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Abstract

Objective

Observational tuberculosis cohort studies are often limited by a lack of long-term data char-

acterizing survival beyond the initial treatment outcome. Though Cox proportional hazards

models are often applied to these data, differential risk of long-term survival, dependent on

the initial treatment outcome, can lead to violations of model assumptions. We evaluate the

performance of two alternate censoring approaches on reducing bias in treatment effect

estimates.

Design

We simulate a typical multidrug-resistant tuberculosis cohort study and use Cox proportional

hazards models to assess the relationship of an aggressive treatment regimen with hazard

of death. We compare three assumptions regarding censored observations to determine

which produces least biased treatment effect estimates: conventional non-informative cen-

soring, an extension of short-term survival informed by literature, and incorporation of pre-

dicted long-term vital status.

Results

The treatment regimen’s protective effect on death is consistently underestimated by the

conventional censoring method, up to 7.6%. Models using the two alternative censoring

techniques produce treatment effect estimates consistently stronger and less biased than

the conventional method, underestimating the treatment effect by less than 2.4% across all

scenarios.

Conclusions

When model assumptions are violated, alternative censoring techniques can more accu-

rately estimate associations between treatment and long-term survival. In multidrug-resis-

tant tuberculosis cohort analyses, this bias reduction may yield more accurate and, larger
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effect estimates. This bias reduction can be achieved through use of standard statistical pro-

cedures with a simple re-coding of the censoring indicator.

Introduction

Cox proportional hazards (PH) models are commonly used to analyze time-to-event data [1].

Although the goal of a time-to-event analysis is to follow individuals until the observation of

some specified event, this is not always possible. When individuals are not observed to experi-

ence the event of interest during the study period, they are censored from the data, leaving

their actual event-time unknown. A key assumption of the Cox PH model is that censor times

are independent of event times conditional on the variables included in the model; referred to

as non-informative censoring [2, 3]. An implication of non-informative censoring is that indi-

viduals with an unobserved event time are assumed to have the same hazard of failure as those

individuals still in the cohort after that censor time. Violation of this assumption may lead to

invalid treatment effect estimates.

The effects of informative censoring can be particularly prominent when Cox PH models

are applied to multidrug-resistant (MDR-) tuberculosis (TB) treatment cohorts. MDR-TB is

an infectious disease caused by a strain of the TB bacteria, Mycobacterium tuberculosis [4], that

is resistant to two of the most powerful anti-TB drugs [5]. Treatment for MDR-TB is complex,

including long treatment duration, numerous expensive drugs, being difficult to implement,

associated with severe toxicities, and low success rates. Six mutually exclusive MDR-TB treat-

ment outcome definitions used are based on treatment completion and bacteriologic results;

they are cure, treatment completion, death, treatment default/lost to follow-up, treatment fail-

ure, and transfer out/not evaluable [6]. Cure is defined as completing treatment and having

consistent culture-negative results for the final 12 months of treatment; treatment completion

is defined as completing treatment but not meeting the definition of cure or treatment failure

due to lack of bacteriologic test results; treatment failure is defined as two or more of five cul-

tures recorded in the final 12 months of treatment being positive or a clinical decision to ter-

minate treatment early due to poor response; death is defined as all-cause mortality; treatment

default is defined as interruption of MDR-TB treatment for two or more consecutive months;

and transfer out is defined as being transferred to another reporting facility and for whom out-

comes are unknown [6]. Composite outcomes are also often used, with cure and treatment

completion being classified as a “successful” outcome and the remaining four classified as

“unsuccessful” outcomes. The main outcome of interest is often death.

Recommendations for conducting MDR-TB cohort analyses suggest following all MDR-TB

patients in a cohort from treatment initiation until a treatment outcome definition is met,

regardless of treatment duration, and performing the analyses 36 months after the last patient

enrollment date in the cohort [6]. Due to the scarcity of resources in areas that experience the

majority of the MDR-TB burden, and the intensity of monitoring required for TB patients

during treatment, patients are rarely followed past the initial treatment outcome for longer

survival times. This means that individuals enrolled earlier in the cohort who experience a

non-death treatment outcome, have their observation censored from the cohort at the time of

that non-death treatment outcome.

When the Cox PH model is applied, under the non-informative censoring assumption of

the model, individuals with an unobserved event time, which in this case are individuals who

experience one of the five non-death treatment outcomes and are not followed for longer sur-

vival, are assumed to be at equal risk of death as remaining individuals in the cohort. However,
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literature suggests that amongst individuals who experienced a non-death treatment outcome,

the risk of death at the end of a cohort period is substantially higher for individuals experienc-

ing unsuccessful (51.2%) versus successful non-death treatment outcomes (4.2%) [7–13]. This

differential risk of death between censored observations violates the non-informative censor-

ing assumption of the Cox PH model, potentially producing invalid effect estimates.

Although methods have been explored to adjust for informative censoring, many introduce

substantial limitations in the context of MDR-TB cohort analyses. For example, inverse proba-

bility censor weighting is a method that assumes that censoring and the outcome of interest

(death in this context) are independent given the set of variables included [14–17], so these

individuals are weighted higher to account for the probability of censored observations

remaining in the study. However, there is no way to assess this independence assumption

amongst individuals who experience one of the five different non-death treatment outcomes

because individuals are only followed until they meet the first outcome definition. This means

that no one who experience a non-death outcome is observed to die, not because they truly do

not die, but because survival time is truncated at the time they experience the non-death out-

come and they are not followed longer to observe death [16–18].

Additionally, this setting can not be treated as a competing risks problem, as the five non-

death outcomes do not preclude the occurrence of the primary event of interest, death due to

MDR-TB [19]. Instead, these non-death outcomes are intermediary outcomes used as a proxy

for longer-term outcomes because the event of interest is not yet observed due to program-

matic issues leading to sub-optimal follow-up timeframes.

Without data that capture the true survival status of individuals subsequent to the initial

treatment outcome, it is impossible to quantify the true magnitude and direction of the bias or

to confirm that models using alternate censoring techniques produce more accurate estimates.

The goal of this manuscript is to describe and evaluate a simple to implement approach to

reduce the bias introduced by censoring individuals experiencing on of the five non-death out-

comes. The censoring adjustments we propose can be accomplished through a simple re-cod-

ing of the cohort data and application of the standard cox proportional hazards model. Thus,

we conduct a simulation study of an MDR-TB cohort to compare the performance of two

alternate censoring techniques to the conventional approach to identify the method that pro-

duces the least biased treatment effect estimates.

Materials and methods

This simulation was designed to mirror a cohort of patients who received their first treatment

for MDR-TB in Lima, Peru (1999–2002) that has previously been reported [12, 13, 20–24]. No

new data were collected for this analysis.

Important covariates included sex, poor nutritional status (defined as low body mass index

per the Centers of Disease Control and Prevention [25] or clinical assessment of malnutrition),

tachycardia, extra-pulmonary TB (EPTB), human immunodeficiency virus (HIV) coinfection,

number of previous TB treatment regimens, comorbid conditions (defined as the presence of

at least one of the following conditions: cardiovascular disease, diabetes mellitus, hepatitis or

cirrhosis, epilepsy/seizures, renal insufficiency, psychiatric disorder, history of smoking or

substance use/abuse), and number of resistant agents (resistance to the following twelve drugs

or drug classes was tested: capreomycin, cycloserine, ethambutol, ethionamide, isoniazid,

kanamycin or amikacin, para-aminosalicylic acid, pyrazinamide, rifampicin, streptomycin,

ciprofloxacin, ofloxacin, gatifloxicin, levofloxacin, moxifloxacin [21]). Female sex, having a

poor nutritional status, tachycardia, EPTB, HIV, having had two or more previous treatment

regimens, and having a comorbid condition were all randomly generated from binomial
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distributions with probabilities equal to 0.39, 0.30, 0.30, 0.09, 0.02, 0.26, and 0.37, respectively.

The number of resistant agents was generated from a normal distribution between 2 and 11,

with a mean of 5.43 and a standard deviation (sd) of 1.7, and rounded to the nearest whole

number. Ages, between 10 and 82, were generated from a normal distribution with a mean of

31.5 (sd: 12.0) years.

The main exposure of interest is the proportion of observed treatment time that an individ-

ual was on an aggressive treatment regimen. The observed treatment time is defined as the

time from treatment initiation to the time that the initial treatment outcome was experienced.

Then, the proportion of this observed time that the individual was on an aggressive regimen

was calculated. An aggressive treatment regimen was defined as a regimen containing at least

five likely effective drugs based on previous treatment history and baseline drug resistance pat-

tern during the intensive phase of treatment, and at least four likely effective drugs during the

continuation phase [26]. The categorization of being on an aggressive treatment regimen or

not was made in retrospect after reviewing drug-susceptibility test results.This aggressive treat-

ment regimen has previously demonstrated a reduction in mortality and recurrence of TB dis-

ease in the Peru cohort that this simulation mirrors. The proportion of time on an aggressive

treatment regimen was designed to vary by age group, as observed in the Peru cohort, with a

mean of 68.8% (sd: 37.8%) for adolescents (defined by the WHO as 10–19 years old [27]) and

55.0% (sd: 41.6%) for adults. To reflect this, the proportion of time on an aggressive treatment

regimen was calculated in a two-step procedure. First, we produced risk scores for being on an

aggressive treatment regimen as a function of the other covariates using linear regression.

Next, across the estimated risk scores, the lowest 30% of adults and 19% of adolescents were

assigned to have no time on an aggressive regimen, while the upper 33% of adults and 46% of

adolescents were assigned to be on an aggressive regimen for their entire study time. The mid-

dle 37% of adults and 35% of adolescents had their proportion of time on an aggressive treat-

ment regimen generated randomly with mean of 0.60 (sd: 0.18) for adults and mean of 0.65

(sd: 0.15) for adolescents.

Treatment outcomes were generated from a multinomial distribution, with probabilities of

having a successful outcome (cure or treatment completion), death, treatment failure, default/

transfer out (combined due to low numbers of patients who transferred out) equal to 0.66,

0.21, 0.03, and 0.10, respectively. Time to successful treatment outcomes, deaths, and treat-

ment failure, in days, were generated from Weibull distributions to reasonably match the

breakdown of event times in the Lima, Peru data using the following shape and scale parame-

ters: 3.6 and 908, 0.9 and 419, 1.8 and 1162, respectively. Time to default and transfer out were

generated from a uniform distribution between 2 and 1800 days. See S1 Appendix for R code

for the data generating process.

To introduce informative censoring into the data set, as is observed in the real Peru cohort,

a rejection sampling algorithm, modified from that presented by Griffin et al. [28], was used to

assign outcomes and event times to covariates, conditional on age and the proportion of time

on an aggressive treatment regimen. Details of the rejection sampling algorithm are as follows:

1. For each subject i, i = 1,. . .,N, create a vector Xi consisting of that subject’s assigned p
covariates.

2. Define ti as the event time for each individual. For i = 1,. . .,N, if ti corresponds to a success-

ful treatment outcome, si = 1; if it corresponds to treatment failure, fi = 1; if it corresponds

to a default/transfer out, di = 1. For i = 1,. . .,N, define δi as the event indicator, with δi = 1
for death = 1, and δi = 0 otherwise. Then, sort the N survival status pairs (ti, δi) such that ti
< ti+1.
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3. Starting from the earliest observed time, randomly assign each consecutive survival status

pair (ti, δi) to a covariate vector Xi using the following rules:

a. If δi = 1 (i.e, ti is an event [death] time), use a rejection sampler to assign the covariate

vector. First, define Ri as the risk set for ti, such that Ri contains all individual covariate

vectors that have not yet been assigned. Next, randomly select a covariate vector, Xj,

from Ri and calculate exp(β’Xj)/cti where cti = max(exp(β’Xi)) over all covariate vectors in

Ri. Draw U from a uniform distribution between 0 and 1. If U< exp(β’Xj)/cti then assign

Xi to the event time, ti, and the associated outcome; otherwise repeat this step.

b. If δi = 0 and si = 1, use a rejection sampler to assign the covariate vector. Follow all previ-

ous steps, except if U> exp(β’Xj)/cti then assign Xi to the event time, ti, and the associ-

ated outcome; otherwise repeat this step. If exp(β’Xj)/cti = 1 then assign Xi to an event

time and an associated outcome by simple random sampling from Ri with equal proba-

bility 1/size(Ri), where size(Ri) is equal to the number of individuals still at risk at time ti.

c. If δi = 0 and fi = 1 or di = 1, assign Xi by simple random sampling from Ri with equal

probability 1/size(Ri).

See S2 Appendix for R code to develop the rejection sampling algorithm.

For all simulated datasets, we specified the true effects of treatment, β1, on time to death

corresponding to a series of potential hazard ratios (HR) ranging from 0.2 to 1.4 in 0.1 incre-

ments to capture a range of likely scenarios based on published literature [20, 22]. The dura-

tion of the cohort period was defined as the maximum time from treatment start until an

initial treatment outcome was observed over the entire cohort to mimic what is often used in

the analysis of observational TB treatment cohorts.

Across all simulations we explored the use of three censoring techniques: equal-risk;

mixed-risk; and predicted risk. The conventional, equal-risk approach assumes subjects are

censored immediately after experiencing a non-death outcome, and that this censoring is non-

informative. This approach assumes that all individuals experiencing a non-death treatment

outcome are at equal risk of failure as those still receiving treatment. The mixed-risk censoring

technique accounts for differential risk of survival among individuals who experienced one of

the five non-death outcomes. Informed by the literature [7–13], we assume that individuals

who experience a successful non-death outcome will be at low risk of death by the end of the

study period. Thus, we assume they survive at least until the end of the study period. In con-

tract, individuals experiencing an unsuccessful non-death outcome are assumed to be at at

equal risk of dying as those still receiving treatment. The predicted-risk censoring technique

incorporates a predicted end-of-study vital status for each individual as a function of their ini-

tial treatment outcome. The prediction model was developed and validated on a cohort of

MDR-TB patients from Tomsk, Russia [29]. The model produced estimated survival probabili-

ties for each individual. Then, a probability threshold was selected to maximize discriminatory

properties, through use of the Youden’s index, and individuals were predicted to either remain

alive at the end of the study period or to have died prior to the end of the period. Details

regarding the discriminatory properties of the prediction model have been previously pub-

lished [29]. Individuals predicted to survive contribute full survival time from treatment initia-

tion until the end of the study period. Those predicted to die are censored at the time of the

initial treatment outcome and assumed to be at equal risk of death as those still at-risk.

We assessed the association of treatment effect on hazard of death using Cox PH model

with each of the three censoring techniques. Further, we evaluated estimates produced from

each model across 13 values of the true treatment effect, β1. In all scenarios, model
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performance was evaluated based on 1000 simulated datasets, each consisting of N = 1000 sub-

jects. See S3 Appendix for R code for model development and adjustment of the censoring

assumptions.

Bias of each censoring technique, calculated as the mean difference between b̂1 , the esti-

mated treatment effect, and β1, the true treatment effect, across all simulations, was assessed

for each model. When β1< 0 (or log(β1)< 1.0), a positive bias indicated underestimation of

the treatment effect, while negative bias indicated overestimation. When β1�0, a negative bias

indicated underestimation of the treatment effect, while positive bias indicated overestimation.

Relative bias, ^ðb1 � b1Þ=b1; demonstrates the relationship between the true treatment effect,

β1, and the bias. Precision was assessed by calculating the mean of the mean squared error

(MSE), ðb̂1 � b1Þ
2

+ variance(b̂1 ), for each model. The coverage probability, defined as the

percentage of 95% confidence intervals (CI) for b̂1 containing β1, and power, calculated the

percentage of 95% confidence intervals for b̂1 containing non-null effects, were calculated for

each model.

Simulations were also run on a data set with non-informative censoring. All subjects who

experienced a non-death treatment outcome, δi = 0, were assigned a covariate vector, Xi, by

simple random sampling from the risk set, Ri, with equal probability 1/size(Ri).
R version 3.4.1 was used for all data simulation and analyses.

Ethics statement

Institutional Review Board approval was not requested for this study; all data were simulated

and no real patient data were used.

Results

For protective treatment effects (HRs less than 1.0), we observed that all bias is positive, indi-

cating that all models underestimated the benefit of the treatment effect when informative cen-

soring was present. Consistently, models using the predicted-risk technique were least biased,

followed by the mixed-risk models, and finally the conventional equal-risk models, with rela-

tive bias increasing from 0.7 to 7.6% in parallel with stronger treatment effects. Power was con-

sistent at the Type-1 error rate of α = 0.05 when there was no effect. When HRs are greater

than 1.0, all three models overestimated the treatment effect. In these scenarios, the mixed-risk

model was most biased and the equal-risk model performed better than the predicted-risk

models in most scenarios. Overall, the MSEs were consistent between all censoring techniques

and coverage rates hovered around 95% for all scenarios. Power increased as β1 moved further

from the null for all models, but was slightly lower for equal-risk models in most scenarios.

Table 1 shows model performance results for all β1 values. Fig 1 shows the model performance

measures (relative bias, MSE, power, and 95% confidence interval coverage rates) for the three

different censoring techniques.

When the non-informative censoring assumption was upheld, models produced slightly

biased treatment effect estimates, with no discernable pattern regarding a best performing

model or a direction of bias. Table 2 shows model performance results for all β1 values when

the non-informative censoring assumption is upheld.

Discussion

Comparing the performance of Cox PH models across three different censoring techniques on

simulated data sets, we find that the conventional censoring method results in biased treat-

ment effect estimates in the presence of informative censoring. The conventional method was

PLOS ONE Comparison of assumptions to analyze tuberculosis cohort data

PLOS ONE | https://doi.org/10.1371/journal.pone.0240297 October 19, 2020 6 / 12

https://doi.org/10.1371/journal.pone.0240297


used in numerous analyses of the effects of the aggressive treatment regimen, meaning its ben-

efits were potentially underestimated in previous analyses. We propose two alternative censor-

ing techniques for application to MDR-TB cohorts that account for the differential risk of

death among censored observations. While more advanced methods have been developed in

other content areas, these methods are not typically applied to MDR-TB treatment cohorts,

Table 1. Model performance across treatment effect estimates.

Hazard Ratio associated with β1 Censoring Assumption Relative Bias (%) Bias MSE 95% CI Coverage (%) Power (%)

0.20 Equal-risk 7.6 0.015 1.032 93.2 100.0

Mixed-risk 1.8 0.004 1.031 95.6 100.0

Predicted-risk 1.7 0.003 1.031 95.4 100.0

0.30 Equal-risk 5.2 0.015 1.030 94.3 100.0

Mixed-risk 0.8 0.002 1.030 95.6 100.0

Predicted-risk 0.6 0.002 1.030 95.5 100.0

0.40 Equal-risk 4.3 0.017 1.033 96.0 100.0

Mixed-risk 1.5 0.006 1.033 95.8 100.0

Predicted-risk 1.2 0.005 1.033 95.8 100.0

0.50 Equal-risk 4.7 0.023 1.036 95.0 97.6

Mixed-risk 2.4 0.012 1.036 94.3 98.3

Predicted-risk 2.1 0.011 1.036 94.1 98.5

0.60 Equal-risk 3.7 0.022 1.035 95.6 83.2

Mixed-risk 2.0 0.012 1.034 95.4 85.6

Predicted-risk 1.6 0.010 1.034 95.4 85.9

0.70 Equal-risk 2.9 0.020 1.041 95.5 52.7

Mixed-risk 1.4 0.010 1.040 95.8 58.7

Predicted-risk 1.1 0.008 1.040 95.5 59.0

0.80 Equal-risk 3.0 0.024 1.050 94.3 24.2

Mixed-risk 2.2 0.017 1.049 94.5 26.4

Predicted-risk 1.8 0.014 1.049 94.8 26.7

0.90 Equal-risk 1.0 0.009 1.053 94.8 9.6

Mixed-risk 0.9 0.008 1.054 93.8 10.7

Predicted-risk 0.5 0.004 1.054 93.9 11.5

1.00 (Null) Equal-risk 0.7 0.007 1.057 95.6 4.4

Mixed-risk 0.6 0.006 1.056 95.4 4.6

Predicted-risk 0.2 0.002 1.056 95.2 4.8

1.10 Equal-risk 1.7 0.019 1.066 94.8 8.5

Mixed-risk 1.9 0.021 1.066 95.0 8.5

Predicted-risk 1.6 0.017 1.066 95.0 8.7

1.20 Equal-risk 1.4 0.017 1.077 94.9 17.6

Mixed-risk 2.1 0.026 1.075 94.4 18.9

Predicted-risk 1.7 0.020 1.074 94.7 18.2

1.30 Equal-risk 0.9 0.011 1.086 94.9 30.4

Mixed-risk 1.8 0.023 1.088 94.8 33.6

Predicted-risk 1.3 0.017 1.087 94.5 32.8

1.40 Equal-risk 0.6 0.008 1.089 95.9 44.0

Mixed-risk 1.6 0.022 1.089 96.2 47.4

Predicted-risk 1.2 0.016 1.089 96.3 46.2

MSE: Mean squared error; CI: Confidence interval.

https://doi.org/10.1371/journal.pone.0240297.t001
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leaving these cohorts particularly susceptible to bias. These alternate techniques provide a rela-

tively crude and direct method to adjust for the presence of informative censoring in similar

MDR-TB treatment cohorts to more accurately account for the differential risk of death after

the initial treatment outcome. This simulation study demonstrate that the mixed- and pre-

dicted-risk techniques can produce more accurate treatment effect estimates than the conven-

tional model across most scenarios, with the predicted-risk model outperforming the other

two.

In scenarios in which the treatment is protective against death, use of the conventional

method consistently underestimates the true treatment effect in this cohort. This underestima-

tion occurs because the conventional equal-risk assumption does not reflect the true survival

experience of patients after the initial treatment outcome definition is met. Literature suggests

that most individuals who experience a successful non-death initial treatment outcome will

remain alive at study end [7–13], whereas the conventional method assumes that they are at

equal risk of death as remaining at-risk individuals in the cohort. Thus, we observe that appli-

cation of models utilizing the two alternative censoring techniques, each differentiating

between risk of death for successful versus unsuccessful non-death treatment outcomes, con-

sistently reduces bias and produces more accurate treatment effect estimates.

In scenarios in which the treatment is adversely associated with death, use of the mixed-

and predicted-risk censoring techniques no longer consistently produce the least biased esti-

mates. The extension of survival time for individuals experiencing a successful non-death

treatment outcome in both the mixed- and predicted-risk techniques inherently imparts a

more protective effect, with healthier individuals remaining in the study longer. If there is, in

fact, a true adverse effect of the treatment regimen, these models may not produce accurate

effect estimates due to the underlying assumption of increased survival and less event occur-

rences. In these instances, the conventional model may be more appropriate to use, or another

alternative model that makes different assumptions about the longer survival of censored

observations.

When the non-informative censoring assumption was upheld, no variation in the censoring

assumption performed better than the others, indicating that the censor times truly were

Fig 1. Relative bias, mean squared error, power, and 95% confidence interval coverage rates of the estimated

effect of the aggressive treatment regimen by censoring technique.

https://doi.org/10.1371/journal.pone.0240297.g001
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independent of the event times [2, 3]. In these scenarios, use of the conventional model seems

appropriate.

This simulation study is limited by the parameters used to develop characteristics, treat-

ment outcomes, and survival times. However, these parameters were based on a real MDR-TB

cohort in which the conventional model was applied to evaluate the effect of the aggressive

Table 2. Model performance across treatment effect estimates with non-informative censoring assumption upheld.

Hazard Ratio associated with β1 Censoring Assumption Relative Bias (%) Bias MSE 95% CI Coverage (%) Power (%)

0.20 Equal risk 0.0 0.000 0.066 94.9 100.0

Mixed risk 1.0 0.005 0.066 95.0 100.0

Predicted risk 1.0 0.005 0.066 95.1 100.0

0.30 Equal risk -1.3 -0.004 0.058 95.5 100.0

Mixed risk -0.3 -0.001 0.058 95.4 100.0

Predicted risk -0.3 -0.001 0.058 95.1 100.0

0.40 Equal risk -1.0 -0.004 0.055 94.3 99.8

Mixed risk -0.3 -0.001 0.055 94.4 99.8

Predicted risk -0.3 -0.001 0.055 94.5 99.8

0.50 Equal risk -1.8 -0.009 0.054 96.1 99.3

Mixed risk -1.4 -0.007 0.054 96.1 99.2

Predicted risk -1.4 -0.007 0.054 96.1 99.2

0.60 Equal risk 0.7 0.004 0.056 95.5 88.1

Mixed risk 0.8 0.005 0.056 95.4 88.0

Predicted risk 0.8 0.005 0.056 95.5 87.9

0.70 Equal risk -0.1 -0.001 0.056 94.1 59.4

Mixed risk 0.0 -0.000 0.055 94.1 59.6

Predicted risk 0.0 -0.000 0.055 94.2 60.1

0.80 Equal risk 0.9 0.007 0.052 95.3 26.1

Mixed risk 1.0 0.008 0.052 95.5 26.4

Predicted risk 1.0 0.008 0.052 95.3 26.5

0.90 Equal risk 0.2 0.002 0.055 94.3 11.7

Mixed risk 0.3 0.003 0.055 94.6 11.7

Predicted risk 0.3 0.003 0.055 94.5 11.7

1.00 (Null) Equal risk -0.2 -0.002 0.055 95.3 4.7

Mixed risk -0.2 -0.002 0.055 94.9 5.1

Predicted risk -0.2 -0.002 0.055 94.9 5.1

1.10 Equal risk -0.7 -0.008 0.055 93.3 9.9

Mixed risk -0.6 -0.007 0.056 93.5 10.4

Predicted risk -0.6 -0.007 0.056 93.6 10.2

1.20 Equal risk 0.2 0.002 0.055 96.8 19.0

Mixed risk 0.2 0.002 0.055 96.4 18.1

Predicted risk 0.2 0.002 0.055 96.2 18.8

1.30 Equal risk -0.3 -0.004 0.053 96.2 34.5

Mixed risk -0.4 -0.005 0.053 96.1 34.1

Predicted risk -0.4 -0.005 0.053 96.0 33.5

1.40 Equal risk -0.2 -0.003 0.054 94.7 52.8

Mixed risk -0.3 -0.004 0.053 94.9 52.4

Predicted risk -0.3 -0.004 0.053 95.0 52.2

MSE: Mean squared error; CI: Confidence interval.

https://doi.org/10.1371/journal.pone.0240297.t002
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treatment regimen on death. In a real MDR-TB cohort, it is impossible to know the true treat-

ment effect, resulting in an inability to assess bias. Mirroring this data and declaring true treat-

ment effects in simulation allows for produced effect estimates to be compared to the

established true effects to better understand the magnitude and direction of the bias that may

have resulted in the real cohort. Although newer treatment outcome definitions have since

been put in practice, we used the standardized treatment outcome definitions at the time of

the initial reporting of the real cohort’s outcomes from which our simulation mirrored [6].

Results of this simulation may not be generalizable to cohorts with different distributions of

patient characteristics, proportions of successful treatment outcomes or deaths, or survival

times. However, it provides a framework in which to think about biased effect estimates and to

demonstrate how the assumptions we make about the survival of MDR-TB patients after the

initial treatment outcome, coupled with the type of analytic method being applied, can impact

the results and the subsequent interpretation of results. This can be especially important for

TB researchers to understand, as often times these observational cohort study analyses are

what influence treatment guidelines and any bias, in either direction, may change the interpre-

tation of results. Additionally, there are inherent issues with presenting a single hazard ratio as

the measure of effect due to the assumption that this hazard ratio would remain constant over-

time. In reality, it is more likely that the hazard ratio varies over specific periods of time. How-

ever, the presentation of the hazard ratio was purposefully chosen due to it being a common

measure standardly reported as an effect estimate in MDR-TB treatment cohort studies and

because, for the purpose of a simulation study, if provides a single estimate to compare across

multiple scenarios [30].

We recognize that, while both alternative censoring techniques are found to be more accu-

rate than the conventional method, they are also making assumptions that may not be valid

across different populations, and are also more extreme assumptions than many state-of-the-

art approach for handling censoring would introduce. However, due to an inability to check

the assumptions of these other methods because survival time is truncated at the time of the

non-death treatment outcomes, precluding the observation of death amongst the censored

group, we feel they are justified. Produced estimates, however, should be interpreted with

great caution and should merely serve as a benchmark for the magnitude and direction of

potential bias that can be introduced when assumptions are made about survival status past

the initial treatment outcome. Despite the predicted-risk models performing so well, it is based

on a predictive model validated in a cohort of MDR-TB patients from Tomsk, Russia [29] that

also assessed the effect of the aggressive treatment regimen, but has not been validated on the

Lima cohort due to the lack of long-term survival data available.

Despite the limitations, the need to check for the presence of informative censoring

remains; this study highlights the potential bias that violating this assumption can introduce

and proposes simple alternative censoring techniques that can reduce this bias or, at very least,

provide insight into the potential magnitude and direction of bias that is introduced.

Conclusions

Those planning to analyze MDR-TB cohort data using Cox PH models should be aware of the

potential of violating the non-informative censoring assumption and subsequent bias of treat-

ment effect estimates due to the lack of longer-term survival status available. Adjusting the

censoring technique used in the models can reduce bias and estimate treatment effects more

accurately or provide evidence of bias where otherwise unclear. While the most accurate treat-

ment effect estimates would be obtained through appropriate monitoring and follow-up of TB

patients, this is often not possible in low-resource, high-TB burden settings. When survival
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data past the initial treatment outcome is not available, the two proposed alternative censoring

approaches are simple to implement, yet crude adjustments, at the analysis stage through

recoding of survival times. These may serve as useful tools to researchers who aim to use pro-

grammatic data on TB patients to gain insight into treatment effectiveness. They can provide

less biased effect estimates, or a range of potential estimates, in lieu of one potentially biased

estimate that may lead to incorrect interpretation of results.
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