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Regulatory networks describe the hierarchical relationship between transcription factors,

associated proteins, and their target genes. Regulatory networks respond to environmental

and genetic perturbations by reprogramming cellular metabolism. Here we design, construct,

and map a comprehensive regulatory network library containing 110,120 specific mutations in

82 regulators expected to perturb metabolism. We screen the library for different targeted

phenotypes, and identify mutants that confer strong resistance to various inhibitors, and/or

enhanced production of target compounds. These improvements are identified in a single

round of selection, showing that the regulatory network library is universally applicable and is

convenient and effective for engineering targeted phenotypes. The facile construction and

mapping of the regulatory network library provides a path for developing a more detailed

understanding of global regulation in E. coli, with potential for adaptation and use in less-

understood organisms, expanding toolkits for future strain engineering, synthetic biology, and

broader efforts.
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B iotechnology applications require engineering complex
phenotypes, and thus, a complete reprogramming of innate
metabolism. However, the lack of knowledge of the genetic

basis of complex traits restricts our ability to modify genes
sequentially, and the size of the combinatorial mutational space
spanning complex phenotypes is much larger than the size that
can be searched on laboratory timescales. Therefore, engineering
complex phenotypes at the systems level is a more feasible
approach. Without prior knowledge of the targeted phenotype
and related genetic basis, directed evolution strategies, such as
adaptive laboratory evolution (ALE) and resequencing experi-
ments, have been applied for adapting biological systems toward
desired traits1–3. However, such strategies only test a small and
random fraction of the combinatorial landscape1. Engineering of
regulator proteins using random mutagenesis and directed evo-
lution methods have further motivated studies for improving
complex traits (e.g., global transcription machinery engineering
(gTME))4–6. Mutations in transcriptional regulators can be har-
nessed to alter cellular metabolism toward improvement of tar-
geted phenotypes4–7. However, these approaches are limited in
the number of genes whose expression is affected. Therefore, a
strategy is needed to integrate all of the interactions among
regulators and compose a comprehensive and sensitive regulatory
network to engineer complex phenotypes.

A regulatory network consists of regulators that interact with
genes/proteins to control the expression levels of hundreds or
thousands of mRNAs and proteins. In E. coli, there are >200
regulators with >4000 regulated genes8,9. Thus, a highly diverse
mutational library targeted to the active sites of different reg-
ulators could easily perturb cellular metabolism by altering reg-
ulatory networks10. Recently, CRISPR-Cas methods have been
applied for genome scale, targeted mutagenesis11–14. These
CRISPR-based methods have high editing efficiency and allow for
a diverse set of mutations (e.g., insertions, deletions, point
mutations), which enables us to more broadly and deeply
investigate the genetic space and advance our understanding of
biological systems within the field of synthetic biology and gen-
ome engineering.

With increased diversity, the limiting factor for directed evo-
lution applications is how to screen or select for improved var-
iants in a population. If the trait of interest is linked to a fitness
increase, then growth selections can be used. Alternatively,
screening methods that rely on colorimetric assays or
fluorescence-based sorting (FACS) can be employed15. Lack of
stress tolerance is one of the limiting factors for improving pro-
ductivity16,17. In addition, tolerance can be easily employed for
selection studies, whereas directly screening at high-throughput
for productivity is often challenging. Therefore, tolerance selec-
tions are often used. However, sometimes the identified tolerant
strains may not truly be the best ones, and tolerance selections
must be followed up with validation of positive variants to
determine effects on productivity4–6.

In this study, we first identify a global regulatory network
composed of regulatory genes that regulate or interact with
hundreds or thousands of other genes in E. coli. We utilize a
previously developed CRISPR-based method, CRISPR-Enabled
Trackable Genome Engineering (CREATE)14, to construct a
large-scale saturation mutagenesis library targeting the active sites
of regulators in the network (Fig. 1a). We then use this regulatory
network library to screen and select for different complex traits
important for industrial applications (Fig. 1a). We are able to
identify both known and previously unidentified mutations that
improve tolerance or production phenotypes more than previous
methods (Fig. 1a). The resulting global data provide a multi-
dimensional understanding of the E. coli regulatory network,
uncovers detailed responses to environmental and genetic

perturbations, and maps genotype–phenotype linkages in E. coli
(Fig. 1a). The facile construction and mapping of the regulatory
network library provides a path toward the development of a
more detailed understanding of global regulation for future strain
engineering, synthetic biology, and broader efforts.

Results
Regulatory network library design and construction. Escher-
ichia coli is a commonly used model organism. Therefore several
databases exist that catalog E. coli genetic regulation and operon
organization, such as NCBI (https://www.ncbi.nlm.nih.gov/),
EcoCyc (http://biocyc.org/), and RegulonDB (http://regulondb.
ccg.unam.mx/index.jsp). Using these databases, we chose 82
regulators that regulate or interact with ~4000 genes in total to
construct the regulatory network library. We then identified the
active sites of these regulators using the above databases, the
UniProt (http://www.uniprot.org/), PDB (http://www.rcsb.org/
pdb), and Pfam (http://pfam.xfam.org/) databases, and previous
studies18,19 as well as relevant studies in literature that have
identified residues or regions of interest using directed evolution
approaches. Genes with annotated DNA-binding sites, protein-
interface sites, and ligand-binding sites in the NCBI, EcoCyc, and
UniProt databases, were input directly into the library design. The
genes lacking these annotations were analyzed using the PDB and
Pfam databases to predict the potential targeting sites. For genes
that had PDB files available, the target sites were predicted
around the DNA/ligand-binding regions and dimerization
interfaces (<5 Å). For the Pfam database, the target sites were
selected using a posterior probability of greater than 90% for the
predicted protein domain.

We then used computer-aided design to generate a saturation
mutagenesis library targeting the identified regions of the 82
regulators (Supplementary Table 1). This high-resolution library
spans a total of 110,120 specific mutations that were predicted to
control numerous biological processes, cellular component
metabolisms, and molecular functions by perturbing the global
regulatory network. By performing selections or screens for a
specific phenotype, followed by high-throughput sequencing, all
110,120 specific mutations can be mapped to the desired trait(s).
The regulatory network library was constructed in multiplex as
described previously (Fig. 1a; “Methods”), and was transformed
into E. coli MG1655. Overall, the genome editing efficiency of all
the sub-libraries was estimated by sequencing both the plasmid
barcodes and the genomic sites for 50 randomly picked colonies
from each of the four sub-libraries (Supplementary Fig. 1). As a
result, the editing efficiency ranged from 30% to 85% and
mutational diversity ranged from 30% to 74% in these sub-
libraries (Supplementary Fig. 1). Errors in the spacer region of the
editing cassettes that arise during oligo synthesis and plasmid
construction weaken the gRNA activity and thus decrease the
editing efficiency20 (Supplementary Fig. 2).

Regulatory network engineering for complex phenotypes. To
demonstrate the utility of the regulatory network library for
engineering complex phenotypes, we selected for mutations that
confer increased tolerance of furfural, styrene, acetate, iso-
propanol, and isobutanol. These targeted traits remain important
for industrial applications, including overcoming inhibition of
cell growth16, increasing organic solvent tolerance21, developing
low carbon feedstocks22, and producing biofuel products23,24. We
performed growth selections with each sub-library under 2 g/L
furfural, 300 mg/L styrene, 30 g/L acetate, 30 g/L isopropanol, and
8 g/L isobutanol, all conditions that led to decreased cell growth
in wild-type E. coli (Supplementary Fig. 3). Plasmids were isolated
from the post selection populations, and the barcode-editing
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cassette regions were sequenced to map mutations affecting
growth under different stress (Fig. 1b).

Furfural is one of the byproducts from the pretreatment of
lignocellulosic biomass, which is highly toxic to microbial hosts16.
Therefore, the identification of mutations conferring tolerance to

these compounds is always a promising target for improving
performance of microbial hosts. During the furfural selection, we
observed enrichment of multiple mutations in the soxR, rpoC,
rpoB, and marR genes, all of which have previously been
implicated in stress response and antibiotic tolerance25,26 (Fig. 1b,
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Fig. 1 Engineering regulatory networks for complex phenotypes in E. coli. a The workflow for engineering regulatory networks for complex phenotypes in
E. coli. We picked 82 regulators that regulate or interact with ~4000 genes in total to compose a diverse and comprehensive regulatory network library.
Then, we designed, constructed, and mapped the regulatory network library containing 110,120 specific mutations expected to perturb metabolism. We
screened the library for different targeted phenotypes, and we identified the mutants with desired inner metabolism for the targeted phenotypes. b Plasmid
barcode‐based mapping of enriched variants across all targeted genes under different conditions. From the inner circle to the outer circle, they represent
the log2 enrichment scores of variants under 2 g/L furfural, 300mg/L styrene, and 30 g/L acetate. The four highly enriched genes for each selection were
labeled with different colors. c Mutations in RpoB shown on the structural model (PDB: 3IYD). The previously unidentified mutated residue is shown in red,
and previously reported residues are shown in blue. d Growth verification of the reconstructed variants compared with nontargeting control under 2 g/L
furfural. n= 3 for each curve. Error bars show mean value ± SD. e A partial structural model of LexA (PDB: 3JSO). The previously unidentified mutated
residue is shown in red, previously reported residues are shown in blue, and the mutated residue that is enriched in multiple selections is shown in purple.
f Growth verification of the reconstructed variants compared with nontargeting control under 300mg/L styrene. n= 3 for each curve. Error bars show
mean value ± SD. g A partial structural model of SoxR (PDB: 2ZHG). The mutated residues for the acetate experiment are shown in red, and the mutated
residues for furfural experiment are shown in blue. h Growth verification of the reconstructed variants compared with nontargeting control under 30 g/L
acetate. n= 3 for each curve. Error bars show mean value ± SD.
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c). We found previously unreported mutations located in the
E546 residue of the rpoB gene under furfural stress, which is in
the same region as the I572, L533, and S531 mutations that were
identified for enhanced rifampicin resistance14,27 (Fig. 1c). We
then reconstructed the top mutations in MG1655 and tested their
furfural resistance. The results showed that the variants grew
faster than the nontargeting control under 2 g/L furfural (Fig. 1d).

Styrene is an organic solvent and important monomer used to
produce numerous plastics28. The global styrene market attained
a value of $49 billion in 2018, and is anticipated to rise at a
compound annual growth rate of 4.5% during 2019–202529.
Although styrene production in engineered E. coli has been
achieved, the titer and productivity were still not suitable for
industrial applications. Thus, construction of a styrene-tolerant
strain is important for developing “green” processes for
producing styrene18,28. Under 300 mg/L styrene, we identified
mutations, including in the lexA gene, that were consistent with
prior reports as well as a range of previously unidentified
mutations (Fig. 1b, e)22. We reconstructed the positive variants,
and the cell growth rate of the variants was above that of the
nontargeting control in 300 mg/L styrene that is the inhibitory
threshold for E. coli (Fig. 1f), which indicated that the styrene
production can be further improved without in situ product
removal28,30.

Acetate, in addition to other low carbon compounds such as
syngas and methanol, is being examined for use as an alternative
feedstock for the production of bioproducts that would improve
energy efficiencies31. Acetate can serve as a carbon source for
E. coli production strains; however, the growth rate and biomass
yield on acetate are lower than on glucose22,32. We analyzed
growth selections using 30 g/L acetate as the sole carbon source
for increased cell growth (Fig. 1b). We identified positive variants
that mapped to the rpoS, cytR, soxR, and phoB genes. Some genes
have the capability to affect multiple traits, and we showed that
mutations in soxR were beneficial for both furfural tolerance and
acetate utilization, but the location of the mutations was different
(Fig. 1b, g). Mutations in the ligand-binding region are enriched
under furfural selection, whereas mutations in the DNA-binding
region are enriched under acetate selection (Fig. 1g). Next,
we reconstructed the enriched mutations in MG1655, and the
variants showed increased cell growth rate using acetate as the
sole carbon source (Fig. 1h).

Through screening our regulatory network library for targeted
traits, we were able to identify numerous mutations that
conferred phenotypes, which are important for industrial
applications. These results confirmed the universality and
convenience of using a regulatory network library. Furthermore,
we have identified previously unreported, to the best of our
knowledge, genotype–phenotype relationships by altering reg-
ulatory networks. If the regulatory network library is used in
more applications, we could generate a diverse and comprehen-
sive understanding of the E. coli regulatory network at an amino
acid level.

Regulatory network engineering for C3–C4 alcohol tolerance.
Higher-carbon alcohols can be blended with gasoline at a higher
volume: ethanol is blended at 10%, whereas isopropanol or iso-
butanol can be blended at 16%. These higher volumes would lead
to reduced greenhouse gas (GHG) emissions given similar bior-
efinery site and process-specific conditions33–35. However, the
toxicity of C3–C4 alcohols to E. coli is a primary factor limiting
titer and productivity for industrial production36,37. Thus, it is
imperative to discover and utilize genes that confer stress toler-
ance in order to engineer more effective microbial hosts for
biofuel production. Due to the similar structures of isopropanol

and isobutanol, we sought to investigate the similarity between
these two alcohols during tolerance selections. We evaluated the
selected populations for both enriched genes (genes that had
multiple enriched mutations in the top 100 hits) and for indivi-
dual mutations that were highly enriched. At the gene level, we
observed enrichment of multiple mutations in the rpoE, rpoS, fis,
and fur genes during isopropanol selection and in the rstA, cspA,
fis, and fur genes during isobutanol selection (Fig. 2a). The fur
and fis genes had a high number of mutations in the top 100 hits
in both selections, with L122 in the fur gene (Fig. 2b) as well as
K25 and L55 in the fis gene (Fig. 2c) being in the top ten most
enriched mutations (from their subpools) in both selections. At
the individual mutation level, we also found a similar trend for
the mutation enrichment in the C3–C4 selection, with some
mutations, such as RpoE_D182Y and FliA_R94K, being highly
enriched in both selections (Fig. 2d, e).

To confirm our population-level analyses, we reconstructed the
ten variants containing mutations with the highest enrichment or
mutations from the gene with highest hits in both selections. We
then tested growth in 30 g/L isopropanol and 8 g/L isobutanol
(Fig. 2f), and all of the reconstructed variants had growth rates at
or above those of the nontargeting control (Fig. 2f). Among them,
the variants FliA_R94K and RpoA_G87W grew >50% faster than
the nontargeting control under isopropanol and isobutanol stress
(Fig. 2f). fliA and rpoA are RNA polymerase sigma factors, which
are initiation factors that promote the attachment of RNA
polymerase (RNAP) to specific initiation sites and are then
released38,39. These results indicated that these mutations likely
changed the transcription of other genes thereby causing the
enhancement of isopropanol and isobutanol tolerance in E. coli
strains, as will be discussed more below. Since enhanced tolerance
does not always lead to enhanced production, we introduced
these mutations into MG1655 strains with either an integrated
isopropanol (PA14) or isobutanol (IB500C) production pathway
(Supplementary Table 2). We then performed flask fermentation
studies on each variant. We determined that the mutant
FliA_R94K produced isopropanol and isobutanol titers (g/L)
~50% higher than that of the nontargeting control (Supplemen-
tary Fig. 4).

FliA mutations improve C3–C4 alcohol tolerance. In E. coli, fliA
encodes a flagellum-specific sigma factor that controls the
expression of flagellum-related genes40. Other high-level reg-
ulators such as CRP, H-NS, OmpR, and CsgD are also involved in
the regulation of flagellar synthesis and of fliA (Supplementary
Fig. 5). Two mutations in the fliA gene were highly enriched in
the isopropanol and isobutanol-tolerance selections (Fig. 2e),
which indicated that the related regulatory network was repro-
grammed. Thus, we used global transcriptional analysis to
investigate the metabolism of alcohol resistance in the FliA_R94K
mutant.

Under alcohol stress, there were >1000 genes up-/down-
regulated more than twofold in the FliA_R94K mutant compared
with the nontargeting control (Fig. 3a), which indicated that the
FliA_R94K mutation perturbed global metabolism. Thus, we first
focus on the regulatory network for FliA (Supplementary Fig. 5).
The fliA gene was significantly upregulated (>100-fold) in the
mutant, with the transcription level increasing with an increase in
alcohol stress (Fig. 3b). In the regulatory network for FliA, the
expression of the fliA gene is directly regulated by FlhDC, NsrR,
and CsgD40,41 (Supplementary Fig. 6). NsrR and CsgD repress
the expression of the fliA gene41, while upregulation of the flhDC
genes causes upregulation of the fliA gene40. In the FliA_R94K
mutant, flhD and flhC are both upregulated, which is likely
responsible for the observed increase in fliA (Supplementary
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Fig. 6). In addition, higher-level regulators in the network, CRP
and RpoS, as well as other global regulators, Fnr, Lrp, and Fur,
were all upregulated in the FliA_R94K mutant, which could be
the main reason for thousands of genes with altered transcrip-
tional levels (Supplementary Fig. 6).

Alcohol-induced stress significantly inhibits the cell growth
and alcohol production of biofuel-producing bacteria. Generally,
alcohol damages cell wall and membrane integrity, decreases
cross-membrane proton gradients, weakens cell respiration and
ATP generation, and alters synthesis of macromolecules42–45.
Thus, we further investigated the genes with altered expression in
the mutant FliA_R94K (Fig. 3c–e). For the genes associated with
protein and membrane metabolic processes, there were >150
genes with significant transcriptional changes in the mutant.
Furthermore, there were 75 genes related to cell wall structure,
membrane composition, and membrane transport that were
upregulated in the mutant, and which could improve cell stability
under alcohol stress (Fig. 3c). For the genes associated with
energy metabolic processes, there were >200 genes up-/down-
regulated more than twofold in the mutant. Among them, six of
the seven ATP synthesis genes and 49 genes related to cell
respiration were upregulated in the mutant (Fig. 3d). Moreover,
the ATP concentration was increased ~threefold compared with
the nontargeting control after 24 h under 30 g/L isopropanol and
8 g/L isobutanol (Supplementary Fig. 7), which further confirmed
that the FliA_R94K mutant had higher ATP biosynthesis
capability under alcohol stress.

In addition to the above genes, many genes previously
identified as being involved in the stress response had large
transcriptional changes in the mutant under alcohol stress.
Upregulation of nfo46, ung47, dam48, yrfG49, and dinG50, which
are related to DNA replication and repair, as well as bcp51, grxC52,
marR53, and marA53, which are related to oxidative stress
response and multidrug resistance, might improve the resistance

to the alcohol stress (Fig. 3e). In addition, we also compared the
global transcription of FliA_R94K and the nontargeting control
with/without isobutanol stress (Supplementary Fig. 8). We
observed that the majority of genes with altered transcriptional
levels in the mutant in the presence of isobutanol were not
significantly changed under the no-stress condition, which
indicated that this mutation causes alcohol-inducible changes in
transcription, and helped cell survival under alcohol stress
(Supplementary Fig. 8). Interestingly, 21 genes related to tRNA
synthesis were all upregulated in the mutant without isobutanol,
which could improve protein synthesis under no-stress condi-
tions (Supplementary Fig. 9).

Regulatory network engineering for isobutanol production.
After the isopropanol and isobutanol-tolerance selections, we
sought to use the regulatory network library for directed
screening/selection of isopropanol and isobutanol production.
The use of in vivo biosensors to drive the engineering of microbial
cell factories was successfully applied to the discovery of alcohol
production54. Unfortunately, the alcohol-dependent-growth bio-
sensor (pSelect-1) is not sensitive to isopropanol production.
Thus, we used the alcohol biosensor to select for increased iso-
butanol production by coupling isobutanol-induced TetA and
GFP expression to E. coli growth rate. The E. coli isobutanol-
production strain, IB500C ΔadhE, harboring the pSelect-1 plas-
mid (containing a tetA-gfp cassette under the control of an
alcohol-regulated promoter PBMO) displayed isobutanol-
dependent changes in growth phenotype and GFP expression
(Supplementary Fig. 10).

We performed selections for isobutanol production after
transforming the regulatory network library into IB500C ΔadhE.
During the selection in 96-well plates, we determined that the
library variants produced more alcohol than the nontargeting
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control due to the higher ratio of GFP/OD600 in the wells of
library variants (Supplementary Fig. 11). Plasmids were isolated
from the post selection populations, and the barcode-editing
cassette regions were sequenced to map the mutations affecting
isobutanol production (Fig. 4a). We observed that mutations in
the soxR, cpxR, glnG, ompR, mlc, and rstA genes were the most
enriched in the selections (Fig. 4a). All of these genes are
transcription factors, and most of them are different from the
genes selected under high isobutanol stress. Mutations in the rstA
gene were enriched in both the isobutanol-tolerance and
production selections (Fig. 4a). We then reconstructed the strain
IB500C ΔadhE with the enriched 12 variants from the production
selection, and tested them for isobutanol production. The results
showed that all of the reconstructed variants produced isobutanol
above the level of the nontargeting control (Fig. 4b). Moreover,
the variants OmpR_S181K produced 10.6 g/L isobutanol, which
was ~1.4-fold higher isobutanol compared with the nontargeting
control (Fig. 4c). This is the largest improvement for isobutanol
productivity without modifying the enzymes in the central carbon
metabolism and isobutanol pathway reported to date55–57.

RstA mutations improve isobutanol tolerance and production.
In both the isobutanol-tolerance and production selections,
mutations in the rstA gene were enriched (Fig. 4a). We measured
enrichment scores of mutations by amino acid position in RstA

(Fig. 4d, e; Supplementary Fig. 12). We expected to observe one of
two general patterns: enrichment for (i) high-fitness substitutions
of a small number of residues in both selections, suggesting the
same mutations confer benefits for both tolerance and produc-
tion; or (ii) substitution of residues in different regions, sug-
gesting that specific mutations affect either isobutanol tolerance
or production, respectively. We observed the latter in our data,
which suggested that the location of mutations could affect dif-
ferent phenotypes during the selection of isobutanol tolerance
and production (Fig. 4d, e; Supplementary Fig. 12). In addition,
we used PROVEAN (Protein Variation Effect Analyzer)58 to
evaluate enriched mutations in the rstA gene in both the
isobutanol-tolerance and production selections. Of the enriched
mutations, ~62% of mutations in the isobutanol-tolerance selec-
tion and ~69% of mutations in the isobutanol-production selec-
tion are predicted to be deleterious mutations, which could
be loss-of-function mutations. The remainder of the mutations
are predicted to be neutral mutations, which might not affect gene
function, or could potentially be gain-of-function mutations
(Supplementary Fig. 13).

RstA is part of a two-component system, a signal transduction
system that bacteria use to adapt to external stimuli (Supple-
mentary Fig. 14). Each two-component system is composed of a
sensor protein-histidine kinase (HK) and a response regulator
(RR), which form a signal transduction pathway together via a
histidyl–aspartyl phospho-relay59. RstA is an RR and RstB is its
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cognate HK; together, they function as a membrane sensor59,60.
RstA consists of an N-terminal receiver domain (RD) and a C-
terminal DNA-binding domain (DBD). Based on the predicted
structure, the mutations conferring increased isobutanol produc-
tion were mainly located in the RD (Fig. 4d), whereas the
mutations conferring enhanced isobutanol tolerance mainly were
located in the DBD (Fig. 4e).

Phosphorylation of RstA-PAsp52 in the RD induces dimeriza-
tion, which allows two RstA DBDs to bind to the RstA box, and
then regulate the expression of downstream genes. The most
enriched mutations in the isobutanol-production selection, such
as D52E and D52L, likely affect the phosphorylation of RstA
(Fig. 4d; Supplementary Fig. 12a). Furthermore, D52D (GAC- >
GAT) is another highly enriched mutation (Fig. 4d). Although
this synonymous mutation does not change the amino acid
residue, other studies have reported that synonymous codon
substitutions can perturb protein folding and impair cell
fitness61,62. In addition, mutations in E8 and Y98 were also
highly enriched during the selection. Based on the predicted
structure of RstA, these mutations are close to D52 and therefore
possibly affect the phosphorylation reaction.

In E. coli, RstA can be induced by low extracellular levels of
Mg2+ via the PhoQ/PhoP two-component regulatory system, and
then upregulate acid shock genes and the biofilm regulator gene,
csgD, under acidic conditions63–65. The top 50 enriched
mutations from the isobutanol-tolerance selection were located
in the DBD (Y136-L232) of RstA based on the predicted structure
(PDB: 4NHJ) (Fig. 4e; Supplementary Fig. 12b). We tested one of
these mutations, RstA_L186W and found that it upregulated the
transcription of csgD (Supplementary Fig. 15), which could help
cells survive under stress conditions64.

OmpR mutations improve isobutanol production. OmpR is a
member of the two-component regulatory system EnvZ/OmpR
involved in osmoregulation66. OmpR plays a central role in both
acid and osmotic stress responses67,68, which activate the tran-
scription of ompF at low osmolarity and ompC at high osmo-
larity67,69. The mutants OmpR_P160T, OmpR_L147D, and
OmpR_S181K produced more isobutanol compared with other
reconstructed variants and the nontargeting control, which sug-
gested that there could be a universal mechanism in the ompR
variants that led to enhanced isobutanol production. Thus, we
analyzed global changes in gene expression for all three variants
(Fig. 5a).

There are 550 genes up-/downregulated more than twofold
during the fermentation process. We classified the genes into
different groups based on the Gene Ontology (GO) biological
process (Fig. 5a). Many altered transcripts were found in genes
related to cellular component organization, biological regulation,
response to stimulus, and signaling (Fig. 5a). Contrary to the
tolerant variants, the OmpR mutants had few genes significantly
change expression in response to isobutanol stress, but had a large
change in transcription in the absence of isobutanol (during
fermentation) (Fig. 5b, c). Furthermore, genes related to stress
resistance, i.e., those with GO terms such as response to stimulus,
DNA replication, regulation of transcription, and protein
modification process, were downregulated in all three variants
during fermentation (Fig. 5a). These responses are opposite to the
transcription changes in the FliA_R94K mutant, where upregu-
lated stress-resistance genes might improve the alcohol tolerance
(Fig. 3e). This could be the main reason why these three
mutations were not enriched in the tolerance selection.

In the isobutanol-producing pathway, pyruvate is the key
substrate from central carbon metabolism. Thus, we investigated
the effect of mutations on pyruvate metabolism. Generally, the

genes in glycolysis are upregulated (Fig. 5a), which could increase
the metabolic flux from glucose to pyruvate (Fig. 5d). Further-
more, the accumulation of pyruvate is dependent on the balance
between its biosynthesis and consumption. For all three mutants,
pykA, which converts phosphoenolpyruvate to pyruvate, was
upregulated, as was pdhR, which represses the reaction from
pyruvate to acetyl-CoA (Fig. 5d). These transcriptional changes
suggested that there was more metabolic flux for conversion of
pyruvate to isobutanol. In addition, the biological process of
aerobic respiration was upregulated in the mutants, which could
allow the strain to gain more NADH for isobutanol production
(Fig. 5a). In addition, the upregulated aerobic respiration and
ATP synthesis genes could further improve the energy supply for
cell growth and metabolism, which could also benefit isobutanol
production (Fig. 5a).

The isobutanol-production pathway also utilizes the 2-keto
acid precursors of native amino acids; thus amino acid
biosynthesis also affects alcohol production. The downregulation
of arginine, glutamate, and glutamine biosynthetic processes
(Fig. 5a) can restore the accumulation of α-ketoglutarate (Fig. 5d)
in the TCA cycle and further improve ATP and NADH synthesis
derived from aerobic respiration. Similarly, the downregulation of
phenylalanine and serine biosynthetic processes (Fig. 5a) can
increase the metabolic flux in glycolysis and the PPP, and further
improve the substrate and cofactor pools for isobutanol
production (Fig. 5d).

Discussion
Living cells are the product of gene expression programs invol-
ving regulated transcription of thousands of genes. The hier-
archical relationship between transcription factors, associated
proteins, and their target genes can be described as a regulatory
network. Numerous studies have determined how most of the
regulators encoded in E. coli associate with genes across the
genome in living cells40,70–73. When the regulatory network is
perturbed, cellular metabolism will be reprogrammed. Studying
this network allows us to understand how a genotype and the
environment are integrated to regulate downstream physiological
responses. Previous efforts have focused on up-/downregulation
of regulators or mutating a handful of important regulators for
specific phenotypes40,70–73. However, there were no universal
tools that could be used to engineer diverse traits. In this study,
we designed and constructed a regulatory network library con-
sisting of a total of 110,120 specific mutations in 82 regulators.
There are ~4000 genes that interact in this regulatory network.
We then used this library for different targeted phenotypes that
are important for industrial applications, and identified a series of
positive mutations in a single round of selection which improved
these traits, including overcoming inhibition of cell growth
(furfural), increasing organic solvent tolerance (styrene), devel-
oping low carbon feedstocks (acetate), and improving biofuel
resistance and production (isopropanol and isobutanol).

Therefore, we have shown that the use of a regulatory network
library can be universally applicable and is convenient and
effective for engineering targeted phenotypes. The regulatory
network library will also allow for further study of
genotype–phenotype relationships and could lead to significant
gains in understanding the mechanisms of a wide variety of
cellular responses. Due to the complexity of the regulatory net-
work library, we analyzed the data at both the gene and amino
acid levels as a way to determine genotype–phenotype relation-
ships. At the gene level, the enriched regulators in the experi-
ments showed relevance in their functions, regulations, or
interactions (Fig. 6a). For example, the highly enriched genes in
furfural experiments interacted with each other (Fig. 6a), and all
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contributed to stress and antibiotic tolerance25,26. Furthermore,
we observed that some regulators showed the capability of mul-
tistress resistance in the different conditions (Fig. 6b).

At the amino acid level, there were two behaviors for the enri-
ched mutations: (i) the mutations were in the same region for the
same or similar targeted traits, or (ii) the mutations were located in
different regions for the different targeted traits. For the first

situation, we observed mutations in the same region of Fur, Fis, and
FliA, in both isobutanol and isopropanol-tolerance experiments,
and in the isobutanol-production experiment, we saw mutations in
the same region in OmpR (Supplementary Fig. 16). For the second
scenario, we observed that the soxR gene was enriched in the fur-
fural and acetate experiments, and the rstA gene was enriched in the
isobutanol-tolerance and production experiments, but the
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mutations were in different regions for each selection (Fig. 1g;
Supplementary Fig. 12). Thus, we could further sub-classify the
regulatory network library into different groups of genes or muta-
tions, depending on the targeted traits (Fig. 6). In addition, the
behaviors of enriched mutations were likely related to the envir-
onment (Fig. 6c). Without isobutanol stress, the OmpR mutations
affected the regulatory network to reprogram central metabolism,
whereas these mutations hardly perturbed the regulatory network
under isobutanol stress (Fig. 6c). Thus, the variants OmpR_S181K
produced 10.6 g/L isobutanol, which was ~1.4-fold higher iso-
butanol compared with the nontargeting control (Fig. 4c). In con-
trast, FliA_R94K appears to be alcohol-induced, and only modifies
transcription under alcohol stress (Fig. 6c).

The results of this study suggest that certain regulatory genes,
such as fliA and soxR, play an important role in conferring

tolerance to multiple different growth inhibitors. Therefore, they
may be good targets for more directed mutagenesis for other
tolerance phenotypes for future strain engineering efforts. Fur-
thermore, the mutations identified in this study could potentially
be combined with other known mutations to further tolerance to,
and/or production of, a desired compound. Since the CREATE
strategy used here can be performed iteratively19, the regulator
library could also be used to make combinatorial mutations,
which could potentially lead to greater improvements in the
desired phenotype. Multiple applications of this library could
provide a multidimensional understanding of the E. coli reg-
ulatory network, and uncover detailed responses to environ-
mental and genetic perturbations. The regulatory network library
allows for rapid adaptation to new conditions and
genotype–phenotype mapping of E. coli strains.
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Finally, the facile construction and mapping of the regulatory
network library provides a path for developing a detailed
understanding of global regulation in less-understood organisms
for future synthetic biology and broader efforts. The mutations
identified here could be adapted for use in other microbes as part
of strain engineering efforts. In addition, a regulatory network
library similar to the one described here could potentially be
adapted for any microbe, in which efficient CRISPR-Cas medi-
ated genome editing is possible. Many industrially relevant bac-
teria have recently had CRISPR-Cas systems developed, including
Clostridium thermocellum74, Streptomyces species75, Cor-
ynebacterium glutamicum76, Zymomonas mobilis77, and Pseudo-
monas putida78. Since the regulatory network library can be
applied to improve any phenotype that can be effectively selected
or screened for, it opens the door for efficient strain engineering
for complex phenotypes in E. coli and other microbes.

Methods
Library design and computationally identified information. The saturation
mutagenesis library sites (Supplementary Table 1) were selected using the NCBI
(https://www.ncbi.nlm.nih.gov/), EcoCyc (http://biocyc.org/), UniProt (http://
www.uniprot.org/), PDB (http://www.rcsb.org/pdb), and Pfam databases (http://
pfam.xfam.org/), and previous studies18,19 as well as relevant studies in literature
that have identified residues or regions of interest using directed evolution
approaches. For the NCBI, EcoCyc, and UniProt databases, the labeled DNA-
binding sites, protein-interface sites, and ligand-binding sites were input into the
library design. The genes without labeled sites were analyzed using the PDB and
Pfam databases to predict the potential targeting sites. For genes that had PDB files
available, the target sites were predicted around the DNA/ligand-binding regions
and dimerization interfaces (<5 Å). For the Pfam database, the target sites were
selected using a definitive posterior probability (higher than 90%) in predicted
protein domain.

Library plasmid construction. Oligo pricing was available at ~$0.10–0.15/oligo for
pooled oligo synthesis products (available from Agilent Biotechnologies, Santa
Clara, CA, USA). Each oligo pool was amplified with a subpool oligonucleotide
(e.g., BC1_F) and Insert_R (Supplementary Table 3). The reaction conditions were
98 °C for 60 s; ten cycles of 98 °C for 30 s, 60 °C for 30 s and 72 °C for 90 s; ten
cycles of 98 °C for 30 s and 72 °C for 90 s; and 72 °C for 5 min. Unincorporated
oligos and ssDNA were subsequently removed from the libraries using a QIAquick
PCR cleanup kit (Qiagen, Valencia, CA, USA).

The linearized backbone was amplified using the bbF and bbR primers
(Supplementary Table 3). The reaction conditions were 98 °C for 30 s; 30 cycles of
98 °C for 10 s, 60 °C for 30 s and 72 °C for 90 s; and 72 °C for 2 min. This backbone
was treated with DpnI and purified using the QIAquick Gel Extraction Kit (Qiagen,
Valencia, CA, USA).

The circular polymerase extension cloning (CPEC) reaction was used for
assembly. The reaction conditions were 98 °C for 30 s; ten cycles of 98 °C for 10 s,
60 °C for 30 s and 72 °C for 90 s; and 72 °C for 2 min. The reactions were desalted
using dialysis by spotting the reaction on a 0.025-µm pore filter floating in ddH2O.
Following desalting, the cloned products were electroporated into E. cloni 10 G
ELITE electrocompetent cells (Lucigen Corporation, Middleton, WI, USA).
Libraries were plated onto LB with 100 µg/mL carbenicillin to estimate
transformation efficiency. The library plasmids were purified using a QIAprep Spin
Miniprep Kit (Qiagen, Valencia, CA, USA). All PCR steps were performed with the
high-fidelity Phusion enzyme (New England Biolabs, Ipswich, MA, USA) to ensure
production of a high-quality library.

Library construction and selection. The host E. coli MG1655 strain carried the
pSIM5 (Supplementary Table 2) and pX2-Cas9 plasmids (Supplementary Table 2).
When OD600 reached 0.5–0.6, expression of the pSIM5 plasmid was induced by
shaking the cells for 15 min at 42 °C. After chilling on ice for 15–30 min, the cells
were washed twice with 20% of the initial culture volume of ice cold ddH2O. Then,
the library plasmids (or single editing plasmid) were mixed with the cells, followed
by chilling on ice for 5 min. Following electroporation, the cells were recovered in
SOB medium for 2 h. Then, 1 μL of cells was plated to determine transformation
and editing efficiencies, and the remaining cells were transferred into a 10× volume
of LB with 50 μg/mL kanamycin and 100 μg/mL carbenicillin. The overnight cul-
tures were centrifuged and resuspended in fresh LB or other media for target
selection. Before selection, the genome editing efficiency of the constructed library
was tested by sequencing 50 colonies in each subpool.

Following an overnight recovery, the cells were harvested by centrifugation and
resuspended in a fresh selection medium. All selections were performed in conical
tubes (CELLTREAT Part no. 229475) or flasks and were inoculated at an initial
OD600 of 0.1. Two serial dilutions (over 48–96 h, depending on the growth rate in
the target condition) were performed for each selection, with OD600= 0.1 as the

initial inoculum concentration. The selections were performed in LB or M9
medium. The LB or M9 medium here was supplemented with 30 μg/mL kanamycin
and 100 μg/mL carbenicillin, plus the chemical for the selection. The cells were
harvested by pelleting 1 mL of the final culture, and the cell pellet was boiled in
100 μL of TE buffer to preserve both plasmid and genomic DNA for further
analyses.

Library sequencing and data analysis. Custom Illumina compatible primers were
designed to allow a single amplification step from the editing plasmid with
assignment of experimental reads using barcodes (Supplementary Table 4). The
editing cassettes were amplified directly from the plasmid sequences of boiled
cell lysates using the following conditions: 98 °C for 30 s; 20 cycles of 98 °C for 10 s,
60 °C for 30 s and 72 °C for 90 s; and 72 °C for 2 min. Amplified fragments were
verified by 1% agarose gel electrophoresis, cleaned using a QIAquick PCR Cleanup
Kit and processed for NGS using standard Illumina preparation kits. Illumina
sequencing and sample preparation were performed with the primers listed in
Supplementary Table 4.

Paired-end Illumina sequencing reads were sorted according to the Golay
barcode index with an allowance of up to three mismatches and then merged using
the USEARCH fastq_merge algorithm (http://www.drive5.com/usearch/). Sorted
reads were then matched against the database of designed editing cassettes using
the usearch_global algorithm at an identity threshold of 90%, allowing up to 60
possible hits for each read. The resulting hits were further sorted according to
percent identity, and read assignment was made using the best matching editing
cassette design at a final cutoff of 99.5% identity to the initial design. It should be
noted that this read assignment strategy attempts only to identify correlations
among the designed genotypes and may therefore miss other important features
that arise due to mutations during the experimental procedure. This approach was
chosen both to simplify data analysis and to evaluate the “forward” design and
annotation procedure and its ability to accurately identify meaningful genetic
phenomena. Alternative variant-calling algorithms may enable further
investigation into the underlying genetic diversity in future applications.

For each individual biological replicate, enrichment scores were calculated as
the logarithm (base 2) of the ratio of the frequency of post selection to preselection.
Frequencies were determined by dividing the read counts for each variant by the
total experimental counts.

The enrichment score (Ej) was calculated as follows:

Ej ¼
log2ðYjÞ
log2ðXjÞ

;

where Xj is the frequency of plasmid j before selection in the deep-sequencing
measurement, and Yj is the frequency of plasmid j after selection in the deep-
sequencing measurement.

A weighted average was used to combine the enrichment scores obtained in the
two biological replicates, according to the following formula:

Wavg ¼
PN

i¼1 ci ´wiPN
i¼1 Ci

;

where Wavg is the weighted average enrichment score, i is the biological replicate,
C is the read count obtained for the variant in the biological replicate, and W is the
enrichment score calculated for the variant in the biological replicate.

To assess significance, the average enrichment scores for all synonymous
mutations included in the library were calculated (average µ of wild-type
enrichment). Bootstrap analysis (resampled with replacement 20,000 times) was
performed to obtain a 95% confidence interval for the wild-type enrichment
average µ. Variants were considered significantly enriched if their weighted
enrichment scores were at least µ ± 2*σ (i.e., P-value ≤ 0.05 assuming a normal
distribution of synonymous mutation enrichment scores), with σ being the
standard deviation.

RNAseq and real-time qPCR. RNAseq: RNA was isolated using an RNeasy Mini
Kit (Qiagen, Valencia, CA, USA), then diluted to 60 ng/µL in a total volume of
15 µL RNase-free water, and 1 µL of SUPERase-IN (Life Technologies) was added.
The RNAtag-Seq protocol was followed for tagging, pooling, ribosomal depletion,
and library construction using the RNA oligo linkers described in the supple-
mentary information79. The Ribo-Zero treatment was performed using the Ribo-
Zero rRNA Removal Kit for Gram-negative bacteria (Illumina). All oligos were
purchased from IDT. The final, pooled sample was sequenced on a single Illumina
MiSeq V3 150-cycle run with a 5% PhiX spike-in. RNA-seq data were analyzed and
normalized using Rockhopper80.

qPCR: The total RNA was isolated using an RNeasy Mini Kit (Qiagen, Valencia,
CA, USA). RNA preparations were checked for DNA contamination via PCR with
primers targeting the 16S rRNA gene. The cDNA synthesis was then performed
using a SuperScript II cDNA synthesis kit (New England Biolabs, Ipswich, MA,
USA) with 200 ng of the total RNA. The qPCR was performed in triplicates using a
7500 fast real-time PCR system (Applied Biosystems, Foster City, CA) with the
primers listed in Supplementary 2; the expression levels of targeted genes were
normalized to the 16S rRNA gene levels of their respective samples.
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Mutant reconstruction. The cassettes (Supplementary Table 2) were ordered as
separate gBlocks from IDT. Each cassette was transformed into the target host
strain and then subjected to the same growth conditions as indicated above for the
pooled library selection.

Alcohol fermentation procedures. For isopropanol production, shake flask
experiments were carried out in a rotary shaker at 220 rpm and 37 °C using 250-mL
conical flasks, each containing 25 mL of SD-8 medium. SD-8 medium (NH4Cl,
7.0 g/L; KH2PO4, 7.5 g/L; Na2HPO4, 7.5 g/L; K2SO4, 0.85 g/L; MgSO4·7H2O,
0.17 g/L; trace elements, 0.8 ml/L; yeast extract; 10 g/L) containing 2% glucose was
used for fermentations. The trace element solution contained the following (in
grams per liter of 5 M HCl): FeSO4·7H2O, 40.0; MnSO4·H2O, 10.0; Al2(SO4)3, 28.3;
CoCl2·6H2O, 4.0; ZnSO4·7H2O, 2.0; Na2MoO4·2H2O, 2.0; CuCl2 · 2H2O, 1.0;
and H3BO4, 0.5. For antibiotic selection, the concentrations of antibiotics were
100 μg/mL carbenicillin, 34 μg/mL chloramphenicol, and 30 μg/mL kanamycin.
The pH was maintained at ~6.0 throughout the fermentation by the addition of
50% NaOH solution when required.

Isobutanol production from strains was measured after 24 or 48 h growth at
37 °C in M9 medium (glucose, 80 g/L; NaCl, 0.5 g/L; Na2HPO4‧12H2O, 17.1 g/L;
KH2PO4, 3 g/L; NH4Cl, 2 g/L; MgSO4‧7H2O, 246 mg/L; CaCl2‧2H2O, 14.7 mg/L;
FeSO4‧7H2O, 2.78 mg/L supplemented with 10 g/L yeast extract. The growth was
performed in 50-mL conical tubes containing 25 mL of media. Fed-batch
fermentations were initiated as a batch culture with an initial glucose concentration
of 20 g/L in 250-mL flasks containing 50 mL of M9 media supplemented with
10 g/L yeast extract. The temperature was maintained at 30 °C, and the pH was
maintained at ~7.0 by the controlled addition of a 50% NaOH solution. The
glucose solution was fed into the flask when the residual glucose concentration
decreased to 0–2 g/L, and the final concentration was ~20 g/L.

Analytical methods. Glucose and alcohol were analyzed by HPLC (LC-20 AD
with a refractive index detector RID-10A, Shimadzu, Kyoto, Japan) with a Bio-Rad
Aminex HPX-87H column at 65 °C. The mobile phase was 5 mM H2SO4 at a flow
rate of 0.6 mL/min. All the samples were centrifuged at 15,800 × g for 6 min, and
then filtered through a 0.22-μm filter before analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1, 2, 4 and Supplementary Figs. 3, 4, 7, 15 are provided
as a Source Data file. High-throughput sequencing data have been deposited in the
Sequence Read Archive (SRA) under accession codes: SAMN15447118, SAMN15447119,
SAMN15447120, SAMN15447121, SAMN15447122, SAMN15447123, SAMN15447124,
SAMN15447125, SAMN15447126, SAMN15447127, SAMN15447128, SAMN15447129.
Data supporting the findings of this paper are available from the corresponding authors
upon reasonable request. Source data are provided with this paper.
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