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Abstract
Between Fall 2011 and Fall 2012 students at Utah State University played several
rounds of Humans versus Zombies (HvZ), a role-playing variant of tag popular on
college campuses. The goal of the game is for the zombies to tag humans, converting
them into more zombies. Based on portrayals of ‘zombieism’ in popular culture, one
might treat HvZ as a disease system. However, a traditional SIR model with mass-
action dynamics does a poor job of modeling HvZ, leading to the natural question:
What mechanisms drive the dynamics of the HvZ system?We use model competition,
with Bayesian Information Criterion as arbiter, to answer this question. First, we
develop a suite of models with a variety of transmission mechanisms and fit to data
from fall 2011. We use model competition to determine which model(s) have the most
support from the data, thereby offering insight into driving mechanisms for HvZ.
Bootstrapping is used to both assess the significance of individual mechanisms and to
determine confidence in the performance of our models. Finally, we test predictions
of the best models with data from fall 2012. Results indicate that through both years
of the game humans tend to cluster defensively, zombies tend to hunt in groups, some
zombies are more proficient hunters, and some humans leave the game.
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1 Introduction

Humans versus Zombies (HvZ) began as a moderated game of tag at Goutcher College
in 2005 (Lewis and Powell 2016) and divides players into two groups, humans and
zombies. Zombies attack humans and humans fight off zombies with Nerf guns and
sock bombs, which are balled up socks that humans throw at zombies. Zombies hit
with a Nerf gun or sock bomb are ‘stunned’ and cannot continue playing for 15 min.
Successful attacks result in conversion from humans to zombies. A zombie who does
not tag a human in a specified time period starves and is eliminated from play. Since its
rise in popularity, the game has become more organized, with added rules for player
safety (chiefly the removal of Nerf guns), an organizing body to ensure fairness, and
other changes to keep the game dynamic. Throughout these changes, the underlying
game play of zombies tagging humans to make more zombies and starving if they
fail to tag a human remained. In this paper, we seek to offer insight into the driving
mechanisms for the dynamics of humans and zombies in HvZ.

Mechanistic ordinary differential equation (ODE) models have long been used to
gain understanding of drivers of population dynamics. ODEs have shown particu-
lar usefulness in both disease and predator prey systems. The portrayal of zombies
in popular zombie films like 28 Days Later suggests a disease model, like the
Susceptible-Infected-Recovered (SIR) model of Kermack and McKendrick (1927),
may be well-suited for modeling HvZ. Additionally, the population of players is read-
ily split into susceptible (human) and infected (zombie) compartments with players
following a disease-like progression between the two compartments. Compartmental
ODE models have been used to model diseases like dengue fever (Stolerman et al.
2015), cholera (Tuite 2011; Tien and Earn 2010), ebola (Diaz 2017), Gambiense sleep-
ing sickness (Rock 2018), SARS (Meyers 2005), STDs (Eames and Keeling 2002),
H1N1 (Laguzet and Turinici 2015) and, most recently, the ongoing COVID-19 pan-
demic (Bertozzi 2020). This compartmental framework has also been used to simulate
zombie outbreaks (Munz 2005).However, these diseasemodels are essentially variants
of Kermack and McKendrick’s compartmental SIR model as the underlying mecha-
nisms for transitioning from one compartment to another generally depend on random,
well-mixed contact between compartments.

Recently, the assumptions about how to model transmission have come into ques-
tion (Hopkins 2020; Begon 2002; McCallum et al. 2001D), with theoretical results
outnumbering empirical datasets. When susceptible population density is constant,
model selection is known (Begon 2002; McCallum et al. 2001D). Unfortunately, it
is often unclear as to whether assumptions about population size and density are
appropriate. This is particularly true for spatially variable populations, e.g., wildlife.
Generally speaking, modeling responses tend to be adding more compartments to the
model, with mass action mechanisms within compartments, resulting in models with
many dependent variables and only very simple interactions. We propose that models
with fewer dependent variables, but slightly more complex transmission terms, can be
more tractable.

HvZ offers an excellent venue to clearly illustrate techniques of model selection
in the presence of uncertain prevalence and mechanism data since the game, and
thus transmission pathway is well-understood, and high-quality data are available.
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The nature of the game ensures that human population density is not constant, either
spatially or in time. Mass action models perform poorly with regard to HvZ data,
making a clear case for the need to consider alternative models for transmission and
allow the data to select among possibilities. For this particular system, since zombies
in HvZ are actively spreading the disease by hunting for humans, we consider a variety
of predator–prey mechanisms to model emergent population dynamics.

Inspired by the seminal works of Lotka (1925), many mechanisms have been
proposed to describe a variety of predator–prey interactions. The Lotka–Volterra
model uses a mass action predation mechanism, like the transmission mechanism
in the Kermack–McKendrick SIRmodel. Holling (1959) derived functional responses
reflecting time lost handling prey. Beddington (1975) and DeAngelis et al. (1975)
extended this work to incorporate time lost due to predator interference. May (1978)
further introduced a mechanism to account for spatial distribution of populations
without the complexity of partial differential equations. Kennedy and Dwyer (2018),
building on Dwyer (2000), add a more complex mechanism to the SIR framework
by considering variability in susceptibility as a driving mechanism for baculovirus in
gypsy moth.

With a wealth of mechanisms to examine, the question becomes which, if any,
of these mechanisms pertain to HvZ? Model competition, outlined by Hilborn and
Mangel (1997), is a method for selecting the best model for a system, given data. Infor-
mation theoretic criteria assess model performance against data, allowing comparison
of multiple models. Kay et al. (2015) use model competition to assess driving mech-
anisms for observed predator–prey cycles between black-tailed jackrabbits (Lepus
californicus) and coyote (Canis latrans) in Curlew Valley, Utah. Tien and Earn (2010)
identified relevant transmission pathways for Cholera using model competition.

We use model competition, with mechanisms drawn from disease and predator–
prey literature, to ascertain driving mechanisms for HvZ. For a round of the game
played at Utah State University in the fall of 2011, we develop a variety of mod-
els with both predator–prey and disease mechanisms. Using model competition, with
Bayesian Information Criterion (BIC) as our measure for goodness of fit, we deter-
mine which models, and therefore mechanisms, are best supported by the data. With
bootstrapping, we produce distributions for both BIC values and parameter estimates
to gain confidence in our results. Finally, we test predictions of the best models with
data from a second round of HvZ played at Utah State University in fall 2012.

2 Humans Versus Zombies, Rules and Data

In early renditions of HvZ at Utah State University (USU), players would sign up
in advance and be assigned roles as humans or zombies. Once the game started, no
new players could join. A zombie needed at least one successful attack per day or
it died of starvation and left play. If a group of zombies attacked a human, only one
zombie earned credit for the attack. The goal for a human was to avoid zombie attacks
by hiding, fleeing, or stunning zombies with Nerf guns or sock bombs to escape.
Tagged humans became zombies, with successful attacks logged on a website. In later
renditions of the game, humans were given missions to add storyline to the game and
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force more encounters, while Nerf guns were banned for player safety and to avoid
confusion with real-world firearms.

We have time-series data for both human and zombie populations collected over 80
consecutive hours of game play from a round of HvZ at USU in the fall of 2011 and
a second time series from fall of 2012. In 2011, there were no missions and players
were allowed the use of Nerf guns. The 2011 data, plotted in Fig. 1(top), reflect several
aspects of the rules above. While the data is 80 consecutive hours of game play, these
80 h do not map directly to clock time. There were only 14 h Monday through Friday
of game time and 10 h on Saturday. Hours between 9 pm and 7 am were off limits
for sleep and study. Zombies could not attack in buildings or off campus. Time for
zombie starvation was 24 h in game time, not real time. Data were collected through
a self-reporting system in which zombies logged their attacks online. The zombie
population was calculated by adding the number of successful attacks to the zombie
population at the previous sampling time and subtracting the number of zombies
without a successful attack in the previous 24-h period. The human population was
calculated by subtracting the number of attacks from the human population at the
previous sampling time. There was no mechanism for human players to register that
they left the game, which they may have done because of lack of interest or the
need to study. This may have artificially inflated the human population in our data.
Additionally, there are some gaps in the data (approximately hours 5, 60 and 70) where
the server went down and data were not recorded.

In fall 2012, missions were introduced.Missions were organized events in the game
that gathered all players, humans and zombies, for a mini-game (e.g., capture the flag
or defending a checkpoint). This forced a substantially higher number of contacts over
a short period of time. In Fig. 1(bottom), the missions can be seen in the three jumps
in the data that occur near hours 10, 25, and 39. While the duration of the game was
shorter than the 2011 round, the sampling is much more frequent. Additionally, for the
first several hours of the game, new players were allowed to join, causing the human
population to grow before hour 10. Finally, game organizers removed humans who
did not participate in the second mission (at t = 24.5) from both the game and the
data. In Fig. 1(bottom), the effect of this removal is seen in the slide of the human
population between t = 28 and t = 30 that is unmatched by growth in the zombie
population over the same period. This removal provides better data as the artificial
inflation of the human population possible in 2011 is less relevant in 2012.

3 Models for HvZ Population Dynamics

We consider a selection of nonlinear transmission and mortality model components
to determine important mechanisms in the HvZ system, reflecting possible density-
dependent mechanisms. It is possible that some players may choose to quit playing
for reasons external to the game (e.g., homework). If this happened for a zombie, the
loss would appear as starvation because a zombie who quits cannot register attacks
and will subsequently be removed. However, human quitting is a hidden process as
there is no in-game mechanism that removes inactive players from the game. (This
was remedied midway thought the 2012 round of HvZ, when game managers began
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Fig. 1 Time series data from HvZ at Utah State University with triangles for human populations and circles
for zombie populations. Top: Data from fall 2011. This round lasted for 80 in game hours with data recorded
at intervals between 15 min and an hour and a half. There are some larger gaps in the data (approximately
hours 5, 60 and 70) where the server went down, and data were not recorded. Bottom: Data from fall 2012.
This round lasted for 55 in game hours with data recorded every 15 min. Missions occurred at t = 10.25,
t = 24.5, 38.75. Each mission gathered all players for a mini-game, drastically increasing the number of
attacks for a short period of time, resulting in large population decreases for the humans and large increases
for the zombies. Players were allowed to join as humans before the first mission, so between t = 0 and
t = 10.25 the human population grew

removing inactive human players from the data set.) Thus, our data may report more
humans than are actually playing the game. In order to deal with this, we add a
compartment for those who have quit, resulting in the tracking of three populations:
the number of humans reported in the data (Hobs, some of whom may have quit),
the actual number of humans still playing the game (H which, as in many real-world
diseases, is not observed), and the zombie population Z . The data should follow Hobs
and Z , but H is the population that impacts the dynamics.

A model framework reflecting these mechanisms is

Ḣobs = F(H) − A(H , Z)

Ḣ = F(H) − A(H , Z) − Q(H)

Ż = A(H , Z) − S(H , Z),

(1)
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where F(H) is a human population growth term reflecting players joining the game
late, A(H , Z) reflects the attack mechanism, S(H , Z) accounts for the starvation
mechanism, and Q(H) models the quitting mechanism. If there is little or no quitting,
Q(H) = 0 and H = Hobs. Quitting is only a function of humans as zombies who quit
will starve anyway. We consider seven possibilities for A, two for S, and one quitting
mechanism in addition to no quitting (Q = 0). The twenty-eight models, consisting
of all combinations of these mechanisms, compete to determine which mechanisms
drive HvZ dynamics.

3.1 Zombie Attack Mechanisms

Zombie attacks dictate the transition from humans to zombies. The driving assumption
for the SIR model is equal probability for any zombie and any human to have an
encounter at any given time. However, this assumption may prove inaccurate in HvZ.
Following, we consider several other attack mechanisms with the mass action attack
rate of the SIR model as a tacit null hypothesis.

Random Encounters: Mass Action Simple assumptions about attacks are that they
occur randomly, zombies are always hunting, and every zombie has the same proba-
bility of a successful attack. These assumptions were used by Lotka (1925) to model
predator–prey attack dynamics. Analogous assumptions about disease transmission
were used by Kermack and McKendrick (1927) to produce an identical model com-
ponent for disease spread in their SIR model. An equation reflecting this mechanism
is

A(H , Z) = aH Z , (2)

where a is the attack rate between humans and zombies.
Zombie Time Budget Model Limiting Predation Mass action assumes zombies are

always hunting, which may not be the case. Zombies spend some of their time hunt-
ing, but also spend time interacting with both humans and other zombies, potentially
resulting in saturable consumption and competitive time lost. A model for saturable
consumption, initially derived by Holling (1959), assumes each attack requires time
for the predation interaction, termed handling time. In HvZ, this handling time can
be interpreted as recovery time for a zombie after successfully chasing down and tag-
ging a human, time needed to record the successful attack, and time for socializing.
Beddington (1975) and DeAngelis et al. (1975) both derived a very similar model
to Holling’s for interaction time between predators. In their derivation, this interac-
tion time is ascribed to competition between predators. In HvZ, many zombies work
together attacking the same human but only one may register the kill. We interpret this
interaction time as time lost in a group hunt not registering in a kill. Following Bed-
dington’s derivation (provided in “Appendix A”), a model for saturable consumption
and competitive time lost is

A(H , Z) = aH Z

1 + athH + aβZ
, (3)
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where a is the encounter rate, th is handling time, and β is proportional to time lost
per zombie in group hunting.

If β = 0, i.e., zombies are not hunting in groups, then (3) reduces to Holling’s type
II model,

A(H , Z) = aH Z

1 + athH
. (4)

If th = 0, i.e., there is no time lost handling a human, then (3) reduces to

A(H , Z) = aH Z

1 + aβZ
. (5)

Spatial Clustering of Susceptibles: Negative Binomial Both mass action and the
time budget models assume well-mixed systems, i.e., spatial homogeneity of both
populations. Observation of game play shows that humans tend to gather in groups,
violating the homogeneity assumption. May (1978) used a negative binomial to model
spatial clustering of a host in a host-parasitoid system. The model describes implicit
spatial dynamics without the use of partial differential equations. May suggested this,
phenomonologically, in a discrete time model, but the same assumptions have been
adapted to continuous timemodels (Kong et al. 2016;McCallum et al. 2001D) (deriva-
tion provided in “Appendix C.1”). In terms of HvZ, we have

A(H , Z) = kA ln

(
1 + aZ

kA

)
H, (6)

where kA is a measure of the degree to which humans cluster. Large kA corresponds to
less grouping, limiting on spatial homogeneity. Small kA correspond to highly clumped
groups, i.e., few, small pockets of high density for humans. As with previous models,
a is the encounter rate.

Variability in Susceptibility: The Theta-Logistic Model Another assumption of mass
action is that all humans have an equal likelihood of being attacked by a zombie. Since
humans can run away from zombies, and humans have different athletic abilities,
some humans may be more likely to fall victim to zombie attack. This variability
in susceptibility to zombie attack could alter attack dynamics. Kennedy and Dwyer
(2018) showed variability in the susceptibility of healthy individuals plays a role
in disease propagation in host-pathogen interactions. Assuming some distribution of
susceptibility for humans, with V as the square of the coefficient of variation, Dwyer
(2000) derive an equation for expected attack rates,

A(H , Z) = a

(
H

H0

)V

H Z , (7)
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where a is the attack rate and H0 is the initial human population. A derivation is
provided in “Appendix B”. If V = 0, then there is no variation in human susceptibility,
reducing to mass action (2). On the other end of complexity, using (7) and the time
budget of 3, we can incorporate the mechanisms variable susceptibility, time lost from
group hunting, and handling time in the equation

A(H , Z) =
a

(
H
H0

)V
H Z

1 + athH + aβZ
. (8)

3.2 Mechanisms for Zombie Starvation

In the HvZ game, zombies die of starvation when they fail to attack a human over the
course of a day. Thus, zombie starvation is directly a result of the duration between
successful attacks. In the SIR model, infected individuals are assumed to recover (or
die) in the same average amount of time. Translated to the mechanics of HvZ, this
assumes all zombies have the same likelihood of having no attacks in 24 h. However,
if zombies have varying abilities to successfully attack humans, then starvation may
not be equally likely. We consider two starvation mechanisms, proportional death and
uneven attack distribution, with the proportional death mechanism of the SIR model
as the null hypothesis.

Starvation Equally Likely for All Zombies: Proportional Starvation If starvation
is equally likely for all zombies at any time, then the per capita rate of starvation is
constant. Thus,

S(H , Z) = mZ , (9)

where m is the per capita rate of starvation. This is also the recovery (or removal)
mechanism of infected individuals for the SIR model.

Uneven Attack Distribution: Negative Binomial Model If hunting ability varies
among zombies, then attacks are not evenly distributed among zombies and starvation
is not equally likely. We modify May’s use of the negative binomial to model the
impact of an uneven distribution of attacks on starvation with

S(H , Z) = m
Z(

1 + rS H
kS

)kS , (10)

where rS is related to the ratio between the mean number of attacks per zombie and the
maximum number of attacks per zombie and kS measures ‘clumpiness’ of attacks. A
low kS indicates some zombies get a disproportionately high number of attacks, i.e., a
small number of zombies is responsible for a majority of the attacks on humans. Con-
versely, a large kS means attacks are more evenly distributed. Although this starvation
mechanism is based on a negative binomial distribution of events, like the spatial clus-
tering attack mechanism (Sect. 3.1), the functional form is different. An explanation
is provided with a derivation of this starvation mechanism in “Appendix C.2”.
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3.3 Humans Joining or Quitting

In the fall 2011 round of HvZ, no players were allowed to join after the game started.
Thus, we set F(H) = 0 for all of the 2011 models. In the fall 2012 round, new players
were allowed to join until the first mission at t = 10.25, with new players added as
humans. To reflect this, we use

F(H) = f . (11)

The growth rate for humans, f , is set to the slope of the secant line for the total
population (sum of humans and zombies) over the interval when humans were allowed
to join the game, between t = 0 and t = 10.25. After the first mission, we set
F(H) = 0.

Tomodel human leaving the game, we consider a proportional quitting mechanism,

Q(H) = qH , (12)

where q is the rate humans quit the game. The null hypothesis, that human quitting
does not impact game dynamics, tacitly sets q = 0.

4 Parameter Estimation andModel Comparison

4.1 Maximum Likelihood Estimation for Parameters

Once we have a collection of possible models, we want to identify which models
represent the data best from an information theoretic perspective. Model fit is based
on Maximum Likelihood Estimation (MLE), popularized by Fisher (1920, 1922).
For a given vector of parameters, θ , let Hobs(t, θ), H(t, θ), and Z(t, θ) describe the
solution to (1). For a set of data with N observations, the relationship between the
solution and the nth observation (1 ≤ n ≤ N ), (Hn , Zn), is defined as follows. Let
Hn be a normally distributed random variable with mean Hobs(tn, θ) and variance σ 2.
Similarly, let Zn be normally distributed with mean Z(tn, θ) and variance σ 2. Since
the total initial population, P0, is fixed and H = P0 − Z , the variance for both H
and Z are the same. Thus, the probability of observing a particular set of data can be
expressed via the density functions

f (Hn|θ , tn) = 1√
2πσ 2

e− (Hn−Hobs(tn ,θ))2

2σ2 (13)

and

g(Zn|θ, tn) = 1√
2πσ 2

e− (Zn−Z(tn ,θ))2

2σ2 . (14)
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The likelihood, L, over the set of N data points is therefore

L[θ |Data] =
N∏

n=1

(
1√
2πσ 2

e− (Zn−Z(tn ,θ))2

2σ2
1√
2πσ 2

e− (Hn−Hobs(tn ,θ))2

2σ2

)
. (15)

The negative log likelihood (NLL) of θ given the data is

NLL[θ |Data] = N ln(2πσ 2) +
N∑

n=1

(Zn − Z(tn, θ))2 + (Hn − Hobs(tn, θ))2

2σ 2 , (16)

which isminimizedwhere parameters aremost likely given the data (Lewis and Powell
2017).

4.2 Bayesian Information Criterion for Model Competition

Since an arbitrarily complex model can be tuned to fit complicated data, goodness
of fit alone is a poor metric for model comparison. Bayesian Information Criterion
(BIC), derived by Schwarz (1978), gives a way for determining the significance of
one model over another given a particular data set by balancing goodness of fit with
model complexity. BIC is given by

BIC = 2NLL(θ̂) + (K ln(N )), (17)

where θ̂ is the set of best fit parameters for amodel, K is the number of parameters, and
N is the number of data points. BIC captures behavior of the NLL while penalizing
model complexity. Since a lower NLL implies a higher likelihood and a simpler model
is preferred, a lower BIC denotes a better model. Further, we can compare two models
by their relative difference of BIC. Given models A and B, with corresponding BICA

and BICB , if BICA < BICB then A is e
1
2�BIC times more probable than B (Neath and

Cavanaugh 2012). The standard threshold of significance is �BIC = 5 as this says

model A is about e
1
2 (5) > 10 times more likely than model B.

4.3 Bootstrapping and Uncertainty Quantification

Bootstrapping is a method for producing multiple sets of data by resampling available
data with replacement, generating distributions for parameter values and BIC and
quantifying uncertainty in results (Dixon 2006). Since our HvZ data are time series,
we modify the method outlined by Dixon (2006) to preserve the ordering of samples
as follows. We randomly draw from our data with replacement to produce a data set
with the same number of data points as the fall 2011 data set and track the frequency
of each data point in the resample. Models are then fit to the full data set with the error
for a given data point weighted higher, the more frequently that point appears in the
resample.
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Table 1 BIC values for fittings
of all combinations of
mechanisms

A(H , Z) S(H , Z) = mZ S(H , Z) = m Z(
1+ rs H

ks

)ks

Q = 0 Q = qH Q = 0 Q = qH

aH Z −163 −414 −163 −395
aH Z

1+ath H
−159 −410 −146 −409

aH Z
1+atz Z

−377 −464 −529 −577

aH Z
1+ath H+atz Z

−373 −460 −525 −573

a
H0

(
H
H0

)V
H Z −439 −437 −484 −316

a
H0

(
H
H0

)V
H Z

1+ath H+atz Z
−437 −469 −561 −568

kA ln
(
1 + aZ

kA

)
H −392 −470 −525 −586

The bold value in the upper left, BIC of −163, is the BIC for Ker-
mack and McKendrick’s SIR model. This is the second highest BIC
of all the models tried, evidence that the SIR model does a poor job of
explaining the data. The four boxed values (in the rightmost column)
are the four lowest BIC values, corresponding to the best models by
BIC competition (SC with a BIC of −586, GH with a BIC of −577,
GHHT with a BIC of −573, and GHHTVS with a BIC of −568)

We bootstrap 10,000 data sets from the fall 2011 data set and fit all models to each.
Each of the proposedmechanisms has a controlling parameter, like th for handling time
that for some value causes themechanism to vanish. The likelihood that amechanism is
unimportant is proportional to themass of the distribution for the controlling parameter
clustered at the vanishing value. From the BIC distributions, we can determine the
probability that any model is better than any other. For models A and B, we find
respective BIC values BICA and BICB for the original data set. The likelihood that
model B is better than model A is the proportion of the model B’s distribution of BIC
that falls below BICA.

5 Results

We tested 28 models consisting of every combination of attack and starvation mech-
anism, both with and without quitting. BIC values for each model are presented in
Table1. The bold value in Table1 is the BIC for the null hypothesis in our model
competition, namely Kermack and McKendrick’s SIR model. The SIR model, with
mechanisms of mass action attack rate, proportional starvation, and no quitting, is
written

Ḣ = −aH Z ,

Ż = aH Z − mZ .
(18)
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Fig. 2 Plotted are time series data from a fall 2011 round of HvZ at USU with the best fits of the SIR model
(18) and the two best performing models: the group hunting model, GH, and SC, the susceptible clustering
model (19). Top: Human population data (triangles) andmodel predictions. The SIRmodel (dark grey) does
very poorly only matching the data at the start (t = 0) and the center (t = 30 to t = 40). SC (light grey)
and GH (black) do significantly better at matching the data with SC performing slightly better. Bottom:
Zombie population data (circles) and model predictions. The SIR model (dark grey) recovers some of the
data at the end (t = 57 to t = 80) but does a poor job of capturing the dynamics overall. The SC (light
grey) and GH (black) models match the data well with SC again slightly outperforming GH

This model performed poorly in the model competition, with the second highest
BIC. The difference in BIC between the SIR model and the best performing model is
423,well above the threshold of significance inBICdifference of 5 (Table1).Deviation
from 2011 data is large (see Fig. 2), and the best fit solution fails to replicate dynamic
characteristics of the outbreak.

All four of the best performing models share the same starvation mechanism and
quittingmechanismbut differ in attackmechanism.We refer to eachmodel by its attack
mechanism. The best performing model by BIC, with a BIC of −586 (Table1), has
spatial clustering of humans (6) in the attack mechanism, uneven attack distribution
(10) for starvation, and quitting (12). The resulting susceptible clustering model (SC)
is written
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Ḣobs = −kA ln

(
1 + aZ

kA

)
H,

Ḣ = −kA ln

(
1 + aZ

kA

)
H − qH ,

Ż = kA ln

(
1 + aZ

kA

)
H − m

Z(
1 + rS H

kS

)kS .

(19)

The best fit of model SC is plotted in Fig. 2, for comparison with SIR and 2011 data.
The second best model by BIC, with a BIC of −577, has group hunting (5) for the

attack mechanism, uneven attack distribution (10) as the starvation mechanism, and
quitting (12) and is given in (20), where we set th = 0 and V = 0. We plot the group
hunting model (GH) in Fig. 2. The third best model, with a BIC of 573, has attack
mechanisms of group hunting and handling time (3), uneven attack distribution (10)
for starvation, and quitting (12). The group hunting and handling time model (GHHT)
is given in (20) where we set V = 0. The difference between BICs of GH and GHHT
is 4 (Table 1), indicating that there is not a substantial difference in modeling power
between GH and GHHT. The fourth best model, with a BIC of −568, is

Ḣobs =
−a

(
H
H0

)V
H Z

1 + athH + atc Z

Ḣ =
−a

(
H
H0

)V
H Z

1 + athH + atc Z
− qH

Ż =
a

(
H
H0

)V
H Z

1 + athH + atc Z
− m

Z(
1 + rS H

kS

)kS .

(20)

This model has attack mechanisms of group hunting, handling time, and variation
in susceptibility, and starvation and quitting mechanisms identical to those of SC,
GH, and GHHT. The difference in BIC between the group hunting, handling time,
variation in susceptibility model (GHHTVS) and GHHT is 5 (Table 1), just at the
level of significance. The only difference between models GHHT and GHHTVS is
the addition of variation in susceptibility as an attack mechanism (governed by V ),
indicating that there may not be a substantial difference in descriptive power between
any of GH, GHHT, and GHHTVS.

The distribution of parameters from bootstrapping offers additional evidence that
model fit is not improved by the addition of either the handling time or variation in
susceptibility mechanisms. From the distribution of th in GHHT (Fig. 3), we get a 90%
confidence interval for handling time of (1.3, 2.8) s.While this is realistic for HvZ, the
loss of a few seconds from hunting time will not have a significant impact on zombie
hunting time, which is at the scale of hours. The square of the coefficient of variation,
V , for the variable susceptibility mechanism in GHHTVS fits to 1.48 × 10−5. The
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Fig. 3 Shown is the distribution for handling time, th , fitted to 10,000 bootstrapped data sets for the model
with group hunting and handling time as attack mechanisms (GHHT). Dashed lines indicate the bounds on
the 90% credible interval, (1.3, 2.8) s. The solid black line indicates the fitted value of th = 2.17 s for the
fall 2011 data set. At the time resolution of the data (in hours) a loss of a couple seconds per zombie attack
will not generate a significant impact on zombie hunting time

distribution of bootstrapped values for V in GHHTVS is displayed in Fig. 4. After
removing outliers, we find a 90% confidence interval of (1.1×10−5, 7.8×10−5). Such
a small coefficient of variation indicates that the level of variation in susceptibility is
negligible.

All four of SC (19), GH, GHHT, and GHHTVS (20) share the same starvation
mechanism of uneven attack distribution among zombies and the quitting mechanism.
The starvationmechanism common to all four of the best performingmodels is uneven
attack distribution (10). The measure of how clustered attacks are, kS , is fit between
2.31 and 2.63 for all of the best four models indicating that there are zombies with
a disproportionately high number of attacks. All four of our best models also have
a common range of values for quitting rate, q, with between .007 and .008 of the
human population quitting per hour. We do not consider any of the other models
as the difference in BIC between any other model and model GHHTVS is at least
seven, which is well over the threshold we consider for BIC competition. Full fitted
parameterizations and BICs for SIR, NB, GH, GHHT, and GHHTVS models are
provided in Table 2.

Figure 5 shows the distributions for the BIC of the SIR, GH, and SCmodels fitted to
10,000 bootstrapped data sets. The BICs for each of these models, given in Table1, are
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Fig. 4 Shown is the distribution for V , the square of the coefficient of variation for susceptibility fitted to
10,000 bootstrapped data sets for themodelwith group hunting, handling time, and variation in susceptibility
as attack mechanisms (GHHTVS). Dashed lines indicate the bounds on the 90% credible interval, (1.1 ×
10−5, 7.8 × 10−5). The solid black line indicates the fitted value of V = 1.48 × 10−5 for the fall 2011
data. Such a small coefficient of variation indicates that the level of variation in susceptibility is negligible

−163, −577, and −586, respectively. Discounting outliers that are the result of con-
vergence in theMLE fitting to unreasonable parameter regimes, the means for the BIC
distributions of models SIR, GH, and SC were −165, −564, and −572, respectively.
This further supports that both the SC and GH models drastically outperform the SIR
model, with the SC model slightly outperforming the GH model. The proportion of
the BIC distribution for the SIR model that is below the BIC of either the GH or SC
models is 0, meaning the SIR model cannot outperform either model for the 2011 data
with a p value of p < 10−4. Additionally, the proportion of the distribution for the
GH model that is less than the BIC for the SC model is also 0, indicating that GH
cannot outperform SC on the 2011 data with a p value of p < 10−4. These p values
were calculated directly from the histogram, p the fraction of bootstrapped trials of
competing models that give an improvement over the nominal fit of a given model.
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Fig. 5 Shown are the distributions for the BIC of the SIR model (18), the model with group hunting (GH),
and the SC model with uneven attack distribution (19). The BICs for the fall 2011 data set of each model
are −163, −577, and −586, respectively. No bootstrapped BIC for the SIR model is less either of the BICs
for SC or GH indicating that the SIR model cannot outperform either model for the 2011 data with a p value
of p < 10−4. The distributions for models GH and SC overlap and are shown again in the inset histogram
to provide better resolution. The dashed black lines in the inset indicate the BIC for each model from the
fall 2011 data set. No bootstrapped BIC for GH is less −586, the BIC for SC, indicating that GH cannot
outperform SC for the 2011 data with a p value of p < 10−4

6 Model Predictive Power

With the results from fall 2011, we can make predictions about future rounds of the
game. In order to compare our predictions with an independent data set from fall
2012 we must take into account changes in rules between 2011 and 2012. In 2012,
new players were allowed to join until the first mission (t = 10.25). All late joining
players were assigned the role of human. For this time interval, we add a human
population growth term, as outlined in Sect. 3.3. Second, missions were added to HvZ
at USU in 2012. There were three missions, at t = 10.25, t = 24.5, and 38.75 h
(reflected by the jumps in Fig. 6). Since these events are a drastic change in game
dynamics, we do not include the intervals in our models. Rather, we use our models
to predict population for each of the four intervals between missions. To get the initial
population for humans (zombies) at the start of each interval, we take the size in the
jump in human population from before to after the mission and subtract (add) it from
the final predicted human (zombie) population before the mission that started the new
interval. Finally, the removal of humans who had stopped playing dampens the impact
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Table 3 BIC and refitted
quitting parameter for the four
best models from 2011

Models
SC GH GHHT GHHTVS

BIC −1486 −1250 −1445 −1291

q(×10−3) 2.60 8.10 0.189 7.90

Only the quitting parameter q was fit to fall 2012 data for the four best
models. All unfit parameters were fixed as the best fit parameters from
the fall 2011 data. For all but model GH, the quitting parameter was fit
to a lower value in 2012 than in 2011. BIC indicates that model with
susceptible clustering (SC) does the best at predicting 2012 data. The
group hunting and handling time model (GHHT) and group hunting,
handling time, and variable susceptibility model (GHHTVS) are sec-
ond and third best with the group hunting model (GH) rounding out
our strongest four

of quitting since the mechanism was only added to account for humans who had quit
and were still in the data. Thus, we first fit a new quitting term to the fall 2012 data for
each of our best models from 2011 before using these models to make predictions. We
account for the jumps in the data resulting from the missions with the same method
described above, fitting q to all four intervals betweenmissions and tracking the jumps
with the difference in the data from the start to the end of the mission. The quitting
parameter is the only parameter fit to the fall 2012 data. All other model parameters
are taken from the fall 2011 fits (Table 2). The newly fitted quitting parameters are
given in Table 3.

Themodel with the strongest predictive power against the 2012 data is SC (19), with
spatial clustering of humans (6) in the attack mechanism, uneven attack distribution
(10) for starvation, and quitting (12). The quitting rate is greatly reduced (by a factor 4)
between fall of 2011 and fall of 2012 for this model. Both model predictions match the
human population data before the first mission and after around t = 30 but struggle
in the interval from t = 10.25 to t = 30 (see Fig. 6). This may be the result of
insufficient mechanisms to account for humans leaving the game. In the first interval
the combination of humans joining and humans quitting causes some problems with
identifiability.After around t = 27, gameorganizers started removing inactive players,
reducing the impact of humans quitting but remaining in the data set. These two factors
likely reduced the quitting term in the fitting, which may be closer to the 2011 value
for the interval between t = 10.25 to t = 30. A better understanding of the impact
quitting on the dynamics of HvZ is a subject for another analysis.

After SC, in order of strongest predictive powerwereGHHT,GHHTVS, and finally,
GH. This seems to indicate that a handling time of a few seconds had a noticeable
impact on model performance in 2012. This is likely due to the increased frequency
in data collection from 2011 to 2012. With data collected on the order of minutes
instead of hours a handling time of a few seconds may be reflected in the data. How-
ever, the difference in BIC between GHHT and GHHTVS indicates that variation in
susceptibility is still not creating a significant impact on dynamics.
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Fig. 6 Plotted are time series data from a fall 2012 round of HvZ at USU with model predictions from the
best performing models in 2011. All parameters are from fall 2011 fitting (Table 2), with the exception of
the quitting parameter. The missions added in fall 2012 (reflected in the jumps in the data) are accounted
for by fitting around them since there none of the considered mechanisms can account for these jumps. Top:
Human population data (triangles) and model predictions. The best model has attack mechanisms of spatial
clustering of humans (SC, BIC of −1486) and is plotted in light grey. All three models most closely predict
the data before the first mission when the growth term can offset quitting and after organizers started to
account for quitting. Bottom: Zombie population data (circles) and model predictions. Of the three models
considered, SC (light grey) has predictions that best align with the data

7 Discussion and Conclusions

A suite of models with a variety of contact and starvation mechanisms competed to
describe the dynamics of time-series data from Humans versus Zombies. The de facto
null model, Kermack and McKendrick’s SIR, was among the most poorly performing
models, supporting the hypothesis that more complex nonlinear dynamics drive HvZ.
The best model by competition included mechanisms for spatial clustering of humans,
heterogeneity in the distribution of attacks per zombie, and human quitting (model
SC, Eq. 19. The next three best models (models GH, GHHT, and GHHTVS, Eq. 20)
had attack mechanisms of group hunting, group hunting and handling time, and group
hunting, handling time and variation in susceptibility. All three shared starvation and
quitting mechanisms with the best model. The mechanisms for handling time and
variation in susceptibility did not significantly improve performance for these models
in comparison with the fall 2011 data. Of the 28 models we considered, those with
a handling time mechanism consistently performed worse than those without for the
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2011 data. However, in 2012, models with handling time generally did better than
corresponding models without handling time (e.g., GHHT performed better than GH).
This may be due to the improved time resolution for HvZ data in 2012. All four of the
best models from 2011 struggled with predicting outcomes in 2012. We hypothesize
that the removal of inactive human players from the data by game organizers after the
secondmission is likely a cause of this. Further analysis is required to better understand
the full impacts of quitting and handling time.

The mechanisms of the best models are observable in behavior of HvZ players.
Humans commonly traveled in groups for better protection, aligning with the spatial
clustering mechanism of the strongest model. Group hunting occurred in multiple
ways. First, when a zombie encountered a human and started chasing, other zombies
in the area often noticed and joined the chase. Additionally, zombies sometimes would
organize trapswith a few chasing humans into a larger, hidden group of zombies.When
groups of zombies chased a human the variability in speed between players gave faster
zombies an advantage in tagging human players. This advantage resulted in some
zombies recording significantly more attacks than others, matching the starvation
mechanism common to all four of our best models. The lack of handling time can
also be seen. Recording an attack only took a few seconds, and zombie players were
generally eager to continue hunting and chasing humans.

In comparison to the severity of real diseases, application of model competition
techniques to a game may seem trivial. While the popularity of zombies has been
leveraged to provide nice educational examples with which to introduce students to
epidemiological modeling (Lewis and Powell 2016; Munz 2005), this paper is not
advancing modeling or understanding of detailed disease transmission. A large body
of modern mathematical biology research has focused on important specifics of in-
host immune responses, the influences of environmental heterogeneity, and varied
effects of population structure (in age, susceptibility, infectivity, duration, lethality,
etc.) on disease dynamics (Garlick 2014; Dwyer 2000; Kennedy and Dwyer 2018;
Volz EM et al. 2011). Since HvZ is a game and all of these details are specified by
clear rules, there is little to be learned from this paper in that regard. That said, this
work highlights the need for alternative models of disease transmission, particularly
when the assumptions of mass action transmission are not met. Using incorrect trans-
mission mechanisms when modeling disease spread can have severe consequences.
For example, a comparison between the predictions of the SIR model and the Fall
2011 data plotted in Fig. 2 shows the SIR model to significantly underpredict both
the size and growth rate of the infected population. In the context of a real disease,
such an underprediction can result in drastically underestimating its severity, leading
to mismanagement and much higher societal impact (e.g., death toll).

Heterogeneity of connectivity, particularly of spatially dispersed populations, is
another source of population structuring that impacts disease progress. To model spa-
tial contact processes explicitly, researchers have used complexODEs in patches (Tuite
2011; Tien and Earn 2010; Diaz 2017; Rock 2018; Laguzet and Turinici 2015; Meyers
2005; Stolerman et al. 2015; Kermack and McKendrick 1927; Miller 2009), partial
differential equations (Turchin 1998; Pech and McIlroy 1990; Hosseini et al. 2006;
O’Regan 2015;Hooten et al. 2013; Powell andBentz 2014;Garlick 2011, 2014;Hefley
Tj et al. 2017), integrodifference equations (Medlock and Kot 2003; Mollison 1972;
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Kot and Schaffer 1986; Liu and Kot 2019;Wang et al. 2002), and stochastic individual
based models (Chen 2018; Federico 2013; Robins et al. 2015; Gross andMiller 2001).
Additionally, social networks and graph-theoretic measures have been used to charac-
terize disease propagation indirectly (Colizza 2006; Brauer et al. 2008; Maheswaran
et al. 2009; Luke and Harris 2007). To place our research in context, almost all of these
approaches deal with transmission as a mass action effect on a sufficiently local scale.
The blurring of boundaries between predator–prey and infected-susceptible dynamics
in HvZ provides a natural avenue to tackle some of the modeling issues surrounding
spatial contact processes with models of intermediate complexity. While it is diffi-
cult to deduce from first principles how the various spatial contact processes in play
would result in a descriptive model, the use of model competition allowed us to clearly
distinguish among potential contact mechanisms. Approaches like this could be of par-
ticular value in systems where spatial scaling is predetermined and cannot be selected
to match mass action assumptions. For example, in the case of wildlife disease, the
spatial scaling is often determined by the scale of landscape variation and choosing a
scaling that allows for homogeneity in the population between susceptible and infected
individuals is not possible.
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A Time Budget Model for Predation

Mass action assumes zombies are always hunting but thismay not be the case. Zombies
spend some amount of their time hunting, but alsowaste time through interactionswith
both humans and other zombies. There are two mechanisms here. The first, initially
derived byHolling (1959), is handling time and assumes that each attack includes some
interaction time between the human and zombie involved. The second, derived by both
Beddington (1975) and DeAngelis et al. (1975), is predator interference and assumes
that when two zombies encounter each other the interaction consumes time which
detracts from hunting time. We interpret this interaction as time time that multiple
zombies hunt the same human. Following their derivations, we incorporate these two
mechanisms by supposing, in a period of time T , each zombie spends its time divided
between time spent searching for prey, Ts , wasted time interacting with humans, Th ,
and wasted time interacting with zombies, Tc. The resulting time budget is then

T = Ts + Th + Tc. (21)
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We assume zombies, on average, encounter humans at a rate a and encounter other
zombies in a hunt at a rate az . Assuming the average time spent, an interaction between
a human and zombie is th we can express the total time a zombie spends interacting
with, or handling, humans as

Th = athHTs . (22)

Similarly, assuming the average time, a zombie wastes in a hunt with other zombies
that does not result in a kill is tc we can express the time wasted in group hunts per
zombie as

Tc = aztc ZTs . (23)

Substitution of these terms into (21) gives

T = Ts (1 + athH + aztc Z) (24)

rewritten in terms of searching time as

Ts = T

1 + athH + aztc Z
. (25)

Terming N the total number of attacks in a window of time T , we write

N = aTs H Z . (26)

After substituting the expression for searching time, we have the number of attacks in
time T is

N = aT H Z

1 + athH + aztc Z
. (27)

Rewriting az in terms of a, the human-zombie encounter rate, and defining β =
tc(az/a), the resulting attack rate, A(H , Z) = N/T , is

A(H , Z) = N

T
= aH Z

1 + athH + aβZ
. (28)

B Variability in Susceptibility: The Theta-Logistic Model

Variability in the susceptibility of healthy individuals has been shown to play a role
in disease propagation in host–pathogen interactions. Variation in susceptibility could
play a role in many other disease systems as well (explore super spreader question).
To explore this, we begin with the derivation given by Dwyer (2000). First, we modify
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a standard SIR model so that S = S(t, v) is a function of both time, t , and level of
susceptibility, v, giving

dS

dt
= −vSI

dI

dt
= I

∫ ∞

0
vS dxv − μI .

(29)

Then, we can define

S j =
∫ ∞

0
v j S(t, v) dxv (30)

to be the j th moment of the distribution of susceptibility. Taking a time derivative of
(30) gives

dS j

dt
=

∫ ∞

0
v j d

dt
S(t, v) dxv

=
∫ ∞

0
v j (−vSI ) dxv

= −I
∫ ∞

0
v j+1S(t, v) dxv

= −I S j+1.

(31)

Here, we define m j = S j
S0
, so that m1 = m, the mean of the distribution of suscep-

tibility. Taking a time derivative, we have

dm j

dt
= d

dt

S j

S0
(32)

= S0
dS j
dt − S j

dS0
dt

S20
(33)

= −Im j+1 − (−Im jm) (34)

= −I (m j+1 − m jm). (35)

From (32), we see that the rate of change for anymoment depends on the next higher
moment, and to get around this we assume that the coefficient of variation remains
constant. Thus, we can write the square of the coefficient of variation, V , as

V = m2 − m2

m2 . (36)

In turn, this gives

dm

dt
= −I (m2 − m2) (37)
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= −I Vm2. (38)

Next, we define Ŝ(t) to be the total population density at time t . We can then write
Ŝ(t) = S0(t), and it follows that

dŜ

dt
= −mŜI (39)

Here, it is convenient to find an explicit expression for m, so we start with

dm

dt

/dŜ

dt
= V

m

Ŝ
(40)

and integrating both sides in t gives

m(t) = m̄

(
Ŝ(t)

Ŝ(0)

)V

, (41)

where m̄ = m(0), the mean of the initial distribution of susceptibility. The resulting
dynamics can then be written

dŜ

dt
= −m̄

(
Ŝ(t)

Ŝ(0)

)V

Ŝ I (42)

dI

dt
= m̄

(
Ŝ(t)

Ŝ(0)

)V

Ŝ I − μI . (43)

C Clustering in Attack or Starvation: Negative Binomial

C.1 Spatial Clustering of Susceptibles

The assumption that populations are well-mixed fails if individuals come into contact
with only a small, clustered, subpopulation. To account for this, May (1978) replaced
the Poisson distribution of the Nicholson–Bailey model with a negative binomial
distribution. The resulting difference equation, in HvZ terms, relating host and zombie
populations is

Ht+1 = FHt

(
1 + aZt

kA

)−kA
, (44)

where Ht (Zt ) is the human (zombie) population at time t , a is the encounter rate, kA
is a clumping parameter, and F is the mean number of surviving progeny of a healthy
individual. Kong et al. (2016) extend this assumption to a continuous time model
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by observing that
(
1 + aZt

kA

)−kA
is the probability that a human escapes all zombies

between times t and t + 1. The risk of infection between successive time steps is then

1−
(
1 + aZt

kA

)−kA
, or a rate of infection of kA ln

(
1 + aZ

kA

)
since rate = 1−exp(rate)

(Vynnycky and White 2010). The result is an attack term of

A(H , Z) = kA ln

(
1 + aZ

kA

)
H . (45)

C.2 Uneven Attack Distribution

When zombies have significantly different rates of encounter with humans a mean
starvation rate poorly represents the true starvation rate for a given zombie. Assume
the number of mean number of encounters per unit time the i th zombie has is Gamma
distributed with shape parameter kS and mean rSHt (rs being the ratio between the
mean number of attacks and the maximum number of attacks per zombie and Ht the
number of humans at time t). Adapting the derivation of Kong et al. (2016), we see
the conditional probability that the number of successful hunts (Xi ) per unit time the
i th zombie has, conditioned on the mean number of encounters the i th zombie has (θi )
being θ , is expressed

P(Xi = x |θi = θ) = e−θ θ x

x ! , x = 0, 1, 2, . . . (46)

and the marginal distribution of Xi is the PDF of a negative binomial distribution with
mean rSHt . Then, the probability of starvation in a time window of �t for a given
zombie is the zero term of the negative binomial multiplied by the duration, namely

P(starvation) = �t

(
1 + rSHt

kS

)−kS
. (47)

A difference equation for the zombie population that accounts only for starvation can
then be written

Zt+�t = Zt

(
1 − �t

(
1 + rSHt

kS

)−kS
)

. (48)

In its limit, a rearrangement of the difference equation produces the starvation term

Ż = −Z

(
1 + rSH

kS

)−kS
(49)
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but since starvation is the product of consecutive unsuccessful hunts over a 24 h period
this needs to be scaled, resulting in the uneven attack distribution starvation model

S(H , Z) = mZ(
1 + rS H

kS

)kS . (50)

It is worth noting that although both this starvation mechanism and the spatial clus-
tering of susceptibles derived in “Appendix C.1” are based on a negative binomial
distribution, they appear to have different limiting behavior. This is the result of track-
ing different terms from the negative binomial (i.e., the zero term or everything but
the zero term). However, for small rS/kS , the logarithmic and negative binomial have
essentially the same behavior.

D BIC

Now, L[θ |Data] is the likelihood of a specific parameter set given particular data.
Bayesian information criterion, formalized by Schwarz (1978), is a platform formodel
comparison that translates this probability of a parameter set into a probability for the
model. Lewis and Powell (2017) provide a relatively elementary demonstration that
the probability of a model M given data, P(M |Data]), can be found by looking at the
likelihood over the whole parameter space �. From Bayes’ theorem, we can say

P(M |Data) = 1

P[Data]
∫

θ∈�

L[θ |Data]P(θ)dθ (51)

∝
∫

θ∈�

L[θ |Data]P(θ)dθ (52)

∝
∫

θ∈�

exp
[
−N ln(2πσ 2)

−
N∑

n=1

(Zn − Z(tn, θ))2 + (Hn − Hobs(tn, θ))2

2σ 2

]
P(θ)dθ (53)

∝
∫

θ∈�

exp [−NLL(θ)] P(θ)dθ . (54)

Since we use the same data to fit each model, P[Data] in (51) is common to each
model and thus can be ignored for the purpose of model competition. This is important
because it is impossible for us to determine the probability of the data occurring.

After fitting our models to the data, we need a way to measure which model fits best
while still maintaining model simplicity, which we measure by the number of param-
eters. We have the probability of the model, related to the NLL, but need a fair way to
penalize a model for complexity. We assume that NLL is at least twice continuously
differentiable in a neighborhood of θ̂ and that all parameters are independent. We can
express NLL by its Taylor series expansion
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NLL(θ) = NLL(θ̂) +
N∑

n=1

[
K∑
i=1

∂

∂θi
NLL(θ̂)(θi − θ̂i )

]

+
N∑

n=1

[
K∑
i=1

1

2

∂2

∂θ2i
NLL(θ̂)(θi − θ̂i )

2

]
+ · · · (55)

= NLL(θ̂) +
N∑

n=1

[
K∑
i=1

1

2

∂2

∂θ2i
NLL(θ̂)(θi − θ̂i )

2

]
+ · · · (56)

where K is the number of parameters. Independent parameters, in this context, means
that all mixed partials are zero. Further, we can rescale parameters through non-
dimensionalization to ensure that ∂2

∂θ2i
NLL(θ̂) = 1, giving

NLL(θ) = NLL(θ̂) + N

2

[
K∑
i=1

(θi − θ̂i )
2

]
+ · · · (57)

Substitution of (57) into (54) provides

P(M |Data) ∝
∫

θ∈�

exp [−NLL(θ)] P(θ)dθ (58)

∝
∫

θ∈�

exp

[
−NLL(θ̂) − N

2

[
K∑
i=1

(θi − θ̂i )
2

]
+ · · ·

]
P(θ)dθ (59)

The dominant contribution to this will come from dominating exponential terms so as

long as P(θ) is not exponential we can use
∫ ∞
−∞ e−ax2 =

√
π
α
to write

P(M |Data) ∼ e−NLL(θ̂)

(√
2π

N

)K

∼ exp

[
−NLL(θ̂) − 1

2
(K ln(N ) − K ln(2π))

] (60)

It is true in our work (and is traditionally assumed) that N � 2π which allows
for the neglecting of the constant K ln(2π). The BIC is then defined as 1

2BIC =
−NLL(θ̂) − 1

2 (K ln(N )) or, as it is presented by Schwarz (1978)

BIC = 2NLL(θ̂) + (K ln(N )). (61)
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E Code for Selecting and Parameterizing aModel for Humans Versus
Zombies

% % % % % Code used for parameterization of models
% % % % % with data from HvZ.
% % % % % This code is broken into four functions

% % % % % 1) HvZparameterization
% % % % % Reads in data , establishes bounds on parameter
% % % % % space , calls later functions

% % % % % 2) HZ__parametrization
% % % % % Establishes parameters to be fit (model
% % % % % dependent), calls the
% % % % % optimization function to determine optimal
% % % % % parameters , calls the
% % % % % parameterized ODE for population predictions ,
% % % % % if desired
% % % % % 3) error
% % % % % The error function in the Maximum Likelihood
% % % % % Function. A
% % % % % different error function could be substituted
% % % % % here.

% % % % % 4) hzode
% % % % % The desired model to be parameterized. The
% % % % % example here is the
% % % % % best performing model (SC) with the Attack
% % % % % Mechanism of
% % % % % Suceptible Clustering , the Starvation
% % % % % Mechanism of Uneven Attack
% % % % % Distribution , and the Quitting Mechanism

function [] = HvZparameterization

load('HvZ2011.mat ','HF2011 ','ZF2011 ','tF2011 ')
% % read in data from file

H = HF2011; % % Human population data from Fall 2011
Z = ZF2011 '; % % Zombie population data from Fall

2011
t = tF2011; % % time vector data from Fall 2011

% % % % % normalize human and zombie populations by total
population at the

% % % % % start of the the game
P0 = H(1) + Z(1);
h = H./P0; % % normalized human population
z = Z./P0; % % normalized zombie population

% % % % % bounds on parameter space. Not required but
% % % % % makes paramterization
% % % % % more efficient. If fitted parameters are near
% % % % % bounds these need
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% % % % % to be checked
lbb = 0;
ubb = 100;

% % % % Call parameterization function
[parameters ,BIC] = HZ_parameterization (t,h,z,P0 ,lbb ,ubb);

% % % % % Outputs
disp('Parameters ')
disp(parameters)
disp('BIC')
disp(BIC)

end

function [parameters ,BIC] = HZ_parameterization (t,h,z,
P0 ,lbb ,ubb)

IC=[h(1), h(1), z(1)]; % % Establish initial conditions for
the ODE

parms=[.1 , .1 , .1 , .1 , .1 ,.1]; % % Initial guess for
parameters

lb = lbb*ones(1,length(parms )); % % lower bound vector
ub = ubb*ones(1,length(parms )); % % upper bound vector

% % % % fmincon is the optimization function used to
% % % % % produce MLE estimates
% % % % in our MLE procedure. The error function called is
% % % % % based on the NLL
parms = fmincon(@(x) error(t,h,z,...

[x(1) x(2) x(3) x(4) x(5) x(6)],IC),parms ,[],[],[],[],
lb ,ub);

% % % % To calculate BIC an estimate of varience (stderror)
% % % % % is needed
% % % % as described in the BIC Estimation Section.
[~,hz]= ode45(@(t,y)hzode(t,y,parms),t,IC); % %
N = length(h); % % number of data points
v = length(parms); % % number of fit parameters
errs2 = (hz(:,1)-h).^2+(hz(:,3)-z).^2;
stderror = 1/(2*N)*sum(errs2 );%Variance of the data from
the model estimate

NLL=N*log (2*pi*stderror )+1/(2* stderror )*sum(errs2 );
BIC=2* NLL+v*log(N); % % BIC for parameterized model

given the data

parameters=parms; % % parameter estimates for normalized
data

parameters ([1 4]) = parms ([1 4])/P0; % % some
parameters depend on
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% % population
% % size ,
% % so these
% % are
% % converted
% % values

end

function err=error(t,h,z,parms ,IC)

% % % % For a given parameter set , the ODE is solved
numerically using

% % % % ode45
[~,hz]= ode45(@(t,y)hzode(t,y,parms),t,IC);

% % % % the error between the model estimates and the
data is calculated ,

% % % % and subsequently minimized by fmincon
err=sum((hz(:,1)-h).^2)+ sum((hz(:,3)-z).^2);

end

function rhs=hzode(~,x,parms)

% % % % Set of parameters for a given model. This is an
example and needs

% % % % to be modefied depending on the model being fit.
a=parms (1);
ka=parms (2);
m=parms (3);
rd=parms (4);
kd=parms (5);
q=parms (6);

% % % % The model sovled by ode45. The variable x =
% % % % [Hobs; H; Z]
% % % % consists of Humans present in the data (Hobs),
% % % % Humans present in
% % % % the game (H) to account for those that quit the
% % % % game ,
% % % % and Zombies (Z)

rhs=zeros (3 ,1);
rhs(1)=-ka*log (1+(a*x(3)/ka))*x(2);
rhs(2)=-ka*log (1+(a*x(3)/ka))*x(2)-q*x(2);
rhs (3)=ka*log (1+(a*x(3)/ka))*x(2)-m*x(3)/((1+( rd*

x(2)/kd))^kd);

end
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