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ABSTRACT The ability for cells to maintain homeostasis in the presence of extracel-
lular stress is essential for their survival. Stress adaptations are especially important
for microbial pathogens to respond to rapidly changing conditions, such as those
encountered during the transition from the environment to the infected host. Many
fungal pathogens have acquired the ability to quickly adapt to changes in extracel-
lular pH to promote their survival in the various microenvironments encountered
during a host infection. For example, the fungus-specific Rim/Pal alkaline response
pathway has been well characterized in many fungal pathogens, including Crypto-
coccus neoformans. However, alternative mechanisms for sensing and responding to
host pH have yet to be extensively studied. Recent observations from a genetic
screen suggest that the C. neoformans sterol homeostasis pathway is required for
growth at elevated pH. This work explores interactions among mechanisms of mem-
brane homeostasis, alkaline pH tolerance, and Rim pathway activation. We find that
the sterol homeostasis pathway is necessary for growth in an alkaline environment
and that an elevated pH is sufficient to induce Sre1 activation. This pH-mediated ac-
tivation of the Sre1 transcription factor is linked to the biosynthesis of ergosterol but
is not dependent on Rim pathway signaling, suggesting that these two pathways
are responding to alkaline pH independently. Furthermore, we discover that C. neo-
formans is more susceptible to membrane-targeting antifungals under alkaline con-
ditions, highlighting the impact of microenvironmental pH on the treatment of inva-
sive fungal infections. Together, these findings further connect membrane integrity
and composition with the fungal pH response and pathogenesis.

IMPORTANCE The work described here further elucidates how microorganisms sense
and adapt to changes in their environment to establish infections in the human host.
Specifically, we uncover a novel mechanism by which an opportunistic human fungal
pathogen, Cryptococcus neoformans, responds to increases in extracellular pH in order to
survive and thrive within the relatively alkaline environment of the human lung. This
mechanism, which is intimately linked with fungal membrane sterol homeostasis, is in-
dependent of the previously well-studied alkaline response Rim pathway. Furthermore,
this ergosterol-dependent alkaline pH response is present in Candida albicans, indicating
that this mechanism spans diverse fungal species. These results are also relevant for
novel antimicrobial drug development as we show that currently used ergosterol-
targeting antifungals are more active in alkaline environments.

KEYWORDS Cryptococcus neoformans, ergosterol, fungal genetics, membrane, pH
homeostasis

Diverse cell types, from simple unicellular microorganisms to complex multicellular
eukaryotes, interpret alterations in extracellular pH as a common signal for

changes in the external environment. Pathogenic microorganisms are often uniquely
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exposed to wide fluctuations in pH as they move between various microenvironments
in the human host. Among these, fungi that cause invasive fungal infections (IFIs) have
acquired the ability to rapidly adapt to changes in extracellular pH to promote their
survival during an infection. The shift of a fungal pathogen from an acidic external
environment to the neutral/alkaline pH of the mammalian host is associated with the
activation of the fungus-specific Rim/Pal signaling pathway, triggering cellular changes
important for survival under these new conditions. These changes include alterations in
the cell wall, often accompanied by larger morphological transitions that promote host
colonization. In the common fungal pathogen Candida albicans, pH-directed cellular
responses include the ability to transition between yeast-like growth and invasive
hyphal forms (1–3). The opportunistic human fungal pathogen and basidiomycete
yeast Cryptococcus neoformans similarly activates Rim signaling to respond to changes
in pH. Because C. neoformans initially colonizes the human lung, which is often
relatively more alkaline than its natural environmental reservoirs, this signaling path-
way is activated in the setting of infection. In fact, the C. neoformans Rim101 transcrip-
tion factor, the terminal component of the Rim pathway, is among the most highly
induced transcripts in vivo (4).

Given its pH-dependent activation, as well as its important role in the adaptation of
fungal cells to elevated pH, the Rim signaling cascade is often considered to be the
major alkaline pH response pathway in fungi. However, other cellular processes and
pathways are required for fungal growth under conditions of extreme pH (both acidic
and alkaline). These processes include the production of glycosphingolipids (GSLs) that
associate with proteins in the outer leaflet of fungal plasma membranes to form lipid
rafts and maintain membrane fluidity and organization (5–7). Recent studies have
demonstrated that mutations resulting in reduced or absent GSLs render fungi such as
Kluyveromyces lactis, Neurospora crassa, and C. neoformans unable to grow in alkaline
environments (8–11). The connection between membrane composition and the ability
for fungal cells to grow in alkaline environments has been associated with defects in
cytokinesis and altered activity of plasma membrane proton pumps, as well as an
altered lipid profile (10). Furthermore, reduced ergosterol content in membranes has
been linked to salt stress sensitivity in Saccharomyces cerevisiae (12, 13) and to aberrant
V-ATPase regulation of pH gradients in Candida albicans (13, 14).

Recent observations from our genetic screen suggest that C. neoformans sterol
homeostasis might also be required for growth at elevated pH (15). The sterol homeo-
stasis pathway (SREBP pathway) has been extensively studied in both mammalian and
fungal cells (16–20). Proteins in this pathway regulate the production and delivery of
sterols to the plasma membrane to maintain appropriate cell homeostasis (17, 21, 22).
In several fungal species, including C. neoformans, the Sre1 transcription factor (the
terminal transcription factor in this sterol homeostasis pathway) is activated in response
to low-oxygen conditions (21, 23–26). In addition to hypoxia, the C. neoformans Sre1
transcriptional response is necessary for tolerance to low iron and to antifungals that
target sterols in the membrane (21). Upon activation of the C. neoformans sterol
homeostasis pathway, the basidiomycete-specific Stp1 protease cleaves Sre1, freeing its
N terminus to release from the membrane of the endoplasmic reticulum and translo-
cate to the nucleus (22). This cleavage is induced in an O2-dependent manner and is
important for the transcription of many ergosterol biosynthesis genes (23, 25). How-
ever, the association between the sterol homeostasis pathway and pH adaptation has
not yet been explored.

Here, we define potential interactions among fungal sterol homeostasis, alkaline pH
tolerance, and Rim pathway activation. We find that the sterol homeostasis pathway is
indeed necessary for growth in an alkaline environment and that an elevated pH is
sufficient to induce Sre1 cleavage and activation. This pH-mediated activation of the
Sre1 transcription factor is not dependent on Rim pathway signaling, suggesting that
these two pathways are responding to alkaline pH independently. Furthermore, we
demonstrate that Sre1-mediated ergosterol biosynthesis is linked to the response to
alkaline pH and relevant in biologically diverse fungi. Finally, we discover that C.
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neoformans is more susceptible to membrane-targeting antifungals under alkaline
conditions, highlighting the impact of microenvironmental pH on the treatment of this
invasive fungal infection. Together, these findings connect a highly conserved pathway
involved in membrane homeostasis and sterol maintenance to the adaptive response
to changes in extracellular pH.

RESULTS
Convergent and divergent phenotypes of the sre1� and rim101� mutants. A

recent forward genetic screen identified two elements of the C. neoformans sterol
homeostasis pathway, the Sre1 transcription factor and its activating protease Stp1, as
proteins required for growth of this pathogenic fungus at an alkaline pH (15). To
confirm this observation, we generated and acquired multiple, independent C. neofor-
mans sre1Δ mutants and verified that all demonstrated a severe growth defect at high
pH (Fig. 1A). We performed detailed phenotypic comparisons between mutants in the
alkaline-responsive Rim pathway and the sterol homeostasis pathway, as exemplified
by the rim101Δ and sre1Δ transcription factor mutant strains, respectively. Both mutant
strains grew similarly to wild type (WT) on a rich growth medium at pH 5.5 (yeast

FIG 1 Stress response phenotypes of the sre1Δ and rim101Δ mutant strains. (A) Four independent sre1Δ mutant strains were serially diluted onto YPD medium
and YPD pH 4 to 8. Growth was compared to wild type (WT) and a rim101Δ mutant known to have alkaline pH sensitivity. Growth was assessed after 3 days.
sre1Δ #1 (HEB5) is shown for all subsequent phenotyping and analysis. (B) The sre1Δ and rim101Δ mutant strains are unable to grow at increasing pH levels
on minimal medium (YNB). Strains were spotted in serial dilutions onto YNB medium buffered to pH 4.5 to 8.5, and growth was compared to WT after 3 days.
(C) The sre1Δ and rim101Δ mutant strains display distinct and overlapping phenotypes to cell stressors. Strains were serially diluted and spotted to either YPD,
YPD plus 1.5 M NaCl, YPD plus 0.5% Congo red, YPD plus 1 mg/ml caffeine, or YPD plus 0.03% SDS. Growth was compared to WT and assessed after 3 days. (D)
The sre1Δ mutant strain displays a growth defect in response to hypoxia-mimicking growth conditions (7 mM CoCl2). Strains were spotted in serial dilutions
onto YPD at 30°C and YES plus 7 mM CoCl2 at 30°C. Growth was assessed after 3 days and compared to WT and the rim101Δ mutant. (E) The sre1Δ mutant strain
does not have the same capsule deficiency as the rim101Δ mutant strain. Strains were incubated in CO2-independent medium for 3 days before imaging using
India ink exclusion counterstaining. Capsule is noted as a halo of clearing around the yeast cells.
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extract-peptone-dextrose [YPD] medium). These two mutants also displayed similar
growth defects as the wild type on growth medium buffered to a pH greater than 7
(Fig. 1A). Importantly, the sre1Δ alkaline pH-sensitive mutant phenotype was rescued by
the reintroduction of the wild-type SRE1 allele (see Fig. S1A in the supplemental
material).

To account for a potential confounding effect on growth by exogenous lipids in the
yeast extract-rich medium, we also assessed the ability for these mutant strains to grow
on a minimal medium (yeast nitrogen base [YNB]) buffered to a range of pH values. The
sre1Δ and rim101Δ mutants were able to grow on YNB medium buffered to pH 4
through pH 7. At more alkaline pH, the growth defect of the sre1� mutant strain was
more severe than that of the rim101Δ mutant, with the sre1Δ mutant unable to grow
at pH 8 and the rim101Δ strain displaying complete growth inhibition only at pH �8
(Fig. 1B).

Given the established role of Sre1 in mediating growth in hypoxia, we compared
growth rates of these mutant strains in the presence of cobalt chloride (CoCl2), an agent
that disrupts many biochemical pathways, including the ergosterol biosynthesis path-
way and cellular respiration (27–30). Consistent with previous reports (21, 24, 25, 31),
the sre1Δ mutant is unable to grow under these conditions (Fig. 1D and Fig. S1A). The
rim101Δ mutant did not share this growth defect and was not sensitive to CoCl2
(Fig. 1D). We also compared growth rates of all mutant strains in a microaerophilic
chamber to more directly test phenotypes in response to reduced oxygen. The sterol
homeostasis pathway mutants displayed a lower growth rate under conditions of
reduced oxygen concentration (Fig. S1B). The rim101Δ mutant grew to similar levels as
the wild type (Fig. S1B). Therefore, although sharing a similar alkaline growth defect,
the rim101Δ and sre1Δ mutants display distinct growth patterns under hypoxia-like
conditions.

We also tested the sensitivity of the sre1Δ and rim101Δ mutant strains to cell wall
stressors such as Congo red (interferes with beta glucan-chitin linkages), caffeine
(affects cell wall integrity), high salt (osmotically stresses the cell wall), and SDS (stresses
the cell membrane) (32, 33). Similarly to alkaline pH, high salt resulted in complete
growth inhibition for both mutant strains (Fig. 1C). In contrast, caffeine did not affect
the growth of either mutant (Fig. 1C). The sre1Δ mutant strain was unable to grow in
the presence of Congo red, whereas the rim101Δ mutant strain showed only a subtle
growth defect due to this chitin polymer inhibitor (Fig. 1C). Also, SDS completely
inhibited growth of the sre1Δ strain, whereas the rim101Δ strain appeared to be
hyperresistant to the membrane-targeting effects of SDS, as evident in the more robust
growth of this strain than of the wild type (32, 34) (Fig. 1C).

Sensitivities of mutant strains to cell surface stressors can indicate alterations in the
cell wall structure and/or integrity. In addition to providing a protective barrier for the
cell, the cell wall serves as an anchor for the attachment of the polysaccharide capsule
that can further protect the fungal cells during a human infection (35). The rim101Δ
mutant strain is known to have a disorganized cell wall and thus a decrease in attached
capsule (36, 37). In contrast, the sre1Δ mutant strain revealed intact capsule formation
(38) (Fig. 1E). Overall, these phenotypic comparisons distinguish the rim101Δ mutant
from the sre1Δ mutant in the distinct responses of these strains to cell wall and
membrane stress.

Independent signaling of the Rim and sterol homeostasis pathways. To deter-
mine whether the C. neoformans sterol homeostasis pathway is specifically activated in
response to alkaline pH, we assessed the pH dependence of the proteolytic cleavage of
the Sre1 transcription factor, a marker of pathway activation (21, 23–25, 38). At pH 5.5,
the green fluorescent protein (GFP)-Sre1 fusion protein remains uncleaved in a 140-kDa
form (Fig. 2A). In contrast, incubating this strain in the same growth medium buffered
to pH 8 results in GFP-Sre1 protein cleavage to a 90-kDa form, similar to its proteolytic
activation in response to hypoxia (Fig. 2A) (21). There was no defect in Sre1 cleavage
in the rim101� mutant strain background (Fig. 2B). Therefore, the C. neoformans sterol
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homeostasis pathway is specifically activated by an alkaline pH signal and in a manner
that is independent of the Rim alkaline response pathway.

To further define the interaction between the Sre1 and Rim101 signaling pathways,
we assessed whether the Sre1 transcription factor is necessary for activation of the Rim
pathway as measured by the pH-dependent proteolytic processing and subcellular
localization of the Rim101 transcription factor (39). In both the wild-type and sre1Δ
mutant strains, we observed intact Rim101 processing and cleavage at elevated pH
(Fig. 2C). Similarly, GFP-Rim101 nuclear localization was enhanced at activating pH in
both strain backgrounds (Fig. 2D). In contrast, we confirmed both defective protein
cleavage and impaired nuclear localization of the Rim101 transcription factor in the
rim20Δ mutant, a strain lacking a known upstream Rim signaling component (Fig. 2C
and D). These data indicate that the sterol homeostasis pathway is not required for Rim
pathway activation.

The cell wall organization of the sre1� mutant and its in vitro immune phe-
notypes. The sre1Δ mutant strain is avirulent in a mouse model of C. neoformans
infection (25, 38), whereas the rim101Δ mutant strain and other Rim pathway mutants
have paradoxical hypervirulent phenotypes in the same model (36). In previous work,

FIG 2 Sre1 activation is dependent on alkaline pH but not Rim signaling. (A) Western blot of both Sre1 and GFP-Rim101 protein processing under low-pH and
high-pH growth conditions. The GFP-Rim101 fusion protein is cleaved from its 140-kDa form to its active 100-kDa form at pH 8. Similarly, the GFP-Sre1 fusion
protein is proteolytically processed from 146 kDa to approximately 90 kDa in response to alkaline pH. Indicated strains were incubated for 60 min in either pH
5.5 or pH 8 YPD medium prior to lysing. Rim101 and Sre1 protein processing was determined using a GFP-trap pulldown and Western blotting using an anti-GFP
antibody. Protein levels were normalized prior to loading. (B) Western blot analysis of the Sre1 protein in different genetic backgrounds revealed the cleavage
and processing (from 110 kDa to approximately 90 kDa) of the Sre1 transcription factor in the WT and rim101Δ mutant backgrounds. Indicated strains were
incubated for 60 min in either pH 4 or pH 8 YPD medium prior to lysing. Protein processing was determined through protein A pulldown and Western blotting
using a polyclonal anti-Sre1 antibody. Total protein levels are represented by a PSTAIR loading control. (C) The Sre1 protein is cleaved in response to alkaline
pH. The eGFP-RIM101 allele was expressed in the WT, rim20Δ mutant, and two independent sre1Δ mutant strains (sre1Δ #1 and sre1Δ #2). The untagged WT
strain and the eGFP-Rim101-expressing strains were incubated in YPD medium pH 4 or pH 8 for 60 min. Rim101 processing was assessed using a GFP-trap
pulldown and Western blotting using an anti-GFP antibody. Protein levels were normalized prior to loading. (D) The indicated strains (the same as in panel C)
were incubated in synthetic complete medium buffered to pH 4 or pH 8 for 60 min. Rim101 localization was assessed by epifluorescence microscopy, and
alkaline-induced nuclear localization was compared to the eGFP-Rim101 positive control. White scale bars indicate 5 �m.
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we demonstrated by transmission electron microscopy that the rim101Δ mutant has an
aberrant, thick, and disorganized cell wall in comparison to wild-type cells (36). We
probed the rim101Δ and sre1Δ mutant strains with calcofluor white (CFW) and wheat
germ agglutinin (WGA) to assess total and exposed levels of chitin, respectively. In both
mutant strains, we noted similar increases in cell wall chitin levels as measured by CFW
staining. However, the level of exposed chitin (WGA) was increased only in the rim101�

strain. The intensity of the WGA fluorescence was quantified by measuring brightness
intensity (Fiji) in photomicrographs (Fig. 3A) as well as by flow cytometry (Fig. S2). The
observed increase in total chitin levels can be a nonspecific response to cell stress (40).
However, increased chitin exposure, as assessed by intensity of WGA staining, has been
previously demonstrated to correlate with the degree of macrophage activation in vitro
(36, 41). Together, these cell wall analyses suggest that the Rim pathway and sterol
homeostasis pathway induce distinct microbial physiological responses to host-like
conditions. Specifically, the Sre1-mediated response to host stress does not include
increased exposure of chitin.

To further define the extent to which these cell wall epitopes may affect virulence,
we assessed macrophage interactions with the sre1Δ mutant compared to the rim101Δ
mutant strain. Macrophages are among the first immune cells encountered by this
pathogen when infecting its host in the human lung. We therefore quantified fungal
survival after coculturing stimulated J774A.1 murine macrophage-like cells with the
wild-type, rim101Δ, and sre1Δ strains. Following coincubation with macrophages, the
rim101Δ mutant strain displayed increased survival compared to wild type, as has been
shown previously (37) (Fig. 3B). The sre1Δ mutant strain displayed a moderate, repro-
ducible reduction in viability in the presence of macrophages compared to the wild-
type strain. This result was consistent with the previously reported attenuated virulence
of the sre1Δ mutant strain in animal models of infection (25, 38). The significantly
different patterns of macrophage interaction of the sre1Δ and rim101Δ mutant strains
further suggest that distinct downstream cellular processes are controlled by these
alkaline-responsive pathways (Fig. 3B).

Ergosterol biosynthesis is required for growth at alkaline pH in C. neoformans
and other fungal pathogens. Our data support that the Rim and sterol homeostasis
pathways are independent cell signaling pathways that each mediate adaptive re-
sponses to alkaline stress. Given the established role of fungal Sre1 orthologs in the
regulation of membrane sterol content, we hypothesized that alterations in minor
membrane lipids, especially ergosterol, might be involved in the adaptive response to
alkaline pH. Previous work in C. neoformans sterol homeostasis documented decreased
ergosterol levels in the sre1Δ mutant strain (22, 25). The sre1Δ alkaline pH sensitivity
was rescued by the addition of exogenous ergosterol to the growth medium in a
dose-dependent manner (Fig. 4A). Importantly, addition of exogenous sterols did not
affect the pH of the growth medium. This observation is similar to prior investigations
showing growth rescue of various S. cerevisiae ergosterol biosynthesis mutants by
supplementation with exogenous ergosterol (42). These data suggest that intact er-
gosterol induction and homeostasis are specifically required for fungal adaptation to
alkaline pH.

To further explore the role of ergosterol biosynthesis in the alkaline pH response, we
tested three C. neoformans ergosterol-related mutants for growth at pH 8, and all
shared an alkaline pH growth defect (Fig. 4B). Many steps in ergosterol biosynthesis are
essential for growth under routine conditions, limiting the availability of ERG gene
mutants. The nonessential ERG4 and ERG6 genes encode terminal enzymes in the
ergosterol biosynthesis pathway (22, 43). Compared to wild type, the erg4Δ and erg6Δ
mutants displayed a specific growth defect at alkaline pH (Fig. 4B and C) (15). Similarly,
the CNAG_00490 locus encodes a putative acetyl coenzyme A (acetyl-CoA) acetyltrans-
ferase, as does the ERG10 (CNAG_02918) gene. The loss-of-function cnag_00490�

mutant also displays alkaline pH sensitivity (Fig. 4B). The pH sensitivity of the
CNAG_00490 mutant as well as the predictive function of its gene product suggests that

Brown et al. ®

May/June 2020 Volume 11 Issue 3 e00719-20 mbio.asm.org 6

https://mbio.asm.org


FIG 3 sre1Δ and rim101Δ mutant strains have varied changes in cell wall chitin exposure and interactions
with host immune cells. (A) Staining of rim101Δ, sre1Δ, and wild-type cells with calcofluor white (CFW)
and wheat germ agglutinin (WGA). Cells were incubated in CO2-independent medium for 18 h at 37°C.
Cells were stained with FITC-conjugated WGA and CFW and incubated in the dark for 35 min and 10 min,
respectively. Mean fluorescence intensity was quantified for each strain and each condition. Two-way
ANOVA and Tukey’s multiple-comparison test were run to determine statistical significance. White scale
bars indicate 5 �m. ****, P value � 0.0001. DIC, differential inference contrast. (B) When grown in the
presence of J774A.1 macrophages, the rim101Δ mutant strain can survive significantly better than both
the wild-type and the sre1Δ mutant strain. Indicated strains were coincubated with macrophages for 24
h, and survival was determined by quantitative cultures. One-way ANOVA and Tukey’s multiple-
comparison tests were run to assess statistical significance between fungal cell survival percentages. Six
biological replicates of each strain were analyzed. **, P value � 0.003; ***, P value � 0.0002.
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it might participate in the conversion of acetyl-CoA to squalene, an early step in sterol
synthesis.

Ergosterol is a major component of most fungal membranes, including those of
distantly related fungal pathogens in the ascomycete phylum. To further explore the

FIG 4 Altered ergosterol content renders strains sensitive to alkaline pH. (A) The reduced growth rate of the sre1Δ
mutant strain in liquid growth medium at pH 8 can be rescued through the addition of exogenous ergosterol in
a dose-dependent manner. Growth rate of indicated strains was assessed by changes in OD595 in biological
triplicate every 10 min for 42 h at 30°C. Ergosterol was added as indicated. One-way ANOVA and Dunnett’s
multiple-comparison test were run on the last time point under each condition compared to the pH 8-alone
condition to determine statistical significance. **, P value � 0.003; ***, P value � 0.0005; ns, not significant. (B) Other
sterol-related mutants exhibit alkaline pH sensitivity. Two deletion mutants related to ergosterol biosynthesis in C.
neoformans (erg4� and cnag_00490Δ) display a pH sensitivity when grown on pH 8 growth medium. Indicated
strains were serially diluted onto YPD medium and YPD-150 mM HEPES pH 8. Growth was compared to WT and
assessed after 3 days. (C) erg6Δ C. neoformans mutant also exhibits alkaline pH sensitivity when grown on pH 8
medium. Indicated strains were serially diluted onto YPD medium and YPD-150 mM HEPES pH 8. Growth was
compared to WT and reconstituted strains and assessed after 3 days. (D) Candida species ergosterol mutants reveal
similar pH-sensitive phenotypes. C. albicans and C. lusitaniae wild-type strains and strains with mutations in various
components of ergosterol biosynthesis were serially diluted onto YPD medium and YPD-150 mM HEPES pH 8 and
8.5 as well as YES medium with 7 mM CoCl2. Growth was compared to WT and assessed after 2 days.
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association between sterol homeostasis and alkaline pH response, we tested alkaline
pH survival for ergosterol biosynthesis mutants in two Candida species, C. albicans and
C. lusitaniae (Fig. 4D). The homozygous diploid C. albicans erg6/erg6 and erg24/erg24
mutants displayed severe growth defects at high pH that were not evident under more
acidic conditions (Fig. 4D). Similarly, the haploid C. lusitaniae erg6 mutant had impaired
growth compared to wild type under alkaline conditions (Fig. 4D). These results suggest
a conserved requirement for efficient sterol maintenance in the adaptation to alkaline
pH among highly divergent fungal species.

Sre1 regulates membrane-associated transcripts under alkaline growth condi-
tions. The C. neoformans SRE1-dependent transcriptome has been defined in the
context of the cellular response to low oxygen (21, 22, 38). These prior studies revealed
that Sre1 is required for the induction of genes involved in ergosterol homeostasis in
an oxygen-dependent manner. However, given the novel role for Sre1 pathway acti-
vation at alkaline pH, we defined the pH-responsive Sre1-regulated transcriptional
response. Comparison of the transcriptomes of the sre1Δ mutant and wild type after 1.5
h of growth in alkaline pH revealed 2,655 transcripts that were differentially regulated
in a statistically significant manner (adjusted P value of �0.05) (Fig. S3A and Table S1).
This represents approximately one-quarter of the C. neoformans genome, indicating
that Sre1 has a major impact on the cell in response to pH stress. Similar to the
transcriptome studies in hypoxia, transcript abundance of the majority of the ERG
genes (13/18) and the STP1 activating protease was differentially regulated at alkaline
pH (Fig. 5A and B). The stp1Δ mutant strain displays a pH-sensitive mutant phenotype
similar to the sre1Δ mutant strain (15). Importantly, ERG3 transcript levels had the
highest relative fold change in the sre1Δ mutant at high pH compared to wild type
(Fig. 5A and B). ERG3 encodes a component of the ergosterol biosynthesis pathway and
displays similar Sre1-dependent expression under low-oxygen conditions (22).

Due to the large number of differentially expressed transcripts identified in this
analysis, we performed a modified Gene Ontology (GO)-term analysis using FungiDB on
genes with a 2-fold or greater change in transcript abundance in the sre1Δ mutant
compared to wild type (44). Genes repressed in the sre1Δ mutant at high pH are
enriched for biological processes such as aldehyde synthesis, cellular respiration/
oxidoreduction, membrane composition, phosphorylation regulation, and transmem-
brane transport. Genes that are induced in this mutant background under alkaline
conditions are involved in cellular respiration/oxidoreduction, membrane composition,
sulfur metabolism, and transmembrane transport (Fig. 5C and Table S1). Interestingly,
although some of these GO terms are shared with the previously published SRE1
transcriptome under 3% oxygen conditions, the majority of the Sre1-dependent tran-
scripts differ between the two experimental inducing conditions: hypoxia versus alka-
line pH (22) (Fig. S4). Using the same fold change values to compare these transcript
data sets, only nine genes are induced under both conditions, the majority of which are
related to ergosterol biosynthesis: SRE1, ERG3, ERG11, ERG6, ERG4, and ERG13 (Fig. S4).
This transcriptome analysis supports the central role for ergosterol biosynthesis genes
as potential Sre1-dependent effectors of both hypoxia and the response to alkaline pH.
We also documented that different inducing conditions mediate distinct Sre1-
dependent transcriptional responses.

We were also able to define groups of genes in the wild-type strain that are either
induced or repressed following the shift from low to high pH. These groups include a
significant portion of membrane-associated transcripts, including integral membrane
components, composition regulators, and membrane transporters (Fig. S3C and D and
Table S1). Transcripts with increased abundance in response to alkaline pH include
many of the known Rim pathway regulators (RIM101 and RIM23) and pathway outputs
(ENA1, CIG1, and SKN1) (Fig. S3C and Table S1). Consistent with prior reports of the
involvement of Sre1 in iron homeostasis (21, 45), we also identified an iron transporter
(CNAG_00815), suggesting a conserved role for iron regulation to adapt to changes in
extracellular pH (Table S1). Furthermore, many genes involved in membrane compo-
sition, glucose/complex carbohydrate metabolism, and regulation of protein phosphor-
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ylation were induced under alkaline conditions (Fig. S3C). Complex carbohydrates are
major components of the fungal cell wall, supporting previous findings that the
Rim-mediated pH response is linked to the reorganization of the cell wall (36). GO-term
analysis of transcripts with reduced abundance at high pH revealed genes involved in
membrane transport, potentially in an effort to regulate import of extracellular ions into
the cell (Fig. S3D). This analysis revealed no clear repression of membrane composition
transcripts at high pH (Fig. S3D and Table S1).

pH affects efficacy of membrane-targeting antifungals. Given our observation of
a correlation between fungal sterols and growth at alkaline pH, we tested the pH-
dependent efficacy of antifungal agents targeting different aspects of membrane
ergosterol homeostasis. Amphotericin B (AMB) is a polyene antifungal that removes
ergosterol from fungal membranes (46). We observed a dramatic reduction in the AMB
MIC for wild-type C. neoformans cells grown on YPD pH 8 (0.25 �g/ml) compared to
YPD pH 5.5 (2 �g/ml) (Fig. 6A). Furthermore, the time-dependent killing of fungal cells
by AMB increased in a pH-dependent manner, further supporting that this drug has a
higher efficacy under alkaline growth conditions (Fig. 6B). We also found that AMB was
significantly more efficacious against the sre1Δ strain (MIC � 0.00125 �M) than the wild

FIG 5 Transcriptomic analysis of the sre1Δ and wild-type strains in response to alkaline pH. WT and sre1Δ cells were incubated in YPD medium pH 4 or pH
8 for 90 min. This experiment was conducted with six biological replicates for each strain and condition. Total RNA was extracted, mRNA was isolated, and
libraries were prepared and finally sequenced using an Illumina NextSeq 500 sequencer. GO-term analysis was performed using FungiDB. (A) The majority of
the known genes in C. neoformans ergosterol biosynthesis were significantly differentially expressed in the sre1Δ versus wild-type transcriptome at pH 8. ERG
genes that were significantly differentially expressed have an adjusted P value of �0.016 (teal, repressed in the sre1Δ mutant compared to wild type; gray,
induced in the sre1Δ mutant compared to wild type). (B) Volcano plot displaying the significantly regulated transcripts in the sre1Δ versus wild-type
transcriptome at pH 8 (adjusted P value of �0.05) (teal, repressed in the sre1Δ mutant compared to wild type; gray, induced in the sre1Δ mutant compared
to wild type). The full volcano plot (zoomed out) is shown in Fig. S2. (C) GO-term analysis of the sre1Δ versus wild-type differentially expressed genes following
a 90-min shift from YPD pH 4 to YPD pH 8. These transcripts were selected based on a strict cutoff of log2 fold change of �1. Teal, biological processes repressed
in sre1Δ mutant compared to wild type at high pH; gray, biological processes induced in sre1Δ mutant compared to wild type.
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type when the cells were grown at low pH (pH 4 to 6) (Fig. 6B). The significant increase
in AMB activity against this mutant strain with reduced ergosterol content is consistent
with our model that disruption in fungal sterols leads to pH sensitivity. Furthermore, in
a drug disc diffusion assay using pyrifenox, a drug used to treat phytopathogens
through inhibition of ergosterol biosynthesis (47), there was a significantly greater zone
of clearance and inhibition of growth of wild-type C. neoformans cells when grown on
medium buffered to pH 8 compared to pH 5.5 (Fig. 6A).

Fluconazole is an antifungal that inhibits the activity of Erg11, an important com-
ponent of the ergosterol biosynthesis pathway. We hypothesized that removing ergos-
terol from the cell membrane in this way would cause a similar sensitivity to alkaline pH
as we observed with the ergosterol mutant strains in various fungal pathogens (Fig. 4).
In contrast to the major pH-dependent activity of AMB and pyrifenox, we observed a
reproducible but more subtle effect of pH on fluconazole efficacy. The fluconazole MIC
was 2-fold lower for wild type at pH 8 (16 �M) compared to YPD pH 5.5 (32 �M)
(Fig. 6A). The azoles and polyenes have been shown in other organisms, such as
Aspergillus fumigatus, to have variable activity against invasive fungal infections de-
pending on the pH of the growth environment (48). Similar to the findings in A.
fumigatus, these data support that increases in alkalinity allow for higher efficacy of
specific polyenes and azoles against C. neoformans. Our data reveal that reduction of
ergosterol, either genetically or biochemically using known antifungals, leads to re-
duced growth in alkaline environments. Altogether, these results further inform the

FIG 6 Membrane-targeting antifungals are more active at alkaline pH. (A) Assessing MICs and the zones
of inhibition (white values) of membrane-targeting drugs (amphotericin B [AMB], fluconazole [Fluc], and
pyrifenox) on wild-type cells grown on YPD or alkaline (YPD pH 8) medium. Measurements were taken
after 5 days of growth for AMB and pyrifenox and 3 days of growth for Fluc. All plates were incubated
at 30°C. (B) MIC of AMB for wild-type and the sre1Δ mutant C. neoformans strains grown under
increasingly alkaline conditions. MIC was determined after 48 h of growth at 30°C by broth microdilution.
MIC values could not be determined (N/A) for sre1Δ mutant at pH �6 due to the inability of this strain
to grow under these more alkaline conditions.
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connection between fungal plasma membrane homeostasis, the molecular interactions
that drive environment sensing, and the ability for a biologically diverse group of fungi
to grow in increasingly alkaline environments, including their human host.

DISCUSSION
Novel, Rim-independent pH-sensing pathway in C. neoformans. These experi-

ments support a model in which several cell processes and signaling pathways work
together to allow microbial growth under stress conditions such as elevated pH. The
Rim signaling pathway has been identified in multiple fungal species including C.
neoformans, C. albicans, and S. cerevisiae as a major signaling response to increases in
extracellular pH (1–3, 15, 36, 37, 39, 49–53) (Fig. 7). Its primary function appears to be
translating extracellular alkaline pH signals to control adaptive changes in the fungal
cell wall (36) (Fig. 7B). Data presented in this study identified the sterol homeostasis
pathway as a unique mechanism that responds to alkaline pH in a Rim-independent
way (Fig. 7).

The sterol homeostasis pathway has been implicated in the response to alterations
in oxygen availability, membrane ergosterol levels, and various stressors in diverse
fungal species. In the fission yeast, Schizosaccharomyces pombe, the induction of
ergosterol biosynthesis genes by the Sre1 transcription factor and its chaperone
proteins (Scp1 and Ins1) has been well characterized in response to hypoxia (18, 20,
54). C. neoformans, similarly to S. pombe, has a well characterized Sre1-mediated
response to hypoxia that results in the induction of ergosterol biosynthesis genes
to maintain membrane homeostasis (21, 25, 27, 34, 38). However, in C. neoformans,
a basidiomycete-specific protease has been identified that specifically activates Sre1 in
response to hypoxia (Fig. 7A) (22, 38). Elements of this pathway have also been

FIG 7 Model of the Sre1-mediated and Rim-mediated distinct responses to physiological pH. (A) The activating sensor for
the sterol homeostasis pathway is unknown and could be linked to alkaline pH-induced reductions in ergosterol/
membrane alterations or bioavailable iron. In response to alkaline pH, the Sre1 transcription factor is cleaved, activated,
and localized to the nucleus to aid in the transcription of many genes involved in ergosterol biosynthesis and membrane
homeostasis. This cleavage and activation are dependent on both the conserved transmembrane protein Scp1 and the
basidiomycete-specific protease Stp1. (B) The Rim alkaline response pathway is signaled through the transmembrane pH
sensor Rra1 and its interaction with the plasma membrane. At elevated pH levels, Rra1 is endocytosed, allowing it to
interact with the downstream components of the pathway and propagate the signal to the endosomal membrane
complex (ESCRT components, Rim23, and Rim20) and activate the Rim13 protease. This protease cleaves the Rim101
transcription factor, allowing it to translocate to the nucleus and induce the expression of genes involved in cell wall and
surface remodeling.
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identified in the filamentous fungal pathogen A. fumigatus. The Sre1 homolog, SrbA, is
essential for the ability of this pathogen to grow in environments with limited oxygen
or low iron or in the presence of membrane-targeting antifungals (19, 23, 45, 55, 56).
This hypoxic response is required for survival in the infected host in which hypoxic
microenvironments exist, especially in poorly viable tissue such as necrotic tumors and
wounds (57). The dimorphic fungal pathogen Histoplasma capsulatum also contains a
homolog of Sre1 (Srb1) that is essential for the response to hypoxia as well as for
virulence (58–60). Other yeasts such as C. albicans and S. cerevisiae do not contain genes
in their sequenced genomes encoding obvious SREBP homologs. Instead, these species
respond to hypoxic stress through the activation of a different transcription factor,
Upc2, which directs the induction of ergosterol biosynthesis genes (61, 62). However,
the C. albicans Cph2 protein binds SRE1-like elements in the genome, and it may
therefore be a functional ortholog of Sre1 (63).

The identification of a new role for the sterol homeostasis pathway is informative to
better conceptualize and target fungal pathogenesis in general and cryptococcal
pathogenesis in particular for several reasons. First, the sterol pathway in C. neoformans
has a basidiomycete-specific Stp1 protease that is required for cleavage and activation
of Sre1 (22, 25, 38). Genes encoding a similar protease are found in the genomes of
other basidiomycete fungi such as Cryptococcus gattii, Malassezia globosa, and Mucor
circinelloides (44) and not in those of more distantly related fungi or higher eukaryotes.
This fungal specificity and distinction from the mammalian sterol homeostasis pathway
(16, 17, 64) may provide an interesting future target for novel antifungals. Second,
understanding the extracellular cues that activate this pathway may elucidate more
detailed signaling mechanisms controlling sterol homeostasis, potentially revealing
some currently unknown upstream components. Presently, it is not known if a common
signal in hypoxia or alkaline pH initiates Sre1 signaling, or if multiple upstream Sre1
activators are present (Fig. 7A). The C. neoformans sterol homeostasis pathway is lacking
an obvious INSIG homolog as well as a site-1 protease (24). Elucidating the Sre1-
mediated response to alkaline pH through further analysis of our forward genetic
screen may uncover either functional orthologs of these proteins or novel pathway
components that mediate specific stress responses in C. neoformans.

The transcriptional analysis of the sre1Δ mutant strain at high pH provided further
support for the distinct activation of the Sre1 transcription factor in response to
increases in extracellular pH. This type of analysis has been conducted for the C.
neoformans sre1Δ mutant strain previously but with conditions of low and high oxygen
availability (22). When comparing our transcriptomics data to this previously published
microarray analysis, the majority of the transcripts were nonoverlapping, suggesting
independent downstream effectors of Sre1 in response to specific stress (see Fig. S4 in
the supplemental material). Furthermore, there was no overlap between the Sre1-
associated transcriptome at high pH and the previously published Rim101-associated
transcriptome at a similar pH, further supporting the distinct nature of these two pH
response mechanisms and the specificity of the Sre1-mediated response to alkaline pH
stress (data not shown and Fig. 7) (15).

Ergosterol biosynthesis is essential for the ability of fungal pathogens to grow
in an alkaline environment. The generation of ergosterol for overall fungal membrane
integrity has been well studied in the response to extracellular stresses such as hypoxia
and low iron (23, 24, 26, 38, 45, 55, 56). Ergosterol controls the fluidity and structure of
fungal cells (65), and it is needed for the formation of microdomains within the
membrane containing ion pumps and transmembrane proteins necessary for cellular
growth and signaling (12, 13, 65–67). In this study, we have demonstrated that
supplementing pH-sensitive mutant strains with ergosterol can rescue the pH-sensitive
mutant phenotype, suggesting that the sre1Δ mutant pH sensitivity is specifically linked
to its ergosterol deficiency.

Our studies further supported this link between ergosterol and the pH response
through analysis of the effects of alkaline pH on the biosynthesis of ergosterol at the
transcriptional level. In response to a shift in pH, the majority of the known C.
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neoformans ergosterol biosynthesis genes were differentially regulated in the sre1Δ
strain compared to wild type. These results support our model and implicate Sre1-
mediated membrane homeostasis as a direct response to alkaline stress (Fig. 7A).
Furthermore, C. neoformans and C. albicans strains with mutations in known and
predicted ergosterol synthetic processes were unable to grow at alkaline pH. These
results indicate that ergosterol levels and membrane homeostasis are important in the
pH response mechanisms of many fungal species. This broadens these findings from
Sre1-specific regulation of ergosterol affecting pH growth of a basidiomycete fungal
pathogen to general ergosterol maintenance affecting the pH response in many
different fungal pathogens across phyla.

In addition to establishing a link between alkaline pH and membrane sterols, our
data also support emerging data on the interplay between the pH of the external
environment and iron homeostasis (Fig. 7A). In divergent cell types, bioavailable iron
concentrations are often reduced at alkaline pH (68). Our data demonstrate the
induction of an iron transporter transcript in response to alkaline pH (Table S1), further
suggesting that the cell is responding to reduced iron availability under this condition.
In A. fumigatus, supplementing �srbA mutants with exogenous iron rescues growth
defects in low oxygen and during azole treatment (45). Also, in the dimorphic fungal
pathogen H. capsulatum, Sre1 signaling mediates the ability of this fungus to survive
under hypoxic conditions as well as to control iron regulation. Each of these processes
may mediate separate roles in fungal virulence (59, 60) Furthermore, prior investiga-
tions have also demonstrated that the C. neoformans Sre1-mediated stress response is
linked to iron availability (21). Future studies will determine if exogenous iron will fully
or partially suppress the C. neoformans sre1Δ mutant pH growth defects in a similar
manner as exogenous sterols.

Ergosterol-depleting antifungals render cryptococcal cells sensitive to alkaline
pH. Our results have shown not only that genetic manipulation of fungal membrane
homeostasis and ergosterol biosynthesis can increase the sensitivity of C. neoformans
to alkaline pH but also that biochemical and pharmaceutical interventions have the
same effect. We tested relevant antifungals that prevent sterol production or directly
deplete sterols from fungal membranes and demonstrated that the activity of these
drugs improves in neutral/alkaline environments. AMB, an antifungal that directly
disrupts the plasma membrane through sequestration of ergosterol (46), was signifi-
cantly more potent with increases in the pH of the growth environment. Similarly,
fluconazole and pyrifenox, drugs that inhibit the ergosterol biosynthesis pathway (47,
69), were also more effective at alkaline pH. These results reflect similar findings in
Aspergillus species treated with itraconazole and AMB (48). Similar studies using keto-
conazole, AMB, and flucytosine (5-FC) against Candida species showed that the in vitro
drug activity increases as a function of pH (70, 71). Interestingly, there has also been
one study demonstrating increased efficacy of 5-FC against C. neoformans at higher pH
(72). The fact that flucytosine does not directly target the cell membrane, together with
the subtle alterations in fluconazole activity as a function of pH, suggests that multiple
factors control this phenomenon. However, our findings that known ergosterol-
targeting antifungals render diverse fungi more vulnerable to growth environments
with increasing pH further support our leading hypothesis that ergosterol homeostasis
is a central contributor to the alkaline pH response of many fungal pathogens.

Translating basic investigations in the role of pH modulation in human disease into
potential clinical applications has precedent in cancer biology. In mammalian cells,
studies of pH regulation in tumor metastasis demonstrated an association between the
pH within a tumor and the degree of tumor cell apoptosis, survival, and proliferation
(73). The preference among certain malignant cells for more acidic external environ-
ments has prompted the exploration of “buffer therapy,” in which site-directed pH
modulation is used as an adjunctive therapy to limit tumor growth (74). This type of
therapy is also effective against microbial infections that colonize the airways and
intestines, such as Pseudomonas aeruginosa and Escherichia coli, respectively (75–77). If
these interventions can be used against bacterial infections, one might imagine how
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similar pH modulation could be specifically applied to combat the acidic, necrotic core
of many established invasive fungal infections, including cryptococcal lesions (57, 78,
79). Understanding pH-mediated microbial changes in various host microniches will
allow for the development of optimized antifungal activity at the site of infection.

MATERIALS AND METHODS
Strains, media, and growth conditions. Strains generated and/or utilized in this study are shown

in Table 1. Each mutant, reconstituted strain, and fluorescent strain were generated in the C. neoformans
H99 MAT� genetic background and incubated in either yeast-peptone-dextrose medium (YPD) (1% yeast
extract, 2% peptone, and 2% dextrose) or yeast nitrogen base medium (YNB). The pH 4, 5, 5.5, 6, 7, and
8 media were made by adding 150 mM HEPES buffer to YPD or YNB medium, adjusting the pH with
concentrated HCl (for pH �5.5) or NaOH (for pH �5.5), prior to autoclaving. Medium was supplemented
with 20% glucose following autoclaving unless otherwise noted. Cell wall stress phenotypes were
assessed by growth on various stress medium agar plates as previously described (32). Congo red (0.5%)
and NaCl (1.5 M) were added to YPD medium prior to autoclaving. Caffeine (1 mg/ml) and SDS (0.03%)
were filter sterilized and added to YPD medium following autoclaving. Cobalt chloride plates were made
by adding 7 mM (90.89 mg/liter) CoCl2 solution to autoclaved YES medium (glucose, yeast extract,
adenine, uracil, histidine, leucine, lysine, and agar) (80, 81). Capsule induction and analyses were
completed as previously described (32). Briefly, strains were incubated overnight in YPD medium and
then diluted in tissue culture medium (CO2-independent tissue culture medium [TC]; Gibco) for 72 h with
shaking at 37°C and then counterstained with India ink. The microaerophilic conditions were generated
using a sealed chamber (BD GasPak) and two activated packs of GasPak EZ Campy container system
(containing campylobacter) to reduce oxygen levels. YPD plates with serial dilutions of normally grown
strains were placed in the chamber for 24 h at 37°C (microaerophilic) or outside the chamber for 24 h
at 37°C (ambient air).

The ergosterol supplementation and growth curve analysis were conducted in a 96-well plate. Strains
were incubated overnight (�18 h) at 30°C with 150-rpm shaking. Cells were then pelleted and
resuspended in either pH 4 or pH 8 synthetic complete medium buffered with McIlvaine’s buffer (39).
Resuspended strains were added to wells containing the same-pH synthetic complete medium with
either 2 �g/ml or 0.02 �g/ml of ergosterol (Sigma)-Tween 80-ethanol (2-mg/ml stock as previously
described in reference 82). Growth was then measured at an absorbance of 595 nm every 10 min for 42
h with shaking between readings and incubation at 30°C. Control wells containing vehicle alone (ethanol
and Tween) were also measured in order to ensure that any growth rate change detected was due to the
addition of ergosterol. One-way analysis of variance (ANOVA) and Dunnett’s multiple-comparison test
were run on the last time point under each condition compared to the pH 8-alone condition to
determine statistical significance. The pH of the medium in the wells was tested following the experiment
to ensure that the medium remained buffered.

TABLE 1 Strain list

Strain Genotype Reference or source

H99 MAT� 95
TOC35 rim101�::NAT 37
HEB5 sre1::NEO MAT� (#1) 15
HEB6 sre1::NEO MAT� (#2) This study
YSB2493 sre1::NAT MAT� (#3) 34
YSB2494 sre1::NAT MAT� (#4) 34
HEB94 sre1::NEO � His-SRE1(NAT) MAT� This study
HEB71 His-GFP-Sre1 MAT� This study
KS91 His-GFP-Rim101 MAT� 96
TOC106 eGFP-Rim101 MAT� 96
HEB13 eGFP-Rim101 � sre1::NEO MAT� 1 This study
HEB14 eGFP-Rim101 � sre1::NEO MAT� 2 This study
KS118-2 rim20::NAT eGFP-Rim101 MAT� 39
KS33 rim13::NEO MAT� 39
HM.5-F6a erg4�::NAT MAT� 97
HM.21-E12a cnag_00490�::NAT MAT� 97
erg6� erg6::HPH (hygromycin resistance) 43
SC5314 WT Candida albicans 98
4A erg11/ERG11 Candida albicans 99
NJ25-1 erg24/ERG24 Candida albicans 100
NJ51-2 erg24/erg24 Candida albicans 100
KPC1 erg6/ERG6 Candida albicans 99
KPC8 erg6/erg6 Candida albicans 99
ATCC 42720 Candida lusitaniae 101
CL130 erg6 Candida lusitaniae 102
aStrains obtained from the 2015 and 2016 Madhani plates. Designated HM.#-xx for plate number (#) and well
(xx).
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To generate the sre1Δ deletion and eGFP-Rim101 � sre1Δ deletion and tagged deletion constructs,
respectively, we performed the previously described double-joint PCR with split drug resistance marker
method to make targeted gene deletions (15, 83). In brief, we generated the following two PCR products:
5= flanking region of the target locus (1,000 bp) with a truncated drug resistance cassette and the
remainder of the drug resistance cassette with the 3= flanking region of the target locus (1,000 bp). We
then used biolistics to transform these two amplicons into either the wild-type C. neoformans strain (H99)
or the C. neoformans strain that contains endogenously expressed GFP-Rim101 (84). Transformants were
selected for the presence of the construct on YPD medium plus neomycin (NEO). To generate the
fluorescently tagged His-GFP-Sre1 strain, we used In-Fusion (Clontech) to clone the SRE1 gene and
terminator into the HGNAT (pCN19) plasmid, containing the GFP sequence and the nourseothricin (NAT)
resistance marker (85). This plasmid was then biolistically transformed into the H99, wild-type (WT) strain.
To generate the SRE1 reconstituted strain, we cloned the SRE1 gene and terminator into the pCH233
plasmid, containing the nourseothricin (NAT) resistance marker (86). This plasmid was then biolistically
transformed into the sre1Δ (HEB5) strain. The primers used to generate each strain are listed in Table 2.
Primers used to validate all sre1Δ mutants through Southern analysis (data not shown) are also listed in
Table 2. Transformants were selected on YPD medium containing NAT (fluorescent strain) or NAT/NEO
(reconstituted strain). Plasmids used in this study to amplify markers and clone new plasmids are listed
in Table 3.

Microscopy. To analyze GFP-Rim101 localization in the WT, rim20Δ, and sre1Δ backgrounds, strains
were incubated overnight (�18 h) at 30°C with 150-rpm shaking. Cells were then pelleted and
resuspended in either pH 4 or pH 8 synthetic complete medium buffered with McIlvaine’s buffer. Strains
were shaken at 150 rpm and 30°C for 60 min as this has been shown to be sufficient time to observe the
nuclear localization of Rim101 in WT cells (15). Fluorescent images were captured using a Zeiss Axio
Imager A1 fluorescence microscope equipped with an Axio-Cam MRM digital camera. Images were
created using ImageJ software (Fiji) (87).

Protein extraction, immunoprecipitation, and Western blotting. Protein extracts were prepared
in a similar manner to what was previously described (15). Briefly, strains were incubated for �18 h at
30°C with 150-rpm shaking in YPD medium buffered to pH 4 or 5.5 with HEPES and HCl. Cells were then
pelleted and resuspended in YPD medium buffered to pH 8 with HEPES and NaOH. These cells were
incubated for 60 min and immediately pelleted and flash frozen on dry ice. Lysis was performed by bead
beating (0.5 ml of 3-�m glass beads in a Mini-BeadBeater-16 [BioSpec] for 6 cycles of 30 s each with a
1-min ice incubation between bead-beating cycles for cell recovery). Supernatants were washed 3 times
with 0.4 ml of lysis buffer (2	 protease inhibitors [Complete, Mini, EDTA-free; Roche], 1	 phosphatase
inhibitors [PhosStop; Roche], and 1 mM phenylmethanesulfonyl fluoride [PMSF]). The crude pellet was

TABLE 2 Primers used in this study

Primer type and name Primer sequence Primer descriptiona

Deletion constructs
AA4950 AGGATTTGGGCAAATCGAGA SRE1 ko primer 1
AA4951 GTCATAGCTGTTTCCTGGGGAAAGAATCGTCTCATCA SRE1 ko primer 2
AA4952 ACTGGCCGTCGTTTTACAGGCGATGCTATCTATGGGT SRE1 ko primer 3
AA4953 GGAACCAATAAAGCGACCCA SRE1 ko primer 4
M13F GTAAAACGACGGCCAGT NEO cassette flank (F)
M13R CAGGAAACAGCTATGAC NEO cassette flank (R)
AA3935 CCTGAATGAACTGCAGGA NEO internal cassette (R)
AA3934 TCGATGCGATGTTTCGCT NEO internal cassette (F)

Reconstitution constructs
AA5546 CGTCGCACTAGTGAGAGGGAGAAAGCTGGC SRE1 complement (F)
AA5547 CGTCGCACTTTTGGTGGACGGGCATTAATA SRE1 complement (R)

Southern probes
AA4975 GGAACTGGCCAAATACGCAG SRE1 Southern probe (F)
AA4976 TTCCATGGTCCCTATCCATT SRE1 Southern probe (R)

Fluorescent constructs
AA5514 GTACGGATCCACTAGTATGGCCTCATTACAGGACAAGATGC HIS-GFP-SRE1 (F) 1
AA5517 GGCGGCCGTTACTAGTACATCACGTACGTACATACAGC HIS-GFP-SRE1 (R) 2

aAbbreviations: ko, knockout; F, forward; R, reverse.

TABLE 3 Plasmids used in this study

Plasmid Open reading frame Backbone Reference or source

pJAF Neomycin (NEO) resistance cassette 103
pCN19 Histone H3 promoter; GFP pJAF 85
pCH233 Nourseothricin (NAT) resistance cassette 86
pHEB13 Histone H3 promoter; GFP; SRE1 including terminator pCN19 This study
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pelleted through centrifugation at 15,000 rpm, 4°C, for 5 min, and the supernatant (cell lysate) was
transferred (�1 ml) to a new tube. For Western blotting assays assessing the presence of protein by
probing for GFP, 50 �l of lysate was saved as whole lysate and 25 �l of GFP-trap (Chromotek) resin
(equilibrated and resuspended in lysis buffer) was added to the remaining lysate. The lysates
containing GFP-trap were incubated at 4°C for 2 h, rotating. Following incubation, lysates were spun
down (2,500 	 g for 2 min at 4°C) and washed 3 times with detergent-free buffer containing 2	 protease
inhibitors (Complete, Mini, EDTA-free; Roche), 1	 phosphatase inhibitors (PhosStop; Roche), and 1 mM
phenylmethanesulfonyl fluoride (PMSF). GFP-trap resin was resuspended in 4	 NuPage lithium dodecyl
sulfate (LDS) loading buffer and 10	 NuPage reducing agent. Western blotting assays were performed
using a 4% to 12% NuPage BisTris gel. To probe and detect GFP-Rim101 and GFP-Sre1, immunoblots
were incubated with an anti-GFP primary antibody (using a 1/10,000 dilution; Roche), followed by a
secondary anti-mouse peroxidase-conjugated secondary antibody (using a 1/25,000 dilution; Jackson
Laboratory). Proteins were detected by enhanced chemiluminescence (ECL Prime Western blotting
detection reagent; GE Healthcare).

For Western blotting assays assessing the presence of cleaved and uncleaved Sre1 using the
polyclonal anti-Sre1, lysates were prepared in the same way as previously described. Following lysis and
initial centrifugation of the crude pellet, 500 �l of lysates was precleared with 30 �l protein A-agarose
(Sigma) and rotated for 1 h at 4°C. Lysates were incubated with 5 �l of anti-Sre1 polyclonal antibody
(generously given to us by the Espenshade lab [21]) for 1 h. Protein A (60 �l/sample) was washed twice
in lysis buffer and resuspended in equal volumes. Equilibrated protein A was then added to each lysate
and incubated at 4°C for 1 h, rotating. Following incubation, lysates were spun down (2,500 	 g for 2 min
at 4°C) and washed twice with lysis buffer, once with lysis buffer plus 1 M NaCl, and twice with lysis buffer.
Protein A resin was then resuspended in 4	 NuPage lithium dodecyl sulfate (LDS) loading buffer and
10	 NuPage reducing agent. Western blot assays were performed using a 3% to 8% NuPage Tris-acetate
gel, with Tris-acetate running buffer. To probe for and detect Sre1, immunoblots were incubated in
anti-Sre1 primary antibody (using a 1/200 dilution [21]) and then in anti-rabbit peroxidase-conjugated
secondary antibody (using a 1/50,000 dilution; Jackson Laboratory). Proteins were detected in the same
way as described above.

Cell wall staining and flow cytometry. For chitin and exposed chitin detection, cell wall staining
with wheat germ agglutinin (WGA) and calcofluor white (CFW) was assessed as previously described (32).
Briefly, overnight YPD cultures were diluted 1:10 in CO2-independent liquid medium and incubated (�18
h) at 37°C with 150-rpm shaking. Cells were stained with 100 �g/ml of fluorescein isothiocyanate
(FITC)-conjugated WGA and 25 �g/ml CFW and incubated in the dark for 35 min and 10 min, respectively.
Quantitative analysis using ImageJ software was performed as previously described (32, 41).

For flow cytometry analysis, cells were incubated similarly as described above and fixed with 3.7%
formaldehyde for 5 min at room temperature. Cells were then slowly pelleted and washed twice with
phosphate-buffered saline (PBS). Cells were stained with 100 �g/ml FITC-conjugated wheat germ agglu-
tinin (WGA; Molecular Probes). Cells stained with WGA were incubated in the dark at room temperature
for 35 min. Cells were then slowly pelleted and washed twice with PBS. Cells from each strain were
stained and resuspended in PBS at a concentration of 107 cells/ml. Cells at 106/ml were submitted to the
Duke Cancer Institute Flow Cytometry Shared Resource for analysis using a BD FACSCanto II flow
cytometer. Data were analyzed by FlowJo v10.6.1 software (FlowJo, LLC). Unstained cells were used as
negative controls, and positive events were gated in the forward scatter/side scatterplots and repre-
sented as histograms. Geometric means were calculated based on the mean fluorescence intensity (x axis
of histogram) of all cells quantified for each strain (y axis of histogram).

Macrophage survival assay. J774A.1 cells were incubated in a humidified 37°C incubator with 5%
CO2, passaged twice weekly, and kept in tissue culture flasks in 20 to 25 ml of macrophage medium
(Dulbecco’s modified Eagle’s medium [DMEM], heat-inactivated fetal bovine serum [FBS], penicillin-
streptomycin [Gibco 15140-122], and minimal essential medium [MEM] nonessential amino acid solution
[Gibco 11140-050]). Survival of C. neoformans strains within alveolar macrophage-like J744A.1 cells was
assessed by aliquoting 100 �l of 105 viable cells into a 96-well plate, avoiding edges as previously
described (88). The plates were incubated overnight in a 37°C incubator with 5% CO2. Macrophages were
then activated with 10 nM phorbol myristate acetate (PMA) and incubated at 37°C, 5% CO2, for 1 h.
Fungal cells were incubated overnight (�18 h) at 30°C with 150-rpm shaking. Cells were then pelleted,
washed twice in PBS, and resuspended in macrophage medium. Fungal cells (106 cells/ml) were
opsonized with monoclonal antibody (Mab) 18B7 (1 �g/ml) for 1 h at 37°C. Cell concentrations were
verified with quantitative culture. Macrophage medium was removed from the 96-well plate, and 100 �l
of opsonized fungal cells was added to each well. The cocultures were incubated for 1 h at 37°C
incubator with 5% CO2. Each well was then washed 3 times with PBS to remove extracellular yeast. One
hundred microliters of macrophage medium was added to each well and incubated for 24 h at 37°C with
5% CO2. Following incubation, macrophage killing was determined by adding 200 �l sterile distilled
water (dH2O) to each well, incubating at room temperature for 5 min, and assessing by quantitative
cultures. One-way ANOVA and Tukey’s multiple-comparison tests were run to assess statistical signifi-
cance between fungal cell survival percentages. Six biological replicates of each strain were analyzed.

RNA-sequencing preparation and analyses. WT and sre1Δ cells were incubated at 30°C with
150-rpm shaking in YPD medium to mid-logarithmic phase. Approximately 1 	 109 cells from each strain
were pelleted and resuspended in YPD medium buffered to pH 4 or pH 8 and incubated at 30°C for 90
min with 150-rpm shaking. All cells were pelleted, flash frozen on dry ice, and lyophilized overnight. This
experiment was conducted with six biological replicates for the WT strain and the sre1Δ strain under both
pH 4 and pH 8 conditions (24 samples total). RNA was isolated using the Qiagen RNeasy Plant minikit
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with optional on-column DNase digestion (Qiagen, Valencia, CA). RNA quantity and quality were
measured using the Agilent 2100 Bioanalyzer. The NEBNext poly(A) mRNA magnetic isolation module
was used to enrich for mRNA, and the NEBNext Ultra II directional RNA library prep kit for Illumina was
used to prepare libraries (New England Biolabs, Ipswich, MA). Libraries were submitted to the Duke
Sequencing and Genomic Technologies Shared Resource for sequencing on the Illumina NextSeq 500
with 75-bp, single-end reads.

Reads were mapped to the C. neoformans H99 reference genome (obtained from NCBI, accessed July
2019) using STAR alignment software (89). Differential expression analyses were performed in R using an
RNA�Seq Bioconductor workflow (90, 91) followed by the DESeq2 package with a false-discovery rate
(FDR) of 5% (92). Genes were considered statistically differentially expressed if they had an adjusted P
value of �0.05.

A modified Gene Ontology-term (GO-term) analysis using the FungiDB database was performed to
identify genes that were significantly regulated in a given process as previously reported (15, 93). The
differentially expressed genes in each category were determined based on two criteria: P value of �0.05
and base mean value of �20. Further differentiation was made based on the log2 fold change values. For
the sre1Δ versus wild-type data set, we used a log2 fold change of �1. For the positively regulated genes
in the wild-type pH 4 versus pH 8 data set, we used a log2 fold change of 1, and for the negatively
regulated genes in the wild-type data set, we used a log2 fold change of 
3 due to the large amount
of genes in this set. Fold change graphs were generated in GraphPad Prism (GraphPad Prism version 8.00
for Mac, GraphPad Software, San Diego, CA, USA), and Seaborn was used to visualize the DESeq2 results
in a volcano plot (94). A complete list of the transcriptome sequencing (RNA-seq) data sets containing
differentially expressed genes in each strain and associated with the appropriate GO-term category can
be found in Table S1 in the supplemental material.

Antifungal susceptibility tests. For fluconazole and amphotericin B (AMB) Etest assays and py-
rifenox disc diffusion, fungal cells were incubated overnight (�18 h) at 30°C with 150-rpm shaking in
YPD. Cells were normalized to an optical density at 600 nm (OD600) of 0.6 and diluted 1:10 in PBS, and
100 �l was plated to either YPD pH 5.5 or YPD pH 8 agarose plates. For the fluconazole and AMB Etest
assay, an Etest strip (bioMérieux) containing a gradient of drug concentrations was placed on top of the
plated fungal lawn. Plates were then incubated at 30°C for 72 (AMB) and 120 (fluconazole) h. Pyrifenox
susceptibility was assessed by standard disc diffusion assays using 5 �l pyrifenox (Sigma-Aldrich; CAS
number 88283-41-4; final concentration of 1.2 g/ml). Plates were then incubated at 30°C for 72 h. Zones
of inhibition were determined as a surrogate of antifungal activity.

MIC testing of AMB against a pH gradient was performed by broth microdilution. AMB resuspended
in dimethyl sulfoxide (DMSO) was serially diluted in synthetic complete medium buffered to pH 4, 5, 6,
7, or 8 with McIlvaine’s buffer in a 96-well plate with the highest concentration being 3.2 �g/ml. Fungal
cells were incubated overnight (�18 h) at 30°C with 150-rpm shaking in YPD. Cells were then normalized
and diluted in synthetic complete medium buffered to pH 4, 5, 6, 7, or 8 with McIlvaine’s buffer and
added to the corresponding pH well containing AMB. Plates were incubated at 30°C for 48 h, and the MIC
was determined to be the lowest concentration of drug that led to no fungal cell growth.

Data availability. All raw and analyzed RNA-sequencing data have been submitted to the NCBI GEO
database under accession no. GSE147109 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�
GSE147109).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 1 MB.
FIG S2, TIF file, 1 MB.
FIG S3, TIF file, 0.3 MB.
FIG S4, TIF file, 0.7 MB.
TABLE S1, XLSX file, 1.2 MB.
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