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Abstract. Glioblastoma multiforme (GBM) has a poor 
prognosis and its recurrence and mortality rates are high. At 
present, there is no effective clinical method to control its 
progression and recurrence. Traditional Chinese Medicine has 
a high status not only in China, but also in the world. Certain 
drugs are also used in the clinical treatment of tumor diseases. 
In clinical practice, Huang‑Lian‑Tang (HLT) has proven effi‑
cacy in treating brain diseases and preventing tumor recurrence. 
However, the mechanisms of action have remained elusive. The 
present study explored the potential mechanisms of HLT in the 
treatment of gliomas based on network pharmacology. First, 
information on the composition of HLT was obtained from 
the Traditional Chinese Medicine Systems Pharmacology 
Database and Analysis Platform, and the composition and 
targets of the chemical substances contained in the herbs 
were analyzed. Subsequently, a pharmacological interaction 
network for HLT was built. Furthermore, the expressed genes 

of patients with GBM were obtained from Gene Expression 
Omnibus database and screened. A protein‑protein interaction 
network was then constructed for both sets of data and they 
were combined with a topology method for analysis. Finally, 
the screened genes were subjected to enrichment analysis and 
pathway analysis. A total of 386 candidate targets and 7 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
were screened, which were mainly associated with amino 
acid metabolism. Gene Ontology enrichment analysis and 
KEGG signal pathway analysis indicated that these targets are 
involved in anti‑apoptosis, anti‑oxidative stress, multicellular 
biological processes and other physiological and pathological 
processes related to the occurrence and development of GBM. 
In conclusion, the present results indicated that the mecha‑
nisms of action of HLT against GBM involve multiple targets 
and signaling pathways that are related to tumorigenesis and 
progression. The present study not only provided a novel theo‑
retical basis for Traditional Chinese Medicine to treat tumors 
but also novel ideas for the treatment of GBM.

Introduction

Gliomas are the most common central nervous system tumors 
in adults, accounting for 44.69% of intracranial tumors and 
70% of them are malignant gliomas (1). The incidence of 
glioma is ~6.04 cases per 100,000 individuals in 2013, and 
although this incidence is not high, the mortality rate is very 
high (2), and therefore, glioma may be considered dangerous. 
Due to the particularity of the intracranial structure, gliomas 
exhibit high invasiveness, a high recurrence rate and high 
resistance to traditional radiochemotherapy, and under the 
most ideal treatment conditions, the prognosis of patients 
with glioma is still not ideal (3). The survival time of patients 
with GBM is only 12‑15 months, the vast majority of patients 
die within 2 years and the 5‑year survival rate is <5% (2,4). 
Due to the characteristics of invasive growth and progressive 
malignancy of gliomas, it is difficult to completely remove 
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the tumor with surgical treatment. Adjuvant therapies, such as 
radiation therapy and chemotherapy can only eliminate tumor 
cells or delay recurrence to a certain extent and can also cause 
certain damage to the patient's body (5,6). Although numerous 
advances have been made in the standardized as well as indi‑
vidualized comprehensive treatment of malignant gliomas, the 
clinical efficacy remains limited (7).

In the clinic, certain Traditional Chinese Medicine 
prescriptions have been used to treat serious diseases such 
as tumors (8). Huang‑Lian‑Tang (HLT) is a classic Chinese 
herbal formula. The major ingredients are Coptis chinensis, 
Hebeninos commutaverunt and Gingiberi exaruit. In China 
and other Asian countries, HLT has a certain or a subtle 
effect in numerous diseases (such as tumor, diabetes, arthritis, 
ischemic stroke and liver disease) (9). Previous studies have 
indicated that activation of immune cells and metabolic 
reprogramming the inflammatory response are involved in the 
mechanism of action (9‑11). Studies have also suggested that 
one of the major components of HLT, Huanglian, has a valu‑
able effect in the treatment of Alzheimer's disease and brain 
injury (12,13). Furthermore, Huanglian has also been effective 
in treating certain types of cancer (14‑17).

To improve the treatment of gliomas, the present study 
turned to Chinese medicine to identify whether it is able to 
inhibit key molecular targets and signaling pathways associ‑
ated with the occurrence aggressive growth behavior of 
gliomas to provide novel approaches for their clinical treat‑
ment. The anti‑proliferative effect of HLT on cancer cell 
growth has been demonstrated in human myeloma cells (8‑10). 
However, it has remained elusive whether HLT has any effect 
on gliomas and their therapeutic targets. In the present study, 
network pharmacological systems analysis technology was 
used to explore and analyze the multi‑component, multi‑target 
and multi‑pathway interaction laws and regulatory networks 
involved in the inhibition of glioma cell growth, cell‑cycle 
arrest and apoptosis induced by HLT. The present study lays 
a foundation for future in‑depth study of the mechanism of 
action of HLT in the treatment of gliomas and the development 
of novel valuable drugs and may provide novel approaches for 
the clinical treatment of GBM.

Materials and methods

Data preparation. Drug data were obtained from the 
Traditional Chinese Medicines Systems Pharmacology data‑
base (TCMSP; http://tcmspw.com/tcmsp.php) (18). TCMSP is 
a unique systems pharmacology platform of Chinese herbal 
medicines that captures the relationships between drugs, 
targets and diseases. The database includes chemicals, targets 
and drug‑target networks, and associated drug‑target‑disease 
networks, as well as pharmacokinetic properties of natural 
compounds, including oral bioavailability, drug‑likeness, 
intestinal epithelial and blood‑brain‑barrier permeability, and 
aqueous solubility.

Enrichment analysis was performed using the Database 
for the Annotation, Visualization and Integrated Discovery 
database (DAVID; https://david.ncifcrf.gov/) using tumor gene 
data from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo).

Traditional Chinese Medicine ingredient screening and target 
detection. In order to obtain the molecular drug composition 
of HLT, the TCMIP database was searched to retrieve the 
name of each active component included in HLT and their 
chemical structural similarity to commercially available drugs 
was compared using the US Food and Drug Administration 
(https://www.fda.gov/). The standard of oral bioavailability 
≥30% and drug‑likeness ≥0.18 was used to screen Chinese 
medicine ingredients and target analysis was performed. 
Using the aforementioned criteria, pharmaceutical ingredients 
that serve a therapeutic role were screened.

Gene screening. The GEO datasets (GSE108474, GSE109857, 
GSE143263, GSE145940 and GSE150956) included for glio‑
blastoma cells or tissues were compared with those for normal 
brain tissue in order to identify differentially expressed genes 
in glioma. In addition, only datasets containing more than 
20 samples were selected. The titles and summaries of 350 
potentially relevant datasets were screened to identify eligible 
datasets for further evaluation. Finally, only GSE108474 
(72 samples) were selected for further analysis. The 
GSE108474 dataset based on the GPL570 platform was down‑
loaded from the NCBI GEO database, containing the data of 
20 normal brain tissues and 52 tumor samples. The Limma 
version 3.11 software package (https://bioconductor.org/pack‑
ages/limma/) was used to screen genes that were differentially 
expressed between the high‑risk group and the low‑risk group 
(adjusted P‑value <0.01, fold change at least x2).

Drug‑associated active ingredient inspection and target 
screenings. The names of the major ingredients of HLT, 
namely Coptis chinensis, ume and dried ginger, were inputted 
in the TCMSP database and the chemical composition of each 
drug was retrieved. The screening conditions were based on 
oral bioavailability (OB; ≥30%) and drug‑likeness (DL ≥0.18), 
so as to obtain the drug composition and targets. Numerous 
recent studies have shown that the screening criteria can 
screen out effective pharmaceutical ingredients (19‑22).

Drug target‑GBM network construction. The drug‑ disease 
network was constructed using the Bisogenet (23) plug‑in of 
Cytoscape software (version 3.7.2) for drug targets that were 
active through TCMSP and the differentially expressed genes 
in glioma identified from the GEO dataset. It contains six 
PPI databases, including their Interaction Protein Database, 
the Biological Universal Repository of Interaction Data Sets, 
Human Protein Reference Database, the IntAct Molecular 
Interaction Database, the Biomolecular Interaction Network 
Database and the Molecular Interaction Action database. 
Two PPI interactive networks were built and illustrated using 
Cytoscape software, including the screened HLT target and 
the known GBM target. After combining these two networks 
into candidate networks, topology analysis was used to gradu‑
ally screen out the central network.

Network topology analysis. The analysis was performed by 
using the CytoNCA (24) plug‑in in Cytoscape software by 
determining these 6 metrics: Degree centrality (DC), topology 
intermediateness (BC), closeness centrality (CC), feature vector 
centrality (EC), local average connectivity (LAC), and network 
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centrality (NC). The six metrics provide an in‑depth analysis 
of the attributes of all nodes in the interactive network. The 
definition and calculation equations of all parameters reflect the 
significance of the nodes. A higher quantitative value indicates a 
greater significance in the network. Through the above methods, 
the desired central network was gradually selected.

Screening the collect ion of core Protein‑Protein 
Interaction (PPI) networks. The tightly connected area of 
molecular complexes in the huge PPI network obtained was 
defined as topological modules with pure network character‑
istics (25,26). The aggregation of similar nodes and related 
nodes of drugs in the same group are defined as the pharma‑
cology modules. Networks that destroy cell functions or lead 
to the GBM phenotype are defined as pathogenic modules. In 
the topology analysis, pharmacology modules and pathogenic 
modules are defined in the same network. Thus, the patho‑
genic module is considered to play a role in interference and 
destruction. The final core PPI network cluster was obtained 
by analyzing the corresponding network using the MCODE 
plug‑in in Cytoscape software (26).

Gene ontology (GO) and pathway enrichment analysis. 
Functional enrichment analyses of the screened genes were 

performed through GO analysis (27) in three categories, 
namely biological processes (BP), cellular component (CC) 
and molecular function (MF), and DAVID was used to perform 
gene and genomic encyclopedia of the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) signaling pathway analysis. 
Functional terms and pathways with P≤0.05 were consid‑
ered important. The ggplot2 plugin package for R software 
(vision 3.6.2) was used to visualize the results.

Results

Research process. The present study was divided into three 
phases in sequence, and Fig. 1 presents all of the processes 
in the systematic analysis. First, the drug components of HLT 
were downloaded from TCMIP and the components were 
analyzed to build a drug network. Furthermore, the data of 
patients with GBM were downloaded from GEO and the 
differentially expressed genes were screened to construct a 
network. Next, the two networks were merged together and 
a topology analysis was applied to filter out the desired core 
network. The network contained a total of 171 nodes and 6,309 
edges. Finally, GO and KEGG analyses were performed on 
these targets to determine the mechanism of action of HLT 
against GBM.

Figure 1. Flowchart of the systematic profiling of the alternative splicing in glioblastoma multiforme in the present study. TCMSP, Traditional Chinese 
Medicine Systems Pharmacology Database and Analysis Platform; OB, oral bioavailability; DL, drug‑likeness; GEO, Gene Expression Omnibus database; 
PPI, protein‑protein interaction; HLT, Huang‑Lian‑Tang.
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Identification of differentially expressed genes in GBM. 
The dataset GSE108474 was selected and downloaded from 
the GEO database as a sample, which contained the data of 
20 normal tissues and 52 tumor tissues. In order to screen 
for differentially expressed genes, a differential expres‑
sion analysis on the data was performed obtained using the 
limma software package. By performing this analysis, it 
was determined that compared with normal brain tissue 
samples, a total of 5,491 genes were significantly differentially 
expressed in GBM, 2,751 of which were upregulated genes 
and 2,740 were downregulated genes. Tables I and II list the 
top 10 most upregulated and downregulated genes, respec‑
tively. According to the fold change, Ribosomal Protein S25 
(RPS25), StAR Related Lipid Transfer Domain Containing 7 
(STARD7) and YTH N6‑Methyladenosine RNA Binding 
Protein 1 (YTHDF1) are the three genes with the highest degree 
of upregulation, while High Mobility Group Nucleosomal 
Binding Domain 2 (HMGN2), Staufen Double‑Stranded 
RNA Binding Protein 1 (STAU1) and Ferritin Heavy Chain 1 
Pseudogene 5 (FTH1P5) were the three genes with the highest 
degree of downregulation. A heat map (Fig. 2A) and a volcano 
plot (Fig. 2B) were drawn to visualize the differentially 
expressed genes.

Chemical composition of HLT and traditional Chinese medi‑
cine target prediction. A total of 468 chemical ingredients of 

7 Chinese herbs in HLT were collected through the TCMIP 
database of Chinese medicinal ingredients, and similarity 
scores with drugs in the DrugBank database were obtained. 
Similar drugs with a score ≥0.8 were considered to be highly 
similar to the chemical ingredients contained in HLT. A total 
of 3,939 ‘component‑target’ pairs of HLT were retrieved. 
Among them, there were 14 components of Coptis chinensis 
with 87 predicted targets, 38 components of dried ginger with 
26 predicted targets, 12 components of cinnamon sticks with 
57 predicted targets, 41 components of Pinellia ternata with 
237 predicted targets, 72 components of jujube with 1,172 
predicted targets, 158 components of ginseng with 2,000 
predicted targets and 133 components of licorice with 360 
predicted targets. The components and targets in the obtained 
associations were assigned to the single drugs contained in 
HLT to obtain the target information corresponding to each 
drug. Among them, Coptis chinensis had 67 component 
targets and Guizhi had 46 component targets. Dried ginger, 
Pinellia ternata, ginseng, jujube and licorice each contained 
7, 196, 876, 429, 115 component targets. The common targets 
between the two constituent drugs were analyzed (Table III). 
The results suggested that there were different numbers of 
common targets among the 7 components, of which 57 were 
common targets of Coptis chinensis and Ginseng, accounting 
for 85.1% of the total number of targets of Coptis chinensis. 
There were 152 targets for Pinellia ternata and ginseng.

Table I. Top 10 most upregulated genes.

Gene name logFC Average expression t P‑value Adjusted P‑value B

RPS25 (Ribosomal 10.26617 10.03903 186.0101 5.71x10‑100 3.86x10‑97 200.7867
Protein S25)
STARD7 (StAR Related 10.16257 9.964207 171.7686 1.96x10‑97 9.94x10‑95 197.2763
Lipid Transfer Domain 
Containing 7)
YTHDF1 (YTH 9.965356 9.821776 151.0904 2.36x10‑93 8.60x10‑91 191.1616
N6‑Methyladenosine 
RNA Binding Protein 1)
QRICH1 (Glutamine 8.783873 8.968483 128.8207 2.76x10‑88 6.65x10‑86 182.8256
Rich 1)
CRKL (CRK Like 9.000407 9.124869 123.2493 7.00x10‑87 1.51x10‑84 180.383
Proto‑Oncogene, 
Adaptor Protein)
KHDC4 (KH Domain 8.712287 8.916781 86.2513 1.42x10‑75 1.58x10‑73 158.9653
Containing 4, Pre‑MRNA 
Splicing Facto)
MRPL33 (Mitochondrial 7.022553 7.696419 84.3207 7.39x10‑75 7.83x10‑73 157.5233
Ribosomal Protein L33)
SYF2 (SYF2 Pre‑MRNA 7.127974 7.772555 82.1461 4.94x10‑74 5.05x10‑72 155.8492
Splicing Factor)
PYGO2 (Pygopus Family 6.51068 7.326732 77.2753 4.18x10‑72 3.91x10‑70 151.8939
PHD Finger 2)
PHF2 (PHD Finger 8.01312 8.411828 76.1175 1.25x10‑71 1.12x10‑69 150.9093
Protein 2)

There were a total of 2,751 upregulated genes. FC, fold change.
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Compound regulation network of HLT. A compound regulation 
network of the active components and molecular relationships 
of HLT was built and 766 related events and 68 nodes were 
obtained. There are 17 drug nodes (round nodes; dried ginger 
is yellow, Coptis is green, ume is pink, and various drug combi‑
nations are red) and 51 molecular nodes (triangular nodes). The 
core target network was mapped through Cytoscape (Fig. 3).

Construction and analysis of PPI network. With the rise of 
network pharmacology, its role in systems biology research is 
increasing. In the present study, the HLT drug target network 
and the PPI network for GBM were fused (Fig. 4A and B). 
In order to reveal the pharmacological mechanism of HLT 
against GBM, Cytoscape software was used to combine two 
huge networks to build a new and complex network (2,954 
nodes and 72,642 edges), which resembled a merge of the HLT 
and GBM networks (Fig. 4B). Subsequently, the CytoNCA 
plugin in Cytoscape was used to confirm the core goals. The 
selection criteria were set as follows: BC value >450, CC >0.6, 
DC >70, EC >0.02, NC >20 and LAC >18 (Fig. 4C and D). 
Finally, a core network comprising 171 nodes and 6,309 edges 
was screened out.

Enrichment analysis and KEGG signaling pathways of 
candidate targets for HLT against glioma. The 386 candi‑
date targets for HLT in treating GBM were subjected to 

a GO analysis in the DAVID database to explore the links 
between the functional units, their potential significance in 
the biological systems network. The mechanism of action 
is clarified through this functional enrichment analysis The 
GO terms were determined in the following categories: 
Biological processes (Fig. 5A), cellular component (Fig. 5B) 
and molecular function (Fig. 5C). In the category biological 
process, the candidate genes were associated with response 
to nutrient levels, response to steroid hormone, response to 
lipopolysaccharide and response to molecule of organism 
process. In the category cellular component, enriched terms 
were transcription factor complex, RNA polymerase II 
transcription factor complex, nuclear transcription factor 
complex, myelin sheath, nuclear chromatin and apical plasma 
membrane. Finally, in the category molecular function, 
genes were associated with repression of transcription factor 
binding and RNA polymerase II transcription factor binding. 
A KEGG enrichment analysis was also performed on these 
genes, revealing that they are mainly related to amino acid 
metabolism (Fig. 5D).

KEGG relationship network construction. To clarify the 
overall mechanisms of HLT in the treatment of gliomas, the 
above‑mentioned steps provided a complete approach based on 
the current knowledge of the pathogenesis of gliomas (Fig. 6). 
Through layer‑by‑layer screening, 7 genes (oval) and 7 KEGG 

Table II. Top 10 most downregulated genes.

Id logFC Average expression t P‑value Adjusted P‑value B

HMGN2 (High Mobility ‑12.813 3.559164 ‑296.316 8.37x10‑115 1.19x10‑110 216.6827
Group Nucleosomal 
Binding Domain 2)
STAU1 (Staufen ‑11.6436 3.234342 ‑290.265 3.80x10‑114 2.70x10‑110 216.1427
Double‑Stranded RNA 
Binding Protein 1)
FTH1P5 (Ferritin Heavy ‑12.9861 3.607250 ‑272.269 4.17x10‑112 1.98x10‑108 214.3746
Chain 1 Pseudogene 5)
CHERP (Calcium ‑11.5667 3.212962 ‑260.047 1.21x10‑110 3.86x10‑107 213.0173
Homeostasis Endoplasmic 
Reticulum Protein)
RP5‑930J4.4 (RP5 ‑12.3119 3.419980 ‑259.647 1.36x10‑110 3.86x10‑107 212.9705
Pre‑MRNA Splicing Factor)
RPL34 (Ribosomal ‑12.4815 3.467075 ‑251.274 1.51x10‑109 3.56x10‑106 211.9538
Protein L34)
UBA3 (Ubiquitin Like ‑11.0044 3.056778 ‑243.291 1.61x10‑108 2.96x10‑105 210.9144
Modifier Activating 
Enzyme 3)
RPL27A (Ribosomal ‑12.5865 3.496262 ‑243.174 1.67x10‑108 2.96x10‑105 210.8986
Protein L27a)
BTBD1 (BTB Domain ‑11.792 3.275543 ‑241.309 2.93x10‑108 4.63x10‑105 210.645
Containing 1)
NSUN2 (NOP2/Sun ‑10.8641 3.017812 ‑240.118 4.21x10‑108 5.99x10‑105 210.481
RNA Methyltransferase 2)

There were a total of 2,740 downregulated genes. FC, fold change.
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signaling pathways (rectangular) associated with them 
were obtained; the size of the symbols is associated with 
the number of adjacent nodes. The 7 genes were MAOA 
(Monoamine Oxidase A), MAOB (Monoamine Oxidase B), 
MGAM (Maltase‑Glucoamylase),CYP1A2 (Cytochrome 
P450 Family 1 Subfamily A Member 2), AKR1B1(Aldo‑Keto 
Reductase Family 1 Member B), CYP1A1(Cytochrome P450 
Family 1 Subfamily A Member 1) and ODC1(Ornithine 
Decarboxylase 1). The 7 KEGG signaling pathways were 
hsa00380, hsa0052, hsa00260, hsa00330, hsa00340, hsa00350 
and hsa00360.

Discussion

In the present study, target genes associated with GBM were 
first screened. It was analyzed which genes influence the 
occurrence, development and prognosis of GBM. The active 
components of HLT were also identified through an online 
pharmacology database. Combining the interaction networks 
of the two provided the potential mechanisms of action of HLT 
in the treatment of GBM. The present study provided a foun‑
dation for further research on Traditional Chinese Medicine 
treatments for GBM to improve the prognosis of affected 

Figure 2. Heatmap and volcano plot of the differentially expressed genes. (A) Heatmap of the genes with differential expression between tumor and control 
samples. (B) Volcano plot. Black dots indicate genes that are not differentially expressed between 20 normal brain tissue samples and 52 tumor samples, and 
red and green dots indicate genes that are up‑ and down‑regulated in tumor samples, respectively. FC, fold change; C, control; T, tumor; P.val, P‑value.
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patients. The target genes of HLT identified in the present 
study hold promise for the development of novel targeted 
therapies for GBM.

Glioma is characterized by rapid growth and resistance 
to treatment, and patients usually have a poor prognosis (28). 
Diffuse glioma is the most common intracranial malignancy, 
accounting for >60% of cases (29). GBM is the most common 
and malignant type of primary brain tumor, accounting for 
~80% of malignant astrocytomas (30). GBM cells vary in 
shape and size, which is known as glioblastoma polymor‑
phisms (30). GBM may develop rapidly from undiagnosed, 
less malignant precursor lesions or may progress slowly from 
preexisting low‑grade glioma (31). In spite of the progress in 
the treatment of GBM, including chemotherapy, the prognosis 
remains poor (32,33). Therefore, it is necessary to identify 

potential pathways for the development of this cancer type and 
to prevent the occurrence of GBM.

In the previous decades, scientists have studied the 
potential activity of drugs and conducted basic research or 
clinical trials for tumor treatment (34). The introduction 
of the concept of big data and the continuous development 
of pharmacology has provided the opportunity to analyze 
the relationship between drugs and molecular targets of 
diseases in silico (35). Network pharmacology is helpful 
for exploring multi‑channel signaling pathway regulation, 
improve drug efficacy and the success rate of clinical trials 
and reduce drug development costs. Chinese herbal medi‑
cines and plant ingredients have positive prospects in the 
treatment of a variety of complex diseases (36,37). Network 
pharmacology has been extensively applied to study the 

Figure 3. Network of active components of Huang‑Lian‑Tang and molecular targeting relationships. There are 17 drug nodes (round nodes, dried ginger is 
yellow, Coptis is green, ume is pink, and various drug collections are red) and 51 molecular nodes (triangular nodes).

Table III. Common pharmacology‑targets between any two components of Huang‑Lian‑Tang.

Component Dried Ginseng Guizhi Jujube Coptis Pinellia Licorice
(target number)  ginger (7) (876) (46) (429) chinensis (67) (196) (115)

Dried ginger (7) /   7   0    1 0    1    0
Ginseng (876) 7 / 22 265 57 152 110
Guizhi (46) 0   22 /   20   7   26   24
Jujube (429) 1 265 20 / 57   28 105
Coptis chinensis (67) 0   57   7   57 /     7   54
Pinellia (196) 1 152 26   28   7 /   24
Licorice (115) 0 110 24 105 54    24 /
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biological mechanisms of certain Traditional Chinese 
Medicine prescriptions and ingredients (38,39). Therefore, 
the network pharmacology method was used to understand 
the biological mechanisms of action HLT against GBM 
at the molecular level.

In southeast Asia, HLT has a significant role in the treat‑
ment of brain diseases. Studies have indicated that HLT is 
able to nourish the nerve cell, restore brain function and 
improve blood circulation in the brain (40). Studies have also 
suggested that HLT is an anti‑apoptotic, anti‑oxidant and 
anti‑inflammatory agent (41‑43). HLT has also been indicated 
to promote neurotrophic factor expression (44) and regulate 
neurogenesis of neural precursor cells (45), which is condu‑
cive to the recovery of neural function. In the present study, 
not only network pharmacology, but also bioinformatics were 
used, and a topology analysis was performed. The central 
network with 171 nodes and 6,309 edges was screened out. 
GO analysis was performed and HLT was indicated to be 
involved in numerous biological processes associated with 
tumorigenesis and development, including RNA polymerase 
transcription factor complex and response to nutrient levels. 
The KEGG pathway analysis of the core PPI network was 
used to identify pathways by which HLT exerts its effects in 
treating GBM by regulating tumorigenesis and progression. 
According to the P‑value of each enriched pathway and its 
role in GBM, there were seven related signaling pathways 
that were significant, and these pathways were all closely 
associated with the amino acid metabolism of tumorigenesis 

and progression. It is well known that cancer cells promote 
the ‘Warburg effect’ (46), which is enhanced glycolysis 
or aerobic glycolysis, even when the surrounding oxygen 
supply is sufficient. In addition, it has been determined 
that dysfunctional anabolism/catabolism of fatty acids and 
amino acids, particularly glutamine, serine and glycine, 
have a role as metabolic regulators in supporting cancer 
cell growth (47,48). Furthermore, extensive crosstalk was 
reported between dysfunctional metabolic networks and 
cancer cell signaling (49,50).

The occurrence and development of tumors are related 
to a large number of cellular processes, which ultimately 
lead to the formation or recurrence of tumors, including 
the induction of cell cycle processes, evasion of apoptotic 
programs and activation of cell survival pathways (51). In the 
present study, it was observed that HLT disrupts the process 
by which these cancer cells are being established, thereby 
limiting their growth in vitro and in vivo. It remains elusive 
how HLT specifically reduces tumor growth under normal 
cellular conditions, so that it does not cause any systemic 
imbalances or serious side effects for patients. However, it 
may be speculated that individual active ingredients in the 
prescription have a mutual synergy, and that the tumor cells 
are affected by drugs at a concentration below the lethal dose 
for normal cells.

There are still certain deficiencies in the present study 
that require to be addressed. First, the present study was only 
performed in silico. In the next step, a pharmacology model 

Figure 4. Identification of a core PPI network for the mechanism/drug‑target interactions. (A) Construction of two PPI networks, one for HLT targets and the 
other for glioblastoma multiforme. (B) The interactive PPI network of HLT and glioblastoma multiforme targets comprising 2,954 nodes and 72,642 edges. 
(C) PPI network of significant proteins extracted from B; this network comprises 623 nodes and 25,934 edges. (D) PPI network of significant proteins extracted 
from C; this network is made up of 171 nodes and 6,309 edges. BC, betweenness centrality; CC, closeness centrality; DC, degree centrality; EC, eigenvector 
centrality; NC, network centrality; LAC, local average connectivity; PPI, protein‑protein interaction; HLT, Huang‑Lian‑Tang.
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will be built to further confirm the therapeutic effect of HLT 
on GBM through basic experiments. Furthermore, the optimal 
dosage of HLT for treating GBM patients and contraindica‑
tions require to be established. In the future, in‑depth research 

on the most important targets or pathways of the final drug 
candidates will be performed.

In conclusion, the present network pharmacology analysis 
on the effect of HLT in GBM indicated that it may be a promising 

Figure 6. Network of compounds of Huang‑Lian‑Tang‑drug targets‑atherosclerosis targets‑signaling pathways. A total of 7 genes (oval nodes) and 7 Kyoto 
Encyclopedia of Genes and Genomes signaling pathways (rectangular nodes) associated with them were obtained. The size of the nodes is proportional 
to the number of adjacent nodes. Hsa, Homo sapiens. MAOA, Monoamine Oxidase A; MAOB, Monoamine Oxidase B; MGAM, Maltase‑Glucoamylase; 
CYP1A2, Cytochrome P450 Family 1 Subfamily A Member 2; CYP1A1, Cytochrome P450 Family 1 Subfamily A Member 1; AKR1B1, Aldo‑Keto Reductase 
Family 1 Member B; ODC1, Ornithine Decarboxylase 1.

Figure 5. GO analysis and KEGG pathway analyses were performed on screened genes. The top 10 terms in (A‑C) the GO categories (A) biological process, 
(B) cellular component and (C) molecular function, and (D) KEGG pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
P. adjust, adjusted P‑value; HSP, heat shock protein.
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chemotherapeutic drug whether it is able to slow/inhibit tumor 
growth and recurrence and whether it is used as an adjuvant 
treatment for patients subjected to other standard treatments 
remains to be elucidated. HLT have few side effects (52), so 
they may be used in GBM‑associated clinical trials.
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