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Locoregional recurrence after surgery is a major unresolved issue in cancer treatment.
Premalignant lesions are considered a cause of cancer recurrence. A study showed that
premalignant lesions surrounding the primary tumor drove a high local cancer recurrence
rate after surgery in head and neck cancer. Based on the multistage theory of
carcinogenesis, cells harboring an intermediate number of mutations are not cancer
cells yet but have a higher risk of becoming cancer than normal cells. This study
constructed a mathematical model for cancer initiation and recurrence by combining
the Moran and branching processes in which cells require two specific mutations to
become malignant. There are three populations in this model: (i) normal cells with no
mutation, (ii) premalignant cells with one mutation, and (iii) cancer cells with two mutations.
The total number of healthy tissue is kept constant to represent homeostasis, and there is
a rare chance of mutation every time a cell divides. If a cancer cell with two mutations
arises, the cancer population proliferates, violating the homeostatic balance of the tissue.
Once the number of cancer cells reaches a certain size, we conduct computational
resection and remove the cancer cell population, keeping the ratio of normal and
premalignant cells in the tissue unchanged. After surgery, we considered tissue
dynamics and eventually observed the second appearance of cancer cells as
recurrence. Consequently, we computationally revealed the conditions where the time
to recurrence became short by parameter sensitivity analysis. Particularly, when the
premalignant cells’ fitness is higher than normal cells, the proportion of premalignant cells
becomes large after the surgical resection. Moreover, the mathematical model was fitted
to clinical data on disease-free survival of 1,087 patients in 23 cancer types from the TCGA
database. Finally, parameter values of tissue dynamics are estimated for each cancer
type, where the likelihood of recurrence can be elucidated. Thus, our approach provides
insights into the concept to identify the patients likely to experience recurrence as early
as possible.
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INTRODUCTION

Locoregional recurrence after surgery appears in many cancer
types. About 8% of invasive breast cancer patients exhibited local
recurrence after surgical resection with free resection margins
(1). In non-small-cell lung cancer, about 25% of patients showed
locoregional recurrence after wedge resection (2). In colorectal
cancer, over 4% of patients developed locoregional recurrence
after surgery (3). To prevent the emergence of recurrent tumors,
treatment strategies, such as adjuvant chemotherapy has been
examined and improved (4). However, tumor recurrence
remains a problem.

A major cause of local recurrence is field cancerization (5–7).
Field cancerization was initially defined as the presence of
histologically abnormal tissue surrounding primary cancer, but
currently, the concept includes the spread of histologically normal
but genetically altered cells (5, 8). These cells are prone to be hotbeds
for recurrent tumors because they have already accumulated specific
cancer-related mutations, and a small number of additional ones is
necessary to trigger cancer initiation there. Molecular evidence of
field cancerization has been investigated in each tissue (6, 8–10). For
example, in breast cancer, microsatellite markers, epigenetic
aberrations, and hTERT overexpression have been detected in
histologically normal mammary tissues (8). In head and neck
cancer, loss of heterozygosity of chromosome 9p was commonly
observed in benign squamous hyperplasia (9). In colon cancer
patients with Crohn’s ileocolitis, the same mutations of KRAS,
CDKN2A, and TP53 were observed within neoplasia and non-
tumor epithelium (10). Interestingly, locoregional recurrence
rates and field cancerization molecular mechanism vary among
cancer types. Therefore, understanding field cancerization
formation process will contribute to the estimation of the risk of
locoregional recurrence and the development of optimal treatment
in each tissue.

Theoretical studies have investigatedfield cancerization impacts
on the emergence of recurrent tumors (11–15). Jeon et al. examined
the multistage clonal expansion model by employing the Poisson
process to consider the effects of premalignant cells on cancer
initiation (11). The model was applied to the clinical practice of
neoplasia in Barrett’s esophagus. In this study, they succeeded in
demonstrating the clinical utility of the model by predicting the
long-term impact of ablative treatments on reducing esophageal
adenocarcinoma incidence (13). Foo et al. developed a spatial
evolutionary framework to study the cancer field effect. They
analytically showed the size distribution of histologically
undetectable premalignant fields during diagnosis (12). The
model was applied to the head and neck cancer and revealed that
the patient’s age was a critical predictor of the size and multiplicity
of precancerous lesions (14).Although theoretical studies have shed
light on field cancerization effects on the emergence of primary and
recurrent cancers, the relationship between tissue kinetic
parameters and the incidence of recurrent cancers is unclear.

This study developed a novel mathematical model of
recurrent tumor evolution. We employed a stochastic process
of a multistage model to represent the accumulation of
mutations in a tissue, leading to cancer relapse after surgical
resection of the first tumor. Particularly, we focused on the
Frontiers in Oncology | www.frontiersin.org 2
relationship between the tissue compositions at the time of
surgery and the time until the emergence of recurrent tumors.
Our approach provided insights on how to predict the time of
recurrence from the tissue dynamics at the time of surgery and
how to intervene patients to prevent the recurrence.
MATERIAL AND METHODS

Mathematical Model
Let us consider the dynamics of three types of cells in a tissue
(Figure 1). “Type0,” “Type1,” and “Type2” represent normal
healthy cells with no mutation, premalignant cells with one
cancer-related mutation, and cancer cells with two cancer-
related mutations, respectively. We assume that a normal
healthy tissue consists of Type0 and Type1 cells performing a
turnover of cells with a small probability of a mutation. Moran
process is employed to consider the tissue turnover dynamics,
where the total number of Type0 and Type1 cells is kept constant
as N (16). The average turnover time of a whole tissue is defined
by d days. Type2 cells are considered as uncontrolled cancer cells
proliferating. The branching process is employed to consider the
process of Type2 proliferation (17).

Initially, N Type0 cells occupy the tissue. There is a rare
chance of a mutation every time a cell divides, and a daughter cell
may change into a Type1 cell with a mutation rate, m1. A cell to
be divided in a tissue is selected depending on the fitness of
Type0 cells (r0) and that of Type1 cells (r1) weighted by the
proportion of Type0 and Type1 cells in a tissue. When a Type1
cell divides, a daughter cell may change into a Type2 cell with a
mutation rate, m2. Once a Type2 cell appears, the cells proliferate
indefinitely based on the growth rate of Type2 cells, r2, ignoring a
number restrictions of a tissue unless they go extinct
stochastically. In other words, the net growth of Type0 and
Type1 cells is zero (equal frequency of cell division and death),
while that of Type2 cells is positive. Type0 and Type1 cells
consist of a healthy tissue based on the Moran process, so r0 and
r1 are just parameters to determine which to choose as a dividing
cell at the time of a cell turnover. Alternatively, r2 is the growth
rate, which determines the average number of increases in Type2
cells during a unit time. When the number of Type2 cells reaches
109 at the first time, all the Type2 cells are discarded to represent
surgical resection, whereas the number of Type1 cells in a tissue
is preserved so that the time until the emergence of the recurrent
tumor is influenced by the frequency of residual Type1 cells.
Since the conversion from the number of cells to the tumor
volume is frequently done using the following relationship as 109

cells in a 1 cm3 tumor, the time of surgery in this model is
conducted when the size of the tumor becomes 1 cm3. After the
first treatment, the simulation continues until the next Type2 cell
appears from the tissue and number reach 109 again,
representing the recurrence of the tumor after surgery.

Simulation Framework
To integrate the Moran process and branching process, we
adopted stochastic simulations based on Gillespie’s algorithm
(18) as follows: We firstly considered three events: (i) cell
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turnover in a healthy tissue, (ii) death of a Type2 cell, and
(iii) birth of a Type2 cell. The rates of each event at time t is given
by (i) 1

d N (ii) d2X2(t), and (iii) r2X2(t), respectively. Here d2, r2,
and X2(t) were a death rate, a proliferation rate, and the number
of Type2 cells, respectively. Then an average time until one of the
three events happens, DT, is given by

DT =
1

1
d N + d2X2 tð Þ + r2X2 tð Þ (1)

When the event of cell turnover in a healthy tissue occurs, one
of N cells is selected as a cell to die, and another cell divides
within the time step to complete cell turnover. In detail, there are
three possibilities of state transitions in the tissue dynamics: the
number of Type1 cells (i) increases by one, (ii) decreases by one,
and (iii) does not change. Let us denote the number of Type1
cells by i.

First of all, the case (i) occurs through two ways: (a) A Type0
cell dies, and a Type1 cell divides without a mutation; and
(b) a Type0 cell dies, and another Type0 cell divides with a
mutation to be a Type1 cell. Exceptionally, when a Type0 dies,
and a Type1 cell divides with a mutation to be a Type2 cell, an
additional selection of a cell to divide is done because a Type2 cell
cannot reside in a normal tissue under the assumption of the
model. In this situation, if a Type1 cell is selected to divide
Frontiers in Oncology | www.frontiersin.org 3
without a mutation, the number of Type1 cells increases by one.
The probabilities of these three events are given by N−i

N · r1i(1−m2)F ,
 N−i
N · r0(N−i) μ1

F , and N−i
N · r1i μ2 c1F respectively. Here F = r0 (N – i) +

r1i is a scaling factor for the probability to be chosen for a dividing
cell and c1 =

r1i
r0(N−i)+r1i

is the probability that a Type1 cell is
selected to divide in an additional round after a mutation of a
Type1 cell to be a Type2 cell. The probability that a Type0 cell
is selected to die is given by N−i

N . Taken together, the transition
probability that the number of Type1 cells increases by one is
given by

Pr i ! i + 1½ � = r0 N − ið Þμ1 + r1i 1 − μ2 + μ2c1ð Þ
F

·
N − i
N

(2)

Secondly, the case (ii) occurs in such a way that a Type1 cell
dies and a Type0 cell divides without a mutation. Exceptionally,
when a Type1 cell dies, and another Type1 cell divides with a
mutation to be a Type2 cell, an additional selection for a cell
division is done. In this case, if a Type0 cell is selected for the
additional cell division, the number of Type1 cells decreases by
one. The probabilities of the two events are given by i

N ·
r0(N−i)(1−μ1 )

F and i
N · r1i μ2 c0F and c0 =

r0(N−i)
r0(N−i)+r1i

is the probability
that a Type0 cell is selected to divide in an additional round after
a mutation of a Type1 cell to be a Type2 cell. The probability that
a Type1 cell is selected to die is given by i

N . Taken together, the
A

B

FIGURE 1 | The schematic diagram of our model. (A) There are three types of cells with each own mutation rate and fitness in the model. (B) In a normal tissue,
composed of Type0 and Type1 cells, cell turnover is conducted according to the Moran process, and the number of cells is kept constant. If a Type2 cell emerges, it
proliferates unlimitedly over the tissue, and grows up to 109. Once the number reaches 109, all the Type2 cells are resected while the number of Type1 cells in a
tissue are preserved. Then the time until the next Type2 population reaches 109 is measured as time of recurrence.
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transition probability that the number of Type1 cells decrease by
one is given by

Pr i ! i − 1½ � = r0 N − ið Þ(1 − μ1) + r1iμ2c0
F

·
i
N

(3)

Finally, the probability that the number of Type1 does not
change [case (iii)] is given by

Pr i ! i½ � = 1 − Pr i ! i + 1½ � − Pr i ! i − 1½ � (4)

In summary, the time of one step in simulations is calculated
using Eq. (1), and in one step, one of the following three
processes occurs: (i) cell turnover in a tissue, (ii) the death of a
Type2 cell, or (iii) the birth of a Type2 cell. When case
(i) happens, there are three possibilities in tissue dynamics.
The number of type1 cells increases by one, decreases by one,
or does not change. Initially, all the cells are Type0. Once the
number of Type2 cells reaches 109, computational surgical
resection to set the number of Type2 cells to be 0 again will be
conducted. After that, the time until the number of Type2 cells
reaches 109 again is measured as recurrence time.

Deterministic Approximation of
Type2 Growth
As for the calculation of the Type2 growth, we assumed that
when the number of cells is small, the stochastic effect should be
considered. When the number of Type2 cells exceed twice as
large as the size of the normal tissue, 2N, growth can be regarded
as a deterministic process. Then the time duration from when the
number of Type2 cells is 2N to 109, Dts, is given by

Dts = r2 − d2ð Þ ln 109

2N

� �
(5)

DuringDts, tissue dynamics to reflect the cell turnover is conducted.

Clinical Data
The data used in our analysis were downloaded from TCGA
Pan-Cancer Clinical Data Resource provided in the previous
Frontiers in Oncology | www.frontiersin.org 4
publication (19). We adopted the data of disease-free intervals
from 23 cancer types. Data processing was performed on Excel.

Survival Time Analysis
Disease-free survival of clinical data were calculated using the
Kaplan–Meier method from disease-free intervals mentioned in
Clinical Data section. In this study, disease-free interval is
defined as the survival time without cancer recurrence of each
patient, which corresponds to the time to recurrence of each
simulation trial. Disease-free survivals in silico were then
calculated from that.

Simulation and Statistical Analysis
The whole process of our model was conducted on C++.
Parameter optimization was conducted using the Nelder–Mead
method on R (version 3.6.2). The survival time analysis was
conducted on Prism (version 8.4.3).
RESULTS

Three Patterns of Cancer Initiation
First of all, we conducted stochastic simulations of the model for
the initial cancer progression, and the time courses of three
populations: Type0, Type1, and Type2 were shown (Figure 2).
We classified the tissue dynamics until the emergence of Type2
cells into three patterns. When Type1 cells had less fitness than
Type0 cells, sporadic cancer initiation from a tissue dominated
by Type0 cells could be observed (Figure 2A). In this case, Type1
cells could not spread in a normal tissue, and cancer initiation
depended on two sequential mutations in one Type1 cell. After
surgical resection of the first Type2 lineage, the time to
recurrence would be almost the same as that of the first cancer
initiation because the frequency of Type1 cells in a tissue was
almost the same as the initial condition. When the fitness of
Type1 cells was as high as that of Type0 cells, cancer initiation in
a moderate frequency of Type1 cells could be observed
(Figure 2B). In this case, the time to recurrence could be faster
A B C

FIGURE 2 | Three patterns of cancer initiation. Gray, blue, and red curves describe Type0, Type1, and Type2 cells, respectively (the full growth dynamics are not
shown). Each panel contains three trials of the same parameter sets distinguished by the type of lines: Joined, dashed, and long-dashed. Cancer initiates from:
(A) almost no Type1 cells (i ≤ 0.1N); (B) moderate number of Type1 cells (0.1N < i ≤ 0.9N); and (C) occupied Type1 cells (i > 0.9N). Parameter values used are
N = 1,000, d = 1.0, r0 = 1.0, r1 = 0.75, r2 = 1.5, m1 = 0.001, and m2 = 0.1 for (A); N = 1,000, d = 1.0, r0 = 1.0, r1 = 1.0, r2 =1.2, m1 = 0.01, and m2 = 0.01 for
(B); and N = 1,000, d = 1.0, r0 = 1.0, r1 = 1.5, r2 = 1.5, m1 = 3.16 ∙ 10–4, and m2 = 3.16 ∙ 10–4 for (C).
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than that of the first cancer initiation because the proportion of
Type1 cells in a tissue was larger than that in the initial condition.
When Type1 cells had much higher fitness than Type0 cells,
multiple cancer initiations from a Type2-dominated tissue could
be observed (Figure 2C). In this case, the recurrence of tumors
happened easily. From these results, we found that different
situations of Type1 cells at the time of cancer initiation were
considered to influence the difficulty of recurrence, and they
could be classified by parameter regions.

Parameter Dependency
Next, we examined the time to recurrence after surgical resection
and the proportion of premalignant (Type1) lesions at the time of
surgery in a vast parameter range (Figure 3). The mean recurrence
time became shorter as the fitness of Type1 cells increased because
higher fitness enabled Type1 cells to dominate the normal tissue,
which facilitated the emergence of recurrent cancer (Type2)
(Figures 3A, B). When the size of the normal tissue is small,
the effect offitness advantage on the proportion of Type1 cells in a
tissue became large (Figures 3A, B). Figures 3C, D showed that
recurrence time became shorter when the growth rate of Type2
cells was large. Compared to the case where the fitness of Type1
was large, the early recurrence occurred from the small proportion
of Type1 cells in a tissue (Figures 3C, D). High mutation rates
accelerated the time of recurrence (Figures 3E–H). A higher
mutation rate from Type0 to Type1 made the proportion of
Type1 cells larger (Figures 3E, F), while a higher mutation rate
from Type1 to Type2 made proportion smaller (Figures 3G, H).
Furthermore, when the size of normal tissues became large, the
time to recurrence became short, and the variation became small
(Figures 3B, D, F, H).

Relationship Between the Proportion of
Type1 Cells and Time to Recurrence
To investigate the relationship between the proportion of Type1
cells during initial treatment and time to recurrence
comprehensively, we conducted computational simulations
with parameter sets randomly picked (Figure 4A) .
Additionally, we did 1,000 runs of stochastic simulations with
the same parameter set to obtain each point. A total of 1,200
parameter combinations were examined.

We confirmed that recurrence time was significantly different
among the proportion of Type1 cells during the first treatment
(Figure 4B). It would be intuitive that the time to recurrence
became long when the proportion of Type1 cells was very small
(between 0 and 0.2 of a tissue). Interestingly, the proportion of
Type1 cells that minimize recurrence time was not the largest
group (between 0.8 and 1.0 of a tissue), but the moderate group
(Figure 4B). This result showed that patients with a moderate
number of premalignant cells (Type1) have a risk of shorter
recurrence time in many cases. When we investigated the
characteristics of parameter values in each category
(Figures 4C–F), we found that the fitness of Type1 cells was
lower, and their mutation rate was higher in areas a and b than
those in areas e and f (Figures 4C, F). These results suggested
that Type1 cells could occupy the normal tissue before the first
Frontiers in Oncology | www.frontiersin.org 5
treatment when Type1 cells could spread rapidly and were hardly
mutated to be Type2 cells. The mutation rate of Type0 cells did
not affect the proportion of Type1 cells at the first treatment
(Figure 4E). Points with time to recurrence more than 103 only
resided in area b, indicating that there was no parameter set that
could realize both conditions of a large proportion of Type1 cells
at the time of first treatment and a long recurrence time
(Figure 4A). In area a, time to recurrence was short despite
small premalignant cells (Type1). In that case, the fitness of
Type1 cells was almost neutral, and the mutation rate of Type1
cells and the growth rate of Type2 cells were relatively high
(Figures 4C, D, F). In area f, recurrence was relatively long,
although the normal tissue was occupied by premalignant cells
(Type1). In that case, the growth rate of Type 2 cells was
extremely small (Figure 4D). Mutation rates of areas d, e, and
f were almost the same, and their difference was generated by the
fitness of Type1 cells and the growth rate of Type2 cells
(Figures 4C, D).

Fitting to Clinical Data of Time to
Recurrence
Results of recurrence time in silico were fitted to published
clinical data of disease-free survivals in 23 cancer types
(Figure 5 and Table 1) (19). A thousand runs of stochastic
simulations with a single parameter combination for each cancer
type were conducted. The sum of squared logarithmic residuals
(log-SSR) between outputs in silico and five data points extracted
from clinical data was calculated. A set of the five data points was
when 20, 40, 60, 80, and 100% of patients experienced a
recurrence. We then investigated the parameter sets that could
minimize log-SSR for each cancer type (Table 1), and depicted
the survival curves with the estimated parameters (Figure 5). We
also conducted a log-rank test between the curves of clinical and
simulated data (Table 1). In most clinical data, we could find the
optimal parameter sets, and with these parameters, significant
differences were not observed between simulation results and
clinical outcomes. However, in some cancer types (BRCA,
CHOL, LUAD, OV, SARC, and THCA), significant deviations
were observed (p < 0.05). Notably, the fitness of Type1 cells was
lower than that of Type0 cells, 1.0, among most cancer types,
indicating a cancer-related mutation tends to be disadvantageous
before the emergence of cancer cells (Type2). Mutation rates
were distributed around 10−3.6 for almost all cancer types.
Alternatively, the growth rates of Type2 were widely distributed.
DISCUSSION

In this study, we constructed a mathematical model that could
describe cell population dynamics in both normal tissue and
cancer tissues. We revealed the relationship between the
proportion of premalignant cells and recurrence time
(Figures 3 and 4). Importantly, we found that recurrence time
became shorter when the mutation rate or growth rate of
cancer cells was large, while the time became longer when the
fitness of premalignant cells or growth rate of cancer cells was
October 2021 | Volume 11 | Article 743328
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low (Figure 4). Moreover, we successfully estimated the
characteristic parameter sets of the computational model by
fitting the model results to the clinical data of disease-free
survival in each cancer type (Figure 5 and Table 1). This
study is the first attempt to quantitatively predict recurrence
time after the first treatment in various cancer types with a
Frontiers in Oncology | www.frontiersin.org 6
mathematical model by considering the effect of premalignant
cells in a healthy tissue.

This model successfully reproduced the disease-free survivals
in 17 out of 23 cancer types (Figure 5 and Table 1). Notably, the
estimated fitness values of premalignant cells (r1) were less than
those of normal cells in many cancer types (Table 1). According
A B

D

E F

G H

C

FIGURE 3 | Parameter dependence on recurrence time. Mean values obtained from the simulations are shown by dots, and standard deviations are indicated by
bars. Pie charts in the panels indicate the proportion of Type1 cells in normal tissue at the first treatment. Light blue, blue, dark blue represent small (i ≤ 0.1N),
intermediate (0.1N < i ≤ 0.9N), and large (i > 0.9N) proportion of Type1 cells, respectively. Standard parameter values used in (A–H) are d = 1.0, r0 = 1.0, r1 = 1.0,
r2 = 1.2, m1 = 0.001, m2 = 0.001; and N = 1,000 in (A, C, E, G); and N = 10,000 in (B, D, F, H).
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to the analysis on how the proportion of premalignant cells
depended on their fitness (Figure 4C), the characteristics of
those cancers residing in area b in Figure 4A suggest the small
abundance of premalignant cells during the first treatment.
Therefore, the efforts to find and eradicate the residual
premalignant lesions in a normal tissue after the first treatment
may be inefficient; rather, the suppression of the emergence of
new premalignant cells from the normal cells by adjuvant
therapy should be recommended. In most cancer types, the
fitting tends to work for the early reduction of the disease-free
survivals and not for the long tail of the survivals (Figure 5).
Because the estimated parameters of the low fitness of
premalignant cells (r1) indicate that recurrence arises from the
almost non-mutated tissue, it implies that the deviance
recurrence time in the same cancer type is caused by variations
of mutation rates or efficiency of adjuvant therapy among
patients, not incorporated into the model. It suggests the
importance of identifying a biomarker to classify recurrence-
prone patients (20).

For the model’s simplicity, we prepared only one
population for intermediate cell type as premalignant cells.
However, the multistage theory suggested more than two steps
to generate a cancer cell from a normal cell (21). This
restriction resulted in the simple tendency of the survival
curves from the model and failure to fit the long tail of
clinical survival curves (Figure 5). With multiple stages of
Frontiers in Oncology | www.frontiersin.org 7
premalignant cells in the model, the premalignant cells after
the first treatment have several mutational distances to
recurrence, which may generate multiple inclinations of the
survival curves. In contrast, the number of mutations required
to be a cancer cell varies in each patient, even in the same
cancer type, so that it was difficult to determine it accurately
for each cancer type. This simple model structure had the
abovementioned weakness but still could imply that the single-
intermediate population might be enough to reproduce the
data of well-fitted cancer types, while more populations would
be required for the others. We also adopted a spatially
homogeneous process, though a spatial process can contain
detailed information, such as molecular mechanisms of field
cancerization and cell competition. Note that this study
focused on constructing the basic mathematical model
extensible for various types of cancer to quantitatively
predict recurrence time after the first treatment by
considering the effect of premalignant cells. Molecular
mechanisms vary among cancer types, and cell competition
can be regarded as dynamics based on the fitness and the
number of the cells. The simple model structure enabled us to
analyze the various types of cancer by uniformed parameters,
fitness, and mutation rate. This was the first attempt, and even at
the current stage, we obtained many new insights. A spatial
structure and additional intermediate populations optimized for
each cancer type would be a possible future extension of the model.
A B

D E FC

FIGURE 4 | The relationship between the number of Type1 cells in the normal tissue at the first treatment and time to recurrence with various parameter values.
(A) Points are generated by the simulations with parameter sets which are randomly chosen from: 0.90 < r1 < 1.10, 1.10 < r2 < 1.20, 10–4.5 < m1 < 10–3.0, and
10–4.5 < m2 < 10–3.0, respectively. The plots are categorized into six areas with the median of time to recurrence. Note that d = 1.0, r0 = 1.0, and N = 1,000. (B) Box
plots show the distributions of time to recurrence from different ranges of the Type1 proportion in a tissue at the time of the first treatment. (C–F) Box plots represent
the parameter distributions in each category determined in panel (A). Each bar corresponds to the area notation in panel (A).
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FIGURE 5 | Fitting of our model to clinical data of disease-free survival in 23 cancer types. Results of disease-free survival in silico (thin curve) are fitted to that of
published clinical data in 23 cancer types (thick curve). A thousand runs of stochastic simulations with a single parameter combination for each cancer type are
performed. The parameter values used for each panel is listed in Table 1. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal
carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, brain lower
grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD,
pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid
carcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinoma.
TABLE 1 | Estimated parameters and p-values by fitting the outputs from our simulations to clinical data.

Cancer type r1 r2 Log10m log-SSR p-value

ACC 0.916 1.62 −3.61 0.272 0.2008
BLCA 0.908 1.43 −3.60 0.717 0.4658
BRCA 0.922 1.52 −4.02 0.294 <0.0001
CESC 0.905 1.36 −3.63 0.815 0.8958
CHOL 0.964 1.52 −3.43 0.113 0.0272
COAD 0.924 1.40 −3.71 0.564 0.5966
ESCA 0.934 1.60 −3.42 0.128 0.3458
HNSC 0.914 1.58 −3.56 0.926 0.3446
KIRC 0.920 1.27 −3.77 0.314 0.3945
KIRP 0.908 1.38 −3.62 0.981 0.6651
LGG 0.905 1.35 −3.62 0.0312 0.0803
LIHC 0.962 1.72 −3.54 0.647 0.8949
LUAD 0.920 1.62 −3.62 1.52 0.0039
LUSC 0.904 1.43 −3.55 0.588 0.4501
OV 0.905 1.56 −3.37 0.604 <0.0001
PAAD 0.918 1.54 −3.44 0.139 0.3649
PRAD 0.913 1.34 −3.80 0.165 0.1207
SARC 0.930 1.51 −3.42 1.05 0.0036
STAD 0.917 1.59 −3.59 0.432 0.3859
TGCT 0.916 1.61 −3.63 1.68 0.4146
THCA 1.04 1.10 −3.31 7.74 <0.0001
UCEC 0.909 1.33 −3.65 0.168 0.4777
UCS 0.904 1.53 −3.49 0.633 0.6923
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ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma;
KIRP, kidney renal papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV,
ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; TGCT, testicular germ
cell tumors; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinoma.
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Conclusively, this model suggests special care of recurrence in
the clinic when the fitness of premalignant cells and the growth
rate of recurrent tumors is high. Furthermore, this approach can
be extended to explore the deviance of recurrence rates among
cancer types by introducing the variations of mutational stages
and standard adjuvant therapies in each cancer according to
growing knowledge.
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