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An automatic detection system for distinguishing normal, ictal, and interictal electroencephalogram (EEG) signals is of great help
in clinical practice. This paper presents a three-class classification system based on discrete wavelet transform (DWT) and the
nonlinear sparse extreme learning machine (SELM) for epilepsy and epileptic seizure detection. Three-level lifting DWT using
Daubechies order 4 wavelet is introduced to decompose EEG signals into delta, theta, alpha, and beta subbands. Considering
classification accuracy and computational complexity, the maximum and standard deviation values of each subband are computed
to create an eight-dimensional feature vector. After comparing fivemulticlass SELM strategies, the one-against-one strategywith the
highest accuracy is chosen for the three-class classification system.Theperformance of the designed three-class classification system
is tested with publicly available epilepsy dataset. The results show that the system achieves high enough classification accuracy
by combining the SELM and DWT and reduces training and testing time by decreasing computational complexity and feature
dimension. With excellent classification performance and low computation complexity, this three-class classification system can
be utilized for practical epileptic EEG detection, and it offers great potentials for portable automatic epilepsy and seizure detection
system in the future hardware implementation.

1. Introduction

Epilepsy is one of the most common chronic neurological
disorders and is a conditionwith recurrent evoking of seizure.
Nowadays, about one percent of population in the world is
suffering from epilepsy [1], which costs billions of dollars
annually for direct medical care. Epileptic seizure impacts
the quality of life for patients and their families and even
leads to the death of patients.Therefore, detecting and curing
epilepsy with high efficiency are very necessary. Electroen-
cephalogram (EEG), which shows the temporal and spatial
information of brains’ electrical voltages, is successfully used
to diagnose epilepsy patients [2]. Currently, the seizure
detection relies on “interviewing” patients and inspecting
EEG recordings by highly trained professionals in hospitals
[3, 4]. However, this approach is extremely inaccurate and
inconvenient, and epilepsy patients may show normal states
when their seizures do not occur. Differentiating between
healthy and interictal (seizure-free) EEG signals can be used

to diagnose epilepsy in a clinical setting and, additionally, the
detection of seizure is of importance for instant treatment
[5]. So, automatic classification of healthy, ictal (seizure), and
interictal EEG signals is of great clinical significance.

The machine learning approach is generally used to the
automatic detection of seizure EEG signals. Many machine
learning methods have been used for EEG classification [6–
15]. Artificial neural network (ANN) has been widely applied
to classify EEG signals over the last two decades [8]. However,
the conventional learning algorithms for ANN, such as the
backpropagation (BP) algorithm, are prone to fall into a
local minimum [9]. It is very time-consuming to adjust the
connection weights and biases in ANN, and the learning
speed is too slow to meet the requirements of practical appli-
cations, which has been a major bottleneck for development
[9]. Another popular machine learning method, support
vector machine (SVM), has been successfully used to classify
epileptic EEG signals [10–12]. However, since the training
of SVM involves a quadratic programming (QP) problem,
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the computational complexity of SVM training algorithms is
usually intensive, which is at least quadratic with respect to
the number of training examples. So it is difficult to deal with
large problems using SVM [10]. Extreme learning machine
(ELM) is an emerging machine learning method which was
proposed by Huang et al. [13, 14] for the generalized single
hidden layer feedforward neural networks (SLFN), in which
the hidden node parameters are randomly generated and
the output weights are analytically computed [13, 14]. ELM
is successfully applied to detect seizure EEG in previous
works [7, 9]. However, the initial ELM would consume large
storage space if implemented in hardware in calculating the
inverse of matrix [15, 16]. The sparse ELM (SELM), state-
of-the-art algorithm, was proposed in [16]. Similar to the
conventional SVM, the training of SELM is essentially a
QP problem. The only difference between them is that the
SELM does not have the sum constraint [16]. In the SELM, as
fewer constraints need to be satisfied, and only one Lagrange
variable needs to be updated in each iteration, the training
process would be easier. Consequently, compared with SVM
and ANN, the SELM needs less storage space and takes
shorter training and testing time.With all the advantages, the
SELM provides a more efficient way for hardware implemen-
tation and satisfies the demand for portable seizure detection
application.

The SELM was originally proposed for binary classifica-
tion. Different strategies based on SVM have been proposed
for multiclass classification problems [17–20], such as one-
against-all (OAA), one-against-one (OAO), binary tree (BT),
error-correcting output codes (ECOC), and directed acyclic
graph SVM (DAG-SVM). Inspired by the multiclass SVM,
the binary SELM classifier can also be extended formulticlass
classification by constructing and combining several binary
classifiers together. For achieving good performance in the
three-class classification of epileptic EEG signals, nonlinear
SELMclassifiers with different kernel functions are compared
and kernel parameters are optimized simultaneously in this
work. Eventually, we find that OAO strategy with Gaussian
SELM is the best multiclass classification for epilepsy and
seizure detection.

The feature extraction of EEG signals plays an impor-
tant role in the performance of multiclass classification
[21]. The methods of feature extraction used can be cate-
gorized into four types: time domain, frequency domain,
time-frequency domain, and nonlinear analysis [21, 22].
For nonstationary EEG signals, discrete wavelet transform
(DWT) has been proved to be an efficient tool due to
its ability to resolve the signals in both time and fre-
quency domains [2]. The DWT filters are conventionally
designed based on the convolution operation architecture
[23] which requires many complex operations and large
memory [24]. To overcome these drawbacks, the lifting-
based DWT (LDWT) is adopted and implemented. There
are many types of wavelet transforms such as Haar, Mex-
ican Hat, Gaussian, Morlet, and Daubechies wavelets, of
which Daubechies 4 (db4) wavelet is found to be the most
appropriate for epileptic EEG analysis because its wave
characteristic is similar to the spike wave of the EEG signals
[25].

Selection of the SELM input is important since even the
best classifier will perform poorly if the input is not selected
well [22, 26]. Although some previous feature selection
methods can increase the detection performance [27, 28],
they suffer from the high dimensionality of features, and
the complexity makes hardware implementation difficult
and expensive. In this work, three-level LDWT is used
to decompose the EEG signals into delta, theta, alpha,
and beta subbands; the feature values of each subband are
computed to create multidimensional feature vectors. In
order to obtain maximum accuracy with a low-dimensional
feature vector under certain conditions, a great number
of combinations of different features are investigated.
Finally, the maximum and standard deviation values of
each subband are calculated to create eight-dimensional
feature vectors as the input to the multiclass SELM
classification.

To the best of our knowledge, this work is the first
work to design a three-class classification system based
on LDWT and the multiclass SELM for detecting epilepsy
and seizure. This paper makes two contributions. First of
all, this paper develops a low computational complexity
for feature extraction and multiclass classification that can
detect epilepsy and seizure with high enough classification
accuracy. What is more, this paper provides a good solu-
tion for portable automatic epilepsy and seizure detection
system.

The rest of this paper is organized as follows. Section 2
describes the methods of the multiclass classification sys-
tem, including the SELM algorithm, multiclass classification
strategy, and feature extraction based on LDWT. Section 3
describes the experimental results and discussions of the
proposed epilepsy and seizure detection system. Section 4
concludes the paper.

2. Methods

This section will present the multiclass classification system
for epilepsy and seizure detection. The multiclass classifi-
cation system consists of two phases: training and testing
phases. Figure 1 shows the workflow of the proposed EEG
classification system. EEG signals are decomposed into one
approximation and three detailed coefficients using the three-
level LDWT, and then eight features are extracted by com-
puting the maximum and standard deviation values of the
wavelet coefficients (discussed in detail in what follows). The
eight-dimensional feature vectors are input to the multiclass
SELM. Labelled EEG signals are used for training the system,
and, after training, unlabelled EEG signals can be automat-
ically classified into normal, interictal, or ictal ones by the
multiclass SELM system.

In this section, we first review the SELM algorithm and
present the five strategies of the multiclass SELM and then
introduce the LDWT-based feature extraction.

2.1. Binary SELM. Training binary SELM in classification is
also equivalent to solving the inequality constrained convex
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Figure 1: Workflow of the proposed EEG classification system.

QP problem which can be written as follows [14]:

Minimize: 𝐿𝑑 = 12
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛼𝑖𝛼𝑗𝑡𝑖𝑡𝑗𝑘 (𝑥𝑖, 𝑥𝑗) − 𝑁∑
𝑖=1

𝛼𝑖
Subject to: 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑁,

(1)

whereN is the number of training samples, 𝛼𝑖 is the Lagrange
multiplier, 𝑡𝑖 ∈ {±1} is the associated class label, and C
is a predefined regularization constant. 𝑘(𝑥𝑖, 𝑥𝑗) is kernel
function that is used for nonlinear classification, and the
kernel functions could be, but not limited to, the following
[16].

Gaussian kernel is

𝑘 (𝑥𝑖, 𝑥𝑗) = exp(−𝑥𝑖 − 𝑥𝑗22𝜎2 ) . (2)

Laplacian kernel is

𝑘 (𝑥𝑖, 𝑥𝑗) = exp(−𝑥𝑖 − 𝑥𝑗2𝜎 ) , 𝜎 > 0. (3)

Polynomial kernel is

𝑘 (𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖 ⋅ 𝑥𝑗)𝑚 , 𝑚 ∈ 𝑍+. (4)

The training algorithm of the SELM is summarized as
follows.

Since only one Lagrangemultiplier needs to be updated in
each iteration [16], choosing the updated 𝛼𝑐 is vital.The index𝑐 of the updated 𝛼𝑐 in each iteration is determined according
to 𝑐 = arg min

𝑖=1,...,𝑁
𝐽𝑖, (5)

where 𝐽𝑖 = 𝑔𝑖 ⋅ 𝑑𝑖, 𝑔𝑖 = (𝜕/𝜕𝛼𝑖)𝐿𝑑 denotes the gradient of𝐿𝑑, and 𝑑𝑖 indicates the way in which 𝛼𝑖 should be updated,
expressed as follows:

𝑑𝑖 =
{{{{{{{{{

1, 𝛼𝑖 = 0
−sign (𝑔𝑖) , 0 < 𝛼𝑖 < 𝐶
−1, 𝛼𝑖 = 𝐶.

(6)

The corresponding Lagrange variable 𝛼𝑐 is updated as
follows:

𝛼new
𝑐 = 𝛼old

𝑐 − 𝑔old
𝑐 . (7)

The unconstrained point must be checked to ensure that
it is in the feasible range [0, 𝐶], and the clipped function can
be written as follows:

𝛼new,clip
𝑐 = {{{{{{{{{

0, 𝛼new
𝑐 < 0

𝛼new
𝑐 , 𝛼new

𝑐 ∈ [0, 𝐶]
𝐶, 𝛼new

𝑐 > 𝐶.
(8)

After updating 𝛼𝑐, 𝑔𝑖 (𝑖 = 1, 2, . . . , 𝑁) is updated as
follows:

𝑔new
𝑖 = 𝑔old

𝑖 + 𝑡𝑖 ⋅ 𝑡𝑐 ⋅ 𝑘 (𝑥𝑖, 𝑥𝑐) ⋅ (𝛼new
𝑐 − 𝛼old

𝑐 ) . (9)

Based on the updated values of 𝑔𝑖 and 𝑑𝑖, 𝐽𝑖’s (𝑖 =1, 2, . . . , 𝑁) are updated according to the definition.
Repeat the above iteration until min𝑖=1,...,𝑁 𝐽𝑖 > −𝜀 is

satisfied [16], where 𝜀 is a preset tolerance.
When the training stage is finished and the SELM

parameters are determined, we can classify a new object 𝑥
with

𝑓 (𝑥) = sign(𝑁𝑠∑
𝑖=1

𝛼𝑖𝑡𝑖𝑘 (𝑥, 𝑥𝑖)) , (10)

where𝑁𝑠 is the number of nonzero Lagrangemultipliers.The
pseudocode of the SELM training algorithm is summarized
in Algorithm 1.

2.2. Multiclass SELM Strategy. Even though the SELM is
designed for binary classification, it can be extended for
multiclass classification by constructing and combining sev-
eral binary classifiers together. In the multiclass SELM, we
discuss the five typical strategies, namely, OAA, OAO, BT,
ECOC, and DAG [17–20, 36]. For the three-class problem
(normal, interictal, and ictal EEG signals), we make a brief
introduction of these approaches.

(1) OAA (see [17]). Here three binary SELM classifiers are
trained, in which the ith SELM is trained with all of the
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Figure 2: Three-level wavelet decomposition structure.

Initial step: 𝛼𝑖 = 0, 𝑔𝑖 = −1, 𝐽𝑖 = −1, 𝑑𝑖 = 1 (𝑖 = 1, . . . , 𝑁).
Loop
Step 1: Obtain the minimum of 𝐽𝑖, and the index 𝑐 of the

updated Lagrange multiplier is𝑐 = arg min
𝑖=1,...,𝑁

𝐽𝑖.
Step 2: Update Lagrange multiplier 𝛼𝑐, clip 𝛼𝑐 to [0, 𝐶].
Step 3: Update 𝑔𝑖, 𝑑𝑖, and 𝐽𝑖 (𝑖 = 1, 2, . . . , 𝑁).
End loop (if min𝑖=1,...,𝑁 𝐽𝑖 > −𝜀).
Final step: Save Lagrange multipliers into classifier model.

Algorithm 1: Pseudocode of the binary SELM algorithm.

samples in the ith class with positive (+1) labels and all the
other samples with negative (−1) labels. After training, three
decision functions ∑𝑁𝑖=1 𝛼𝑖1𝑡𝑖1𝑘(𝑥, 𝑥𝑖), ∑𝑁𝑖=1 𝛼𝑖2𝑡𝑖2𝑘(𝑥, 𝑥𝑖), and∑𝑁𝑖=1 𝛼𝑖3𝑡𝑖3𝑘(𝑥, 𝑥𝑖) are used to determine the class of an
unknown sample x as follows:

class of 𝑥 ≡ arg max
𝑗=1,2,3

( 𝑁∑
𝑖=1

𝛼𝑖𝑗𝑡𝑖𝑗𝑘 (𝑥, 𝑥𝑖)) . (11)

(2) OAO (see [17]). Here three binary SELM classifiers are
trained, and each classifier is trained using samples from
a pair of classes. After training, three decision functions
sign(∑𝑁𝑖=1 𝛼𝑖12𝑡𝑖12𝑘(𝑥, 𝑥𝑖)), sign(∑𝑁𝑖=1 𝛼𝑖23𝑡𝑖23𝑘(𝑥, 𝑥𝑖)), and
sign(∑𝑁𝑖=1 𝛼𝑖13𝑡𝑖13𝑘(𝑥, 𝑥𝑖)) are used to determine the class
of an unknown sample 𝑥 by the majority vote strategy. In
the vote strategy, if sign(∑𝑁𝑖=1 𝛼𝑝𝑞𝑖 𝑡𝑝𝑞𝑖 𝑘(𝑥, 𝑥𝑖)) says that 𝑥 is
in the pth class, then the vote for the pth class is added
by one; otherwise the qth is increased by one; then we
predict that 𝑥 is in the class with the largest vote. However,
if each class has the same vote number, we say 𝑥 is in the
class which has the largest absolute function value. For
example, if | ∑𝑁𝑖=1 𝛼𝑖12𝑡𝑖12𝑘(𝑥, 𝑥𝑖)| is the largest one in the
three functions, the final class is determined by the decision
function sign(∑𝑁𝑖=1 𝛼12𝑖 𝑡12𝑖 𝑘(𝑥, 𝑥𝑖)).
(3) DAG (see [17]). Its training phase is the same as the OAO
strategy, and three binary SELM classifiers are trained. DAG
depends on a rooted binary directed acyclic graph to make a

decision. When an unknown sample 𝑥 reaches the leaf node,
the final decision will be made.

(4) ECOC (see [18]). Its training phase is the same as the
OAA strategy. One SELM classifies class 1 from classes 2
and 3, a second SELM classifies 2 from 1 and 3, and a third
SELM classifies 3 from 1 and 2. Samples from classes 1, 2,
and 3 have target codes (1, −1, −1), (−1, 1, −1), and (−1, −1, 1),
respectively. Given an unknown sample, the three SELM
classifiers should be used to determine the actual output code.
The sample is assigned to the class with the closest target code
in the Hamming distance sense.

(5) BT (see [19, 20]). For three classes (1, 2, and 3), we need
two classifiers. For example, the first SELM classifies 3 from
1 and 2, and the second SELM classifies 1 from 2. When an
unknown sample is fed into the BT, class 3 is fully separated
by the first classifier, and class 1 and class 2 can be classified
by the second classifier.

2.3. LDWT-Based Feature Extraction. Figure 2 shows the
three-level wavelet decomposition structure. Because the
main frequencies of epileptic EEG signals are below 32Hz [2],
they are preprocessed by a band-pass filter between 0Hz and
32Hz. The three-level LDWT decomposes each EEG signal
into four subbands, generating the approximation coefficient𝐴3 with the frequency range of 0–4Hz corresponding to the
delta wave and detail coefficients𝐷1 with the frequency range
of 16–32Hz corresponding to the beta wave, 𝐷2 with the
frequency range of 8–16Hz corresponding to the alpha wave,
and𝐷3 with the frequency range of 4–8Hz corresponding to
the theta wave.

The 𝑧-domain transfer functions 𝐺(𝑧) and 𝐻(𝑧) of the
low-pass and high-pass db4 filters are as follows [37]:

𝐺 (𝑧) = ℎ (0) + ℎ (1) 𝑧−1 + ℎ (2) 𝑧−2 + ℎ (3) 𝑧−3,
𝐻 (𝑧) = −ℎ (3) + ℎ (2) 𝑧−1 − ℎ (1) 𝑧−2 + ℎ (0) 𝑧−3, (12)

where ℎ(0) = (1 + √3)/4√2, ℎ(1) = (3 + √3)/4√2, ℎ(2) =(3 − √3)/4√2, and ℎ(3) = (1 − √3)/4√2.
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Using lifting scheme [37], the polyphase matrix of db4
wavelet can be factored into lifting steps as follows:

�̃� (𝑧) = [1 −√30 1 ][[[
1 0√34 + √3 − 24 𝑧−1 1]]]

[1 𝑧0 1][[[[
√3 + 1√2 0

0 √3 − 1√2
]]]]

. (13)

After decomposing the EEG signals into four coefficients,
the feature values of the wavelet coefficients are computed
to create multidimensional feature vectors. In this work, the
maximum, minimum, mean, variance, approximate entropy,
sample entropy, autocorrelation, and standard deviation val-
ues are extracted as features and input to the three-class
classification. However, using all of the features may not
improve the classification accuracy but cause high complexity
if implemented in hardware design. One objective of this
paper aims at reducing the computational complexity while
maintaining certain classification accuracy. In order to obtain
maximum accuracy with a low-dimensional feature vector
under certain conditions, classification accuracy is calculated
with 4 different feature dimensions, that is, 4, 8, 12, and 16.
For each feature dimension, a great number of combina-
tions of different features are investigated. Eventually eight-
dimensional feature vectors by computing maximum and
standard deviation values of the wavelet coefficients are fed
into the three-class SELM classification.

3. Experimental Results and Discussions

In this section, the EEG datasets are summarized, and the
performance of three-class classification is evaluated. The
experiment and simulation are conducted with MATLAB
R2010a on a 3.30GHz Intel(R) Core(TM) i5-4590 processor
with 4GB memory.

3.1. EEGData. TheEEGdataset from theUniversity of Bonn,
Germany, is used to test the performance [38]. The dataset
contains 5 subsets (A–E), which are recorded intracranially
on humans for a presurgical evaluation of focal epilepsies,
each with 100 single-channel EEG segments. A summary of
the 5 subsets is given in Table 1.

Since subsets A, D, and E are used in most of the epilepsy
and seizure detection methods [29–31], these subsets are also
selected to evaluate the proposed three-class classification
system. Subset A contains surface EEG recordings from five
healthy volunteers with their eyes open, subset D includes
intracranial EEG recordings of five patients during seizure-
free intervals from within the epileptogenic zone of the
brain, and subset E is recorded during the seizures of five
epileptic volunteers.The sample frequency of the EEGdataset
is 173.61Hz, and each segment has 4096 points.

In data preprocessing, every segment is divided into 512-
point sliding time epochs with 256-point overlap between
adjacent epochs, the length of each epoch is 2.94 s, and there

is an overlap of 1.47 s between adjacent epochs [10]. Overall,
1600 epochs are constructed from each subset for a total of
4800 epochs over the three subsets A, D, and E. Fourfold
cross-validation is used to evaluate the performance of the
proposed system. In 4-fold cross-validation, 4800 epochs are
partitioned into 4 mutually exclusive parts of approximately
equal size, and each part is called fold. In each time, one fold is
used for testing and the remaining three folds are put together
for training. Then the average performance across all trails is
calculated.

3.2. Performance Evaluation. The performance of the pro-
posedmulticlass SELMsystem can be evaluated by sensitivity,
specificity, and total classification accuracy, which are defined
as follows [10, 39]:

Sensitivity = number of true positive decisions
number of actually positive cases

.
Specificity = number of true negative decisions

number of actually negative cases
.

Total classification accuracy

= number of correct decisions
total number of cases

.

(14)

Table 2 presents the confusion matrix of the three-class
SELM. SAD represents the sum of epochs from set D and
is classified by the proposed system as epochs from set A,
and the other parameters can be interpreted similarly. Table 3
shows the detailed definition of the three-class classification
measures.

3.3. Comparative Study and Results. In order to achieve a
good performance, the tolerance 𝜀 and the parameters of ker-
nel function need to be chosen appropriately. First, we select
the tolerance 𝜀 to be 0.001, which can ensure enough high
accuracy [16]. In this work, Gaussian kernel and polynomial
kernel are selected since they achieve better generalization
performance formost applications [16]. Before comparing the
five multiclass classifications, parameter combination of cost
parameter C and kernel parameter 𝜎2 or𝑚 should be chosen
a priori. Taking OAO, for example, the following method is
used to find the appropriate parameters C and 𝜎2 of Gaussian
SELM. The cost parameter C and kernel parameter 𝜎2 have
different influence on the classification performance of the
Gaussian SELM. 2𝜎2 is tuned with 12 different values, that is,
1, 5, 10, 60, 100, 200, 300, 400, 500, 600, 700, and 800, andC is
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Table 1: Summary of the clinical data.

Set A Set B Set C Set D Set E

Patient state Awake and eyes open
(normal)

Awake and eyes closed
(normal) Seizure-free (interictal) Seizure-free (interictal) Seizure activity (ictal)

Electrode types Surface Surface Intracranial Intracranial Intracranial
Electrode
placement

International 10–20
systems

International 10–20
systems

Opposite to
epileptogenic zone

Within epileptogenic
zone

Within epileptogenic
zone

Number of
segments 100 100 100 100 100

Segment
duration (s) 23.6 23.6 23.6 23.6 23.6

Table 2: Confusion matrix.

Output/desired Set A Set D Set E
Set A SAA SAD SAE
Set D SDA SDD SDE
Set E SEA SED SEE

Table 3: Performance definition.

Sensitivity
(%) Specificity (%) Accuracy (%)

Set A
SAA
SA

(SDD + SDE + SED + SEE)(SD + SE) (SAA + SDD + SEE)
total

Set D
SDD
SD

(SAA + SAE + SEA + SEE)(SA + SE)
Set E

SEE
SE

(SAA + SAD + SDA + SDD)(SA + SD)
tuned with 8 different values, that is, 0.1, 0.5, 1, 2, 5, 10, 20, and
30. Using the three subsets, the accuracy of Gaussian SELM
with different values of C and 2𝜎2 is shown in Figure 3. Our
experiments demonstrate that the classification performance
of the Gaussian SELM is not very sensitive to the parameterC
within a certain range. We select 𝐶 = 5 for the OAO strategy
in this work. However, 2𝜎2 has rather great effect on the
epilepsy and seizure detection. In order to further examine
this classification effect and determine the appropriate value
of 2𝜎2, the sensitivities using the three subsets 2𝜎2 are shown
in Figure 4 when C takes 5. As can be seen from Figure 4,
the sensitivities using the three subsets all tend to be constant
when 2𝜎2 = 500. But they will decrease if 2𝜎2 is too large,
which is not displayed in Figure 4. So 2𝜎2 is set to 500 inOAO
strategy.

For polynomial SELM, parameter m is tried with 7
different values, that is, 1, 2, 3, 4, 5, 10, and 20, and C is also
tuned with 8 different values mentioned before. Using the
same method, the appropriate values of parameters C and m
of polynomial SELM can be obtained.

We only need to determine the appropriate parameter
values for OAO and OAA strategies since the other strategies
only differ in combiningmethods.The used parameter values
of C, 2𝜎2, andm in the five strategies are shown in Table 4.

In order to find out the most efficient three-class clas-
sification strategy, the classification sensitivities of the five
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Figure 3: Accuracy of Gaussian SELMwith different values of𝐶 and2𝜎2.
Table 4: Parameters of Gaussian kernel and polynomial kernel.

Strategy Gaussian kernel Polynomial kernel
C 2𝜎2 C m

BT 5 500 10 4
OAO 5 500 10 4
OAA 5 600 10 3
DAG 5 500 10 4
ECOC 5 600 10 3

mentioned strategies are compared. Moreover, it should
be noted that three structures can be used in three-class
classification problem in DAG and BT strategies. Figures 5
and 6 show the DAG and BT structures, respectively. In this
work, the three-class SELM yields the classification accuracy
of 96.9%, 97.2%, and 97.1% using the structures in Figures
5(a), 5(b), and 5(c), respectively, while those values are 96.7%,
96.1%, and 96.6% using the structures in Figures 6(a), 6(b),
and 6(c), respectively. Therefore, the structures in Figures
5(b) and 6(a) are selected to compare with other strategies.
Tables 5 and 6 show the sensitivities of all the five strategies
using Gaussian SELM and polynomial SELM, respectively.
It can be found that OAO strategy with Gaussian SELM
achieves the highest sensitivity.Therefore, OAO strategy with
Gaussian SELM is chosen to study the performance of the
multiclass classification in what follows.
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Figure 4: Sensitivities using the three subsets versus 2𝜎2.
Table 5: Sensitivities of various multiclass classification strategies
using Gaussian SELM.

BT (%) OAO (%) OAA (%) DAG (%) ECOC (%)
Set A 98.8 100 98.0 98.8 96.0
Set D 93.8 96.3 94.5 94.9 93.7
Set E 97.5 99.0 97.5 98.0 96.2

Table 6: Sensitivities of various multiclass classification strategies
using polynomial SELM.

BT (%) OAO (%) OAA (%) DAG (%) ECOC (%)
Set A 97.5 99.2 97.5 98.5 96.0
Set D 93.2 96.0 94.0 95.0 92.9
Set E 99.5 98.0 98.6 97.5 96.1

Once the OAO strategy with Gaussian SELM has been
selected, specificity and total classification accuracy are also
calculated to further evaluate the three-class classification.
The sensitivity, specificity, and total classification accuracy
are given in Table 7. In order to compare the performance
between Gaussian SELM and Gaussian SVM, LIBSVM is
used for training and testing the Gaussian SVM. Table 8
shows the comparison of Gaussian SELM and Gaussian SVM
in classification accuracy, training time, and testing time with
the same features and sample data. As can be seen from
Table 8, the training and testing time spent by SELM is much
shorter than that spent by SVM.

3.4. Comparison and Discussion. In order to further explore
the significance of the proposed three-class classification, this
section provides the comparisons of our approach with other
reported methods and discusses the results of the compar-
isons. Table 9 summarizes the performance comparison of

Table 7: Results of the OAO three-class classification system using
subsets A, D, and E.

Sensitivity (%) Specificity (%) Accuracy (%)
Set A 100 99.0 98.4
Set D 96.3 99.6
Set E 99.0 99.0

Table 8: Comparison of SELM and SVM.

Classification
method Accuracy (%) Training time

(s)
Testing time

(s)
SVM 96.8 1.315 0.051
SELM 98.4 0.592 0.032

this work with previous works including binary classification
and multiclass classification for epileptic EEG detection. As
can be seen from Table 9, a combination of DWT and ELM
has been used for binary classification between ictal and
interictal EEG signals [22]. However, the feature extraction
and classifier in [22] have high complexity if implemented
in hardware. This work is the first work to implement the
multiclass SELM based on LDWT for epilepsy and seizure
detection. As observed from Table 9, this work has the
highest accuracy for three-class classification except the one
in [30], but it requires easier training process and less storage
space than the latter. In addition, its feature extraction has
the lowest computational complexity in all the systems in
Table 9. Therefore the proposed three-class classification can
be successfully used in hardware implementation for portable
automatic epilepsy and seizure detection system.

In order to compare this work with [32, 33], the five
subsets (A–E) are classified into three categories. The EEG
signals from sets A and B are labelled as the healthy class, the
signals from sets C and D are grouped as the interictal class,
and the signals from set E are labelled as the seizure class.
The performance of the proposed method is also verified
using the three categories of EEG signals. The sensitivities
of the signals from subsets (A, B), (C, D), and E are 98.1%,
96.3%, and 98.4%, respectively. Table 10 summarizes the
accuracy comparison between the proposed method and [32,
33] using subsets (A, B), (C, D), and E. As we know, ANN
used in [32, 33] requires a more extensive training process
and complicated design procedure. As shown in Table 10,
the proposed system achieves higher accuracy than [32] and
similar accuracy to [33] but uses fewer features than [33].

Although the Bonn datasets have been used by many
studies to test their EEG analysis algorithms, they have
some limitations, one of which is that the Bonn datasets
about epilepsy patients are obtained by using intracranial
electrodes [27]. Considering that the intracranial recordings
is not always available in the clinic [27, 32], the open CHB-
MIT scalp EEG database [40] is also used to verify the
effectiveness of classification algorithms in some studies. As
is known, the CHB-MIT scalp EEG database is collected
from epilepsy patients and therefore only includes the seizure
class and the seizure-free class. But there is no open scalp
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Figure 5: Three DAG structures generated for the three-class problem.
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Figure 6: Three BT structures generated for the three-class problem.

EEG database which includes the above three classes and
gets widely used. Considering that the proposed three-class
classifier is composed of binary classifiers, the CHB-MIT
database is also chosen to verify the effectiveness of the SELM
for scalp EEG signals, inwhichChannels FP1–F7 covering the
frontal region of the brain are selected. Table 11 summarizes
the comparison between the binary SELM classifier and the
existing literature using the CHB-MIT scalp EEG database.
As can be seen from Table 11, the sensitivity and specificity of
the binary SELM classifier are 81.1% and 98.3%, respectively.
The classifiers in [34, 35] require more extensive training
and complicated design than SELM if implemented in
hardware.

From the experiments and discussions, with the advan-
tages of high enough classification performance, low com-
plexity, and easy training process, the proposed three-class
classification system exhibits excellent practical value espe-
cially in the future hardware implementation for portable
automatic epilepsy and seizure detection system.

4. Conclusion

Automatic EEG detection system is of great significance for
epilepsy diagnosis. A three-class classification system based
on LDWT and the SELM is designed to detect epilepsy
and seizure for the first time. A lifting-based db4 wavelet
transform is introduced to speed up the computation of
feature extraction. After optimizing the parameters of Gaus-
sian kernel and polynomial kernel, the performances of
the five multiclass SELM strategies are compared, and the
majority voting-based OAO strategy with Gaussian SELM is
chosen for the three-class classification because of its highest
accuracy. The three-class classification system is tested using
the publicly available epilepsy dataset including normal,
seizure activity, and seizure-free EEG signals. Simulation
results show that the designed system achieves high enough
classification accuracy by combining LDWT and the SELM.
In addition, this system reduces training and testing time by
decreasing computational complexity and feature dimension.
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Table 9: Comparison with previous works.

Authors (year) Classifier Feature extraction Classes Subsets Accuracy (%)
Tang and Durand [10]
(2012) SVM Filter bank, Teager energy, power, Lempel–Ziv

complexity 2 (A, D), E 98.72

Song et al. [22] (2016) Initial ELM DWT, Mahalanobis distance, sample entropy 2 D, E 97.53
Güler et al. [29] (2005) ANN Lyapunov exponents 3 A, D, E 96.79

Liang et al. [30] (2010) SVM Principal component analysis, approximate entropy,
power 3 A, D, E 98.67

Murugavel and
Ramakrishnan [8] (2016) SVM DWT, largest Lyapunov exponent, approximate

entropy 3 A, D, E 96

Riaz et al. [31] (2016) SVM Empirical mode decomposition, temporal, spectral
features 3 A, D, E 85

This work SELM LDWT, maximum, standard deviation 3 A, D, E 98.4

Table 10: Comparison with previous works using subsets (A, B), (C,
D), and E.

Authors (year) Methods Number of
features

Accuracy
(%)

Alam and
Bhuiyan [32]
(2013)

EMD, higher order
moments, and ANN 3 80

Tzallas et al. [33]
(2007)

Fraction energy and
ANN 40 97.72

This work
LDWT, maximum,

standard deviation, and
SELM

8 97.6

Table 11: Comparison with previous works using CHB-MIT scalp
EEG.

Authors (year) Methods Sensitivity
(%)

Specificity
(%)

Samiee et al.
[34] (2015)

DWT, 2D mapping and
textural features, and

SVM
70.19 97.74

Samiee et al.
[35] (2016)

Sparse RDSTFT and
LGBP, Logistic

regression, random
forest, and SVM

70.4 99.1

This work
LDWT, maximum,

standard deviation, and
SELM

81.1 98.3

It is a valuable system for future hardware implementation of
automatic multiclass EEG classification.
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