association 

results for single amino acid variants, SNP and HLA alleles respectively). Also, 4-digit HLA 

alleles were prioritized over 2-digit alleles in the final selection of association signals 

included in our models. We calculated the threshold for statistical significance in our study 

at p<5×10−6 for a study-wide type 1 error rate of 5% with 9,852 independent tests.

Given the imputed nature of the HLA allele data within our dataset, complexity of signals 

and burden of dimensionality, a standard forward conditional logistic regression approach 

was avoided. We opted instead to identify all HLA alleles showing study-wide significant 

association across the MHC region, in the primary univariate association dataset, and 

evaluate their independent effects through single pair-wise reciprocal conditional logistic 

regression (Supplementary Tables 2–3). This approach allowed the identification of 

independent association signals, composed either of single HLA alleles or groups of 

equivalent alleles (Fig. 3).

Gene based analyses (omnibus)

We tested the association to phenotypes at each HLA gene using logistic regression under an 

additive model of effect, including all 4-digit alleles with a frequency greater than 0.5%. 

Evidence of association at the gene is given as the p-value of the likelihood test for this 

regression model versus the null model (including only principal components). Evidence of 

association at a given gene, conditional on other HLA genes, is given as the p-value of the 

likelihood ratio test for the full model (including all HLA alleles) versus the partial model 

(without including the alleles at the given gene). In a similar fashion, we also tested the 

remaining association at each HLA gene, conditional on our final set of associated alleles 

(final model). To be noted, the different HLA genes have different number of distinct 

alleles, thus variable level of complexity (degrees of freedom) for the model and the 

interpretation of these gene-based tests is not straightforward in the context of likely 

multiple causal alleles (see the Supplementary Note on amino acid).
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Variance explained (pseudo R2)

In order to represent the importance of genetic variation in the MHC for CD and UC, we 

computed an estimate of variance explained for different models. Variance explained is not 

well defined for binary outcomes and many different metrics exist to represent it25. Given 

the correlation between the variants in the MHC, we computed McKelvey Zavoina’s pseudo 

R2 on the logit scale26. This metric can be computed using correlated variables and is 

independent of disease prevalence. Let β be the vector of fitted coefficients from logistic 

regression and S the estimated covariance matrix of the predictor, the McKelvey Zavoina’s 

pseudo R2 is then given by:

To be noted, this estimation of variance explained shouldn’t be directly compared to values 

given by other metrics or to heritability estimates based on Gaussian liability. We computed 

the variance explained by a regression model including all the HLA alleles with a frequency 

greater than 0.5%. We did the same separately for HLA alleles within class I and class II. 

Variance explained by class I, after inclusion of class II, was computed as the improvement 

in R2 for the full model (all HLA alleles), compared to class II only. This difference in R2 

estimates the specific contribution of class I to the total variance explained that cannot be 

attributed to class II alleles. We did the same for class II. In order to be able to compare our 

results to the SNPs identified by the GWAS4, we computed R2 for the published GWAS 

index SNP in the MHC for CD and UC.

Subphenotype analyses

The IIBDGC has collected detailed subphenotype information for a subset of samples 

included in this study. These phenotypes include: demographics, disease location and 

behavior in CD, disease extent in UC, surgery and primary sclerosing cholangitis (PSC). 

Quality control of this subphenotype information and genotype-phenotype association 

testing has been performed in the context of another project from this IIBDGC (personal 

communication with Charlie Lee). In the context of this fine-mapping project, we 

considered disease location in CD and PSC in UC to evaluate the impact of disease 

heterogeneity. Association tests were performed within subset of samples with known 

subphenotype.

Non-additive effects, heterozygote advantage and overdominance

We tested evidence of non-additive effects at each variant using a logistic regression 

including terms for additive and non-additive effect, as described below. Rare variants with 

minor allele frequencies below 5% were excluded from this analysis, given that the very low 

number of homozygote precludes the evaluation of the model. For this particular analysis, 

we used best guess genotype data, unless otherwise stated. We computed evidence of non-

additive effect as the p-value of the Wald statistic for the dominance term. We also 

computed the evidence of association for an allele under the general model using the 

likelihood ratio test.
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Suppose a genetic variant with alleles G and g. The genotypes (GG, Gg, gg) can be coded as 

u = (1, 0, −1) and v = (0, 1, 0), respectively. In this context, u = dose - 1 and v = 1 − |u|. 

The effect of a specific genotype is then given as au + dv, where a and d are respectively the 

additive and dominance effect, as estimated by logistic regression. This parameterization can 

be generalized to expected allele counts (additive dose from posterior probability).

Under this parameterization, the effects of the genotypes GG, Gg and gg are given by a, d 

and −a, respectively. A strictly additive model would be d = 0 and a ≠ 0, while a dominant 

or recessive model would be d = a or d = −a. If the dominance term has a higher protective 

effect than the additive term, that is d < −|a|, the model is one of overdominance, where 

being a heterozygote provides protection, compared to both homozygotes.

For each HLA gene, we also tested for evidence of heterozygote advantage. We coded each 

individual as homozygote or heterozygote at the gene, as determined from the imputed 2-

digit and 4-digit alleles. Association of phenotype and zygosity at each gene was tested 

using logistic regression. Evidence of association is given as the p-value of the likelihood 

test.

Pairwise comparisons of common 2-digit alleles at HLA-DRB1 were conducted to better 

understand the non-additive effects (Supplementary Table 9). For each pair or alleles, 

analysis was constrained to the subset of individual carrying only these two alleles as 

homozygotes or heterozygotes. Genotype effects were evaluated within each subset. 

Overdominance was tested as heterozygote vs the lowest risk homozygote. Heterozygote 

advantage was tested as heterozygote vs the pooled homozygote. Non-additive effect was 

tested based on the dominance term, as described previously.

Comparative structural modeling of HLA-DR alleles

Comparative structure models for all HLA-DR alleles associated with UC or CD, and of all 

common HLA-DR alleles (population frequency >1%), were generated using the program 

MODELLER27. Templates for comparative structure modeling were identified by querying 

the RCSB Protein Database28 using the sequence of HLA-DRB1*01:01 and the DELTA-

BLAST algorithm, for humans (Taxonomy ID: 9606, E-value threshold of 0.05). Of 36 

templates identified, 10 crystallographically resolved HLA-DRB1 structures (PDB codes: 

4MD5, 1FV1, 1KLU, 3PDO, 1D5M, 1JH8, 4MDI, 3L6F, 4I5B, 2IPK) were retained, which 

had high resolution (<2.5 Å) and favorable markers of structural quality (Ramachandran 

plot, DOPE, Verfiy3D and WHAT_CHECK scores)29–32. The sequences of the extracellular 

domain of target HLA molecules were retrieved from the EBI sequence database (ftp://

ftp.ebi.ac.uk/pub/databases/ipd/imgt/hla/) and aligned using Clustal W2 using the BLOSUM 

matrix and the Neighbor Joining clustering algorithm and manually adjusted as indicated33. 

The modeled peptide was standardized to an alanine 12-mer, which was removed prior to 

calculating protein electrostatics to allow comparison of the electrostatic potential within the 

peptide-binding groove.
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Electrostatic potential calculations

Atom charges and radii were assigned and side-chains protonated for pH 7.4 using the 

PARSE force field in PDB2PQR34. Protein electrostatic potential was calculated by solving 

the linearized Poisson-Boltzmann equation in APBS for a cubic grid of 353 points at a 

spacing of 0.33 Å35. Other parameters were set as follows: ionic solution of 0.15 M of 

univalent positive and negative ions; protein dielectric of 2; solvent dielectric of 78; 

temperature of 310 K; and a probe radius of 1.4 Å. HLA class II molecules typically make 

contact with nine amino acid residues of the presented peptide; of these, 7 peptide residues 

(at peptide positions 1, 2, 3, 4, 6, 7 and 9) make contact within the peptide binding groove36. 

Peptide residues at positions 5 and 8 are elevated away from the peptide-binding groove. For 

comparison of the electrostatic potential of the peptide-binding groove, radii were chosen so 

that the space around each coordinate encompassed all side chain atoms of the relevant 

peptide amino acid residue; the electrostatic potential within 1Å from the molecular surface 

of the HLA molecule was not examined.

The peptides of the template HLA structures were used to define the geometric average 

coordinate of the positions of the side chain atoms of peptide amino acid residues 1, 2, 3, 4, 

6, 7 and 9. The electrostatic potential within a 3.5–5 Å radius from each coordinate was 

considered for comparison of the electrostatic properties of the peptide-binding groove 

among HLA-DR alleles (Supplementary Fig. 10). For comparison of the electrostatic 

potential around amino acid positions 67, 70 and 71, (associated to both UC and CD in 

different analyses; Supplementary Tables 4–6), the geometric average coordinate of the 

positions of these amino acids’ side chain atoms was calculated and the electrostatic 

potential within a 5 Å radius from this coordinate was considered for comparisons among 

different alleles. Electrostatic potential comparisons were performed using the Hodgkin’s 

index as described previously27,28 in a pairwise, all-versus-all, fashion to produce a distance 

matrix37,38. Distance matrices were displayed as a symmetrical heatmap with re-ordering 

such that electrostatically similar alleles are clustered together, according to the dendrogram 

(Supplementary Fig. 13). A pooled heatmap was created using the Euclidian distance 

between the individual distance matrices from the 7 peptide-binding groove regions (Fig. 

4a). Heatmaps were created for electrostatic potential comparisons at individual regions of 

the HLA-DR molecule (7 regions in the peptide-binding groove and one region defined by 

amino acid residues 67, 70 and 71, as detailed above) (Fig. 4b).
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Figure 1. Primary univariate association analyses of CD and UC
Univariate association analysis results for 8,939 SNPs (dark grey) (Supplementary Table 
12), 90 2-digit and 138 4-digit resolution HLA alleles (yellow) (Supplementary Table 13), 

as well as 741 single amino acid variants (red) (Supplementary Table 4) in the MHC 

region are shown for 18,405 CD cases and 14,308 UC cases (with 34,241 common control 

subjects). Given that previous genetic analyses have identified distinct effects in the MHC 

for CD and UC, with different non-correlated alleles identified in each disease, we opted to 

perform the finemapping analyses for CD and UC separately. (a) The primary univariate 

association analysis in CD reveals over 1,789 markers showing study-wide significant 

association (P<5×10−6) across the MHC, including 32 4-digit resolution classical HLA 

alleles (Fig. 3 and Supplementary Table 2). The single most significant variant for CD is 

HLA-DRB1*01:03 (P=3×10−62, OR= 2.51). (b) The primary univariate association analysis 

in UC reveals over 2,762 markers showing study-wide significant association across the 

MHC, including 50 4-digit resolution classical HLA alleles (Fig. 3 and Supplementary 
Table 3). The single most significant variant for UC is rs6927022 (P=8×10−154, OR= 1.49) 

while the best HLA allele is HLA-DRB1*01:03 (P=3×10−119, OR=3.59); each acting 

independently. Twenty-nine SNPs and 9 amino acid variants surpass HLA-DRB1*01:03 as 

the next most significant variants in the primary analysis however all of these are correlated 

to rs6927022 and their significance is dramatically reduced by conditional logistic 

regression.
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Figure 2. Variance explained by 4-digit HLA alleles in CD and UC
Proportion of variance explained on a logit scale (McKelvey and Zavoina’s Pseudo R2, see 

Online Methods) for different models in CD (left) and UC (right). The top boxes show the 

variance explained by previously identified GWAS index SNPs within the MHC4. The 

middle boxes illustrate the variance explained by HLA models including all 4-digit alleles of 

frequency > 0.5% (126 alleles in CD and UC) and models restricted to 4-digit alleles within 

either class I (63 alleles) or class II regions (63 alleles), respectively. The Venn diagram 

illustrates the proportion of variance explained that is unique to class I, class II or shared. 

The bottom boxes indicate the variance explained by the proposed HLA models (15 and 16 

alleles in CD and UC, respectively). To be noted, these estimations of variance explained 

were performed on the logit scale for practical reasons, and should not be directly compared 

to heritability estimates computed on the (Gaussian) liability scale.
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Figure 3. Correlated association signals at HLA alleles support potential alternate association 
models for both CD and UC
Equivalence of effect at the different study-wide significant associated 4-digit HLA alleles is 

shown for (a) CD and (b) UC. The structures illustrated in the figure are not classically 

defined haplotype structures, but were identified entirely based on the correlation of signal 

defined through pairwise reciprocal conditional logistic regression analyses (see 

Supplementary tables 2 and 3); although such correlations are clearly dependent on the 

underlying haplotypic structure of the region. Alleles identified as primary tags for 

independent association signals in our HLA-DRB1 focused models are shown in light blue 

boxes, while alternate alleles with equivalent effects are shown in grey boxes. Alleles in 

white boxes show study-wide significant secondary effects that can be explained entirely by 

the selected HLA alleles. Alleles at the HLA-DRB3, -DRB4 and -DRB5 genes were omitted 

in order to simplify the display; many of the alleles at these genes show high frequency and 
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as such are correlated to many different alleles (both risk and protective) at the other class II 

genes. Of note, the HLA-DRB4*null allele is the second strongest associated allele in UC 

(see Supplementary table 3).
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Figure 4. HLA-DR peptide binding groove electrostatic properties and risk of IBD
The electrostatic potential of all HLA-DR alleles associated with UC or CD, and of all 

common HLA-DR alleles (frequency >1%), was calculated. HLA-DR alleles associated 

with increased or decreased risk of IBD at study wide-significance level (P< 5×10−6) are 

shown in dark red or dark blue, respectively. Respective risk associations at suggestive level 

(1×10−4<P<5×10−6) are shown in pale red and pale blue. Electrostatic potential comparisons 

among HLA-DR molecules were performed in a pairwise, all-versus-all, fashion (see Online 
Methods) to produce distance matrices that are displayed as symmetrical heatmaps (scale 

ranges from 0 [identical] to 1 [maximum difference]). (a) The electrostatic potential in seven 

regions within the peptide binding groove (see Online Methods and Supplementary Fig. 
10), which interact with the presented peptide, were compared among the HLA-DR alleles 

and pooled onto a single Euclidian distance matrix. The distance-based clustering identifies 

four clusters, with an enrichment of risk alleles in two of these. Comparison of the 

electrostatic potential at individual peptide binding groove regions is shown in 

Supplementary Fig. 13. (b) Heatmap representing electrostatic potential differences among 

the HLA-DR alleles at a spherical region that encompasses amino acid residues 67, 70 and 

71 of the HLA-DRβ chain (associated with risk for UC and CD; Supplementary Table 13). 

The distance-based clustering identifies two clusters that correlate with directionality of 

effect in IBD.
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Figure 5. Non-additive effect models in CD and UC
Evidence for non-additive effect of common variants (frequency >5%) across the MHC 

tested under a general model of additive and dominance effects (Online Methods) in CD 

(a,b) and UC (c,d). The p-values and directionality for departure from additive effect 

(dominance term) are represented on the y-axis (a,c). HLA alleles and amino acids variants 

are in yellow and red respectively, while SNPs are represented in dark grey. Variants with 

non-significant (P>5×10−6) dominance term are plotted in less pronounced colors. A clear 

enrichment for lower risk in heterozygotes is observed in UC (c) as suggested by the large 

number of significant negative dominance term (lower part of the plot). This effect is absent 

in CD (a), or much less important. The dominance term OR is illustrated (y-axis) versus the 

additive term (x-axis) (b,d). Protective and risk minor alleles are shown on the left and right 

sides of the plot respectively. Strictly recessive or dominant variants are expected to fall on 

the diagonals, while strictly additive variants lay on or close to the x-axis. The y-axis is the 

expected position for pure over/under dominance. In UC (d), many alleles fall into the 

region of the plot for protective dominant, risk recessive or overdominance (blue triangle) 

(see Supplementary Table 9 for pairwise comparison of HLA-DRB1 alleles). These non-

additive effects are observed for many variants in UC (c,d) (e.g HLA-DRB1*03:01 and 

HLA-DQB1*02:01) but are mostly absent in CD (a,b); notable exception being the HLA-

B*08 allele (Supplementary Fig. 6).
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Figure 6. Comparison of odds ratio in CD and UC for HLA alleles identified from HLA-focused 
models
Odds ratio (OR) from the primary univariate association analyses in CD and UC for all 

alleles identified in the HLA-focused models of CD and/or UC are presented with 95% 

confidence intervals (a). Odds ratio for CD and UC are in blue and red respectively; darker 

colors indicate study-wide significant effect (P<5×10−6), lighter colors indicate nominal 

significance level (0.05>P 5×10−6) and white indicates non-significance (P 0.05) (for 

specific effect and significance values refer to Fig. 3 and Supplementary Tables 2 and 3). 

Allele HLA-B*52:01 is indicated for UC in place of the equivalent HLA-C*12:02 to 

simplify the display of this shared signal. For the same HLA alleles, odds ratio (with 95% 

confidence intervals) for an IBD analysis are plotted against the odds ratio for the CD versus 

UC analysis with the IBD risk allele as the reference (b). Empty circles represent variants 

where the absence of the allele is the reference. Alleles identified as significant in CD or UC 

only are plotted in blue and red, respectively. Variants identified as significant in both are 

shown in purple. To be noted, HLA-DRB1*07:01 and HLA-DRB1*13:02 have opposite 

direction of effect between CD and UC. Shared association signals are expected to fall in the 
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upper triangle of the plot. Most variants fall outside of this region, highlighting the 

difference between CD and UC in the MHC.
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