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Abstract
Various mixture modeling approaches have been proposed to identify within-subjects differences in the psychological processes
underlying responses to psychometric tests. Although valuable, the existing mixture models are associated with at least one of the
following three challenges: (1) A parametric distribution is assumed for the response times that—if violated—may bias the
results; (2) the response processes are assumed to result in equal variances (homoscedasticity) in the response times, whereas
some processes may produce more variability than others (heteroscedasticity); and (3) the different response processes are
modeled as independent latent variables, whereas they may be related. Although each of these challenges has been addressed
separately, in practice theymay occur simultaneously. Therefore, we propose a heteroscedastic hiddenMarkovmixture model for
responses and categorized response times that addresses all the challenges above in a single model. In a simulation study, we
demonstrated that the model is associated with acceptable parameter recovery and acceptable resolution to distinguish between
various special cases. In addition, the model was applied to the responses and response times of the WAIS-IV block design
subtest, to demonstrate its use in practice.
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In psychological and educational measurement of constructs
and abilities, within-subjects differences may exist in the psy-
chological processes that resulted in the responses to the items
of the test. For instance, respondents may resort to fast guess-
ing on some of the items of an educational measurement test
but use a regular response process on the other items
(Schnipke & Scrams, 1997); respondents may alternate be-
tween memory retrieval and actual calculation on the items
of an arithmetic test (Grabner et al., 2009); or they may use
trial and error on some items of a spatial puzzle but use an
analytical strategy on others (Goldstein & Scheerer, 1941).

The objective of this article is to improve on existing sta-
tistical methods to detect these within-subjects differences in
response processes. In psychological and educational mea-
surement, the dominant source of information are the item

responses themselves, which indicate the accuracy of the un-
derlying response process. In this article, we will additionally
focus on the item response times as a valuable additional
source of information concerning the response process as they
indicate the amount of time it took for the response processes
to be executed (Luce, 1986). That is, everything else being
equal, a systematic difference in response time suggests a
difference in the underlying response process.

Various psychometric modeling approaches based on mix-
ture modeling have been proposed that—in addition to the
item responses—use the response times to identify within-
subjects differences in response processes (Molenaar,
Oberski, Vermunt, & De Boeck, 2016; Schnipke & Scrams,
1997; Wang & Xu, 2015; Wang, Xu, & Shang, 2018).
However, although valuable, the existing mixture models are
associated with at least one of the following three challenges:
(1) A parametric distribution is assumed for the response times
that—if violated—may bias the results; (2) the response pro-
cesses are assumed to resul t in equal var iances
(homoscedasticity) in the response times, whereas some pro-
cesses may produce more variabil i ty than others
(heteroscedasticity; e.g., fast guessing is commonly associated
with less variance than the regular response process); and (3)
the different response processes are modeled as independent
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latent variables, whereas they may be related (e.g., after a
guess, a subject may be more likely to guess on the next item).

Challenges 1, 2, and 3 have all been studied separately.
That is, Challenge 1 has been addressed by Molenaar,
Bolsinova, and Vermunt (2018), who proposed a mixture
modeling approach based on the categorized response times
to avoid assumptions about the specific parametric shape of
the response time distribution. The approach was demonstrat-
ed to perform better than a parametric approach based on the
log-normal response time distribution if the observed response
time distribution departs from log-normality. In addition,
Challenge 2 has been addressed by Wang and Xu (2015)
and Wang et al. (2018), who proposed a model for two re-
sponse processes, fast guessing and a regular solution process,
in which the processes were heteroscedastic, that is, associated
with differences in the underlying response time variance.
Finally, Challenge 3 has been addressed by Molenaar et al.
(2016), who modeled the possible relation between the re-
sponse processes underlying two subsequent items using a
time homogeneous hidden Markov process of order one.

Although the three challenges above have been ad-
dressed separately, in practice they may occur simulta-
neously. In the present article, we therefore propose a
heteroscedastic hidden Markov mixture model for re-
sponses and categorized response times in which we ex-
plicitly address Challenges 1, 2, and 3 in a joint model.
That is, we combine the categorized response time ap-
proach of Molenaar et al. (2018), the heteroscedastic re-
sponse processes approach by Wang and Xu (2015) and
Wang et al. (2018), and the Markov process approach of
Molenaar et al. (2016) in a single model. The outline is as
follows: First, the full model is derived and tested in a
simulation study to investigate parameter recovery and the
resolution to distinguish between different special cases.
Next, the model is applied to a real dataset to demonstrate
its use in practice.

The general mixture framework

A joint modeling approach

Within traditional item response theory models, it is assumed
either that the item responses to psychometric tests are the
results of a single response process (e.g., an information
accumulation process; see Tuerlinckx & De Boeck, 2005;
van der Maas, Molenaar, Maris, Kievit, & Borsboom, 2011)
or that the response processes are homogeneous (e.g., multiple
processes underlie the scores of an arithmetic test, such as
subtraction and addition, but these processes are homoge-
neous in the sense that, statistically, they are commonly uni-
dimensional). As a result, between-subjects differences in the
accuracy of these response processes can be modeled by

posing a latent ability variable, θp, to underlie the item re-
sponses of respondent p = 1, . . . , N to a test. Similarly,
individual differences in the speed with which these processes
are executed can be captured by posing a latent speed variable,
τp, to underlie the response times to a test.

A joint psychometric model for responses and response
times was proposed by van der Linden (2007). In this mod-
el, commonly referred to as Bthe hierarchical model,^ the
joint density of the responses, xpi, and the response times,
tpi, of respondent p on item i = 1, . . . , n, conditional on θp
and τp is denoted by d(xpi, tpi| θp, τp) = f(xpi, tpi| θp, τp). By
assuming that the responses and response times are inde-
pendent conditional on θp and τp (see, e.g., van der Linden,
2007; van der Linden & Glas, 2010), this conditional den-
sity can be factored into a separate response part, and a
separate response time part, that is,

f xpi; tpi j θp; τp
� � ¼ g xpi j θp

� �� h tpi j τp
� �

; ð1Þ

where g(.) denotes the conditional probability mass func-
tion of the responses, and h(.) denotes the conditional den-
sity function of the response times.

Because psychometric test items commonly differ in the
properties with which they measure the underlying processes,
a model is specified for g(xpi | θp) and h(tpi | τp) in order to
separate item effects and respondent effects on the responses
and response times, respectively (e.g., some items are more
difficulty and some respondents are faster). For instance, the
three-parameter logistic item response theory model is given
by

g xpijθp
� � ¼ P xpi ¼ 1jθp

� �xpi 1−P xpi ¼ 1jθp
� �� �1−xpi ; ð2Þ

with the probability of a correct response given by

P xpi ¼ 1jθp
� � ¼ γi þ 1−γið Þω αiθp þ βi

� �
; ð3Þ

where ω(.) is a logistic or normal ogive function, and γi, αi,
and βi are the item parameters. Specifically, γi is a lower-
asymptote parameter that accounts for correct responses due
to guessing, αi is a discrimination parameter that accounts for
the degree to which the item captures differences in θp, and βi
is an easiness parameter that accounts for the proportion cor-
rect of the item. In Fig. 1 (left) is illustrated, for three example
items, how these parameters affect the probability of a correct
response, P(xpi = 1 | θp) in Eq. 3. Important for the assessment
of between-subjects differences in the latent ability variable is
the concept of Binformation.^ That is, depending on the mea-
surement properties of the item, an item can be more informa-
tive about θp for specific levels on the θp range. Similarly, the
test as a whole does not necessarily provide an equal amount
of information for each level of θp. See Fig. 1 (middle) for the
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item information as a function of θp for the three example
items from Fig. 1 (left). See Fig. 1 (right) for the test informa-
tion as a function of θp for an example test of 25 items.

For the response times, similar approaches exist that sepa-
rate between the latent speed variable, τp, and the measure-
ment properties of the response time variables. For instance,
the log-normal model is given by

h tpijτp
� � ¼ 1

σitpi
φ

ln tpi
� �

− νi−λi � τp
� �
σi

� �
; ð4Þ

where φ(.) is the standard normal distribution function and vi,
λi, and σi are the item parameters. Specifically, νi is an inter-
cept that accounts for the time intensity of the item (i.e., some
items require more time irrespective of the difficulty, because
of, for instance, a large text that has to read), λi is a factor
loading that accounts for the degree with which the item cap-
tures differences in τp, and σi is the standard deviation of the
residual, which contains measurement error and misfit. As for
the responses, the model has implications for the information
about τp in the response times. That is, the information is
constant over the τp range and only depends on λi and σi
(see Mellenbergh, 1994).

A mixture joint modeling approach

The general idea of the mixture approach by Schnipke and
Scrams (1997), Wang and Xu (2015), Wang et al. (2018),
and Molenaar et al. (2016) is to model within-subjects dif-
ferences in response processes by extending the joint mod-
el above to include item-specific latent class variables, ζpi,
with two states c = 0, 1 to underlie the responses and
response times of item i. The two states either correspond
to a discrete difference in two qualitative response process-
es that produce heterogeneity in the data (e.g., memory

retrieval and logical reasoning) or the two states corre-
spond to two statistical states that capture heterogeneity
in the data that is due to discrete differences in multiple
response processes (e.g., multiple solution strategies) or
due to continuous differences in one or more response pro-
cesses (e.g., motivation or fatigue).

If the response processes are indeed heterogeneous, the
measurement properties of θp and τp will be different across
states. Therefore, in the general mixture framework, the joint
conditional density of the responses, xpi, and the response
times, tpi, is a mixture of the joint conditional densities of xpi
and tpi within the two states, that is

d xpi; tpijθp; τp
� � ¼ ∑1

ζpi¼0P ζpi
� �

f c xpi; tpijθp; τp; ζpi
� � ð5Þ

where fc(.) is the joint density function within state ζpi = c, and
P(ζpi) is the state probability. Within each state, the responses
and response times are still assumed to be independent condi-
tional on θp and τp, that is

f c xpi; tpijθp; τp; ζpi
� � ¼ gc xpijθp; ζpi

� �
� hc tpi j τp; ζpi

� �
; ð6Þ

where gc(.) denotes the conditional probability mass function
of the responses in state c and hc(.) denotes the conditional
density function of the response times in state c. In the general
mixture framework, for the within-state response time density,
the log-normal linear model from Eq. 4 is used as follows

hc tpijτp; ζpi ¼ c
� � ¼ 1

σcitpi
φ

ln tpi
� �

− νci−λci � τp
� �
σci

� �
; ð7Þ

where the item parameters are allowed to differ across
states as indicated by index c. For the responses, the

Fig. 1 (Left) Probabilities of a correct response as a function of θp, P(Xpi
= 1 | θp), for different parameter configurations. (Middle) The resulting
item information as a function of θp. Solid black line: αi = 1, βi = – 1, γi =

0; dashed black line: αi = 1, βi = 1, γi = 0; gray line: αi = 2, βi = 1, γi = .3.
(Right) Test information as a function of θp for 25 example items (βis are
between – 3 and 3, αis are between 0.5 and 1.5, and γi = 0)
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three-parameter item response theory model from Eq. 3
is used:

gc xpijθp; ζpi ¼ c
� �

¼ P xpi ¼ 1jθp; ζpi ¼ c
� �xpi 1−P xpi ¼ 1jθp; ζpi ¼ c

� �� �1−xpi ;
ð8Þ

with

P xpi ¼ 1jθp; ζpi ¼ c
� � ¼ γci þ 1−γcið Þω αciθpi þ βci

� �
; ð9Þ

where the item parameters are again allowed to differ
across states. The framework given by Eqs. 5, 6, 7, 8,
and 9 is very general, in the sense that it includes many
parameters that are not identified simultaneously and
that are yet difficult to interpret. However, various spe-
cial cases within this general framework have been con-
sidered in the literature. See Table 1 for the exact re-
strictions needed to arrive at these special cases.1

From the table it can be seen that the first model, the hier-
archical model by van der Linden (2007) discussed above,
arises by specifying a log-normal model with λ0i = 1 for the
response times, and a three-parameter model for the responses
in state 0 and leaving state 1 empty. Because this model as-
sumes a single state only, it corresponds to a single-process

model or homogeneous process model that can be used as a
baseline in drawing inferences about within-subjects differ-
ences in response processes in the data. Note that the factor
loadings are constrained to be equal to 1 in the single-state
model and in all other models that include τp, which is an
essentially tau-equivalent factor model (Lord & Novick,
1968). This assumption has been relaxed in the hierarchical
model by, for instance Fox, Klein Entink, and van der Linden
(2007) and Molenaar, Tuerlinckx, and van der Maas (2015).

The next two models in Table 1 are by Schnipke and
Scrams (1997). These models consider response times only.
As can be seen, both models do not include a latent speed
variable as λci = 0 in both states. In the standard mixture
model, the intercept and variance are estimated for each item
in both states. In the common-guessing mixture model, the
intercepts and variances in Class 0 (the guessing class) are
restricted to be equal across items. Although these models
by Schnipke and Scrams are not latent variable models, to
our knowledge, these models have been the first to include a
within-subjects mixture component for response times. In ad-
dition, the idea of common-guessing has been adopted by
Wang and Xu (2015) and Wang et al. (2018), who proposed
a common-guessing latent-variable model for both responses
and response times. As can be seen in Table 1, the response
time model includes a latent speed variable in state 1 (i.e., λ1i
= 1) with item-specific intercepts and residual variances, and a
common intercept and residual variance in state 0, but without
a latent speed variable. In addition, the response model in-
cludes a three-parameter latent-variable model for the re-
sponses in state 1 and a fast-guessing parameter β0i in state
0 without a latent variable. Finally, Molenaar et al. (2016)
proposed a model with a latent speed variable in both states
(i.e., λ0i = 1 and λ1i = 1), in which the item-specific intercepts
in state 1 are equal to the intercepts of state 0 shifted by a

Table 1 Parameter restrictions in the general mixture framework necessary to obtain special cases from the literature

Response Times Responses

Model References c νci λci σci γci αci βci

Hierarchical model (baseline) van der Linden (2007) 0 ν0i 1 σ0i γ0i α0i β0i
1 – – – – – –

Standard mixture model Schnipke and Scrams (1997) 0 ν0i 0 σ0i – – –

1 ν1i 0 σ1i – – –

Common-guessing mixture model Schnipke and Scrams (1997) 0 ν0 0 σ0 – – –

1 ν1i 0 σ1i – – –

Mixture hierarchical model Wang and Xu (2015); Wang et al. (2018) 0 ν0 0 σ0 0 0 β0i
1 ν1i 1 σ1i γci α1i β1i

Independent-states mixture model Molenaar et al. (2016) 0 ν0i 1 σi 0 α0i β0i
1 ν0i+δ1 1 σi 0 α1i β1i

B–^ denotes that this part of the general model is omitted (i.e., for the hierarchical model by van der Linden, 2007, there is no Class 1 in themodel, and for
the models by Schnipke & Scrams, 1997, there is no measurement model for the responses)

1 Note that the restrictions provided in Table 1 result in models equivalent to
the models discussed in the text [i.e., equivalent in terms of the likelihood of
the model. The exact parameterization in the corresponding articles is for some
cases slightly different. For instance, Schnipke and Scrams (1997) estimated
ln(νci) instead of νci, and Wang and Xu (2015) used α1i(θp – β1i) in the three-
parameter model, instead of α1iθp + β1i.
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common scalar, δ1. In addition, the residual standard deviation
is assumed to be equal across states (σci = σi). For the re-
sponses, a two-parameter model is used in both states (γci = 0).

Challenges and a possible solution

The response time distribution

The mixture approaches discussed above are all associated
with one of the following challenges. First, the approaches
all assume a log-normal distribution for the response times
within the states. As has been argued by Vermunt (2011) for
standard mixture models, and demonstrated by Bauer and
Curran (2003) for growth mixture models and by Molenaar
et al. (2018) for the independent states mixture model in
Table 1, violations of the assumed within-states distribution
may result in (1) spurious states—that is, states that are not
actually in the data but appear as a significant source of vari-
ation in the modeling to capture the misfit in the data
distribution—and (2) biased true states—that is, differences
between true states (that are actually in the data) may seem
smaller or larger depending on the source of the misfit in the
data distribution (e.g., positive skew or negative skew, trunca-
tion, etc.).

In principle, this challenge can be solved by specifying a
more appropriate response time distribution within each state.
However, commonly there is no theory about the response
time distribution within each state. In addition, inferring the
within-state response time distribution from the data is diffi-
cult, because only the observed distribution of the response
times is available, which cannot straightforwardly be used to
make inferences about the parametric form of the within-state
distribution as the observed response time distribution will
depart from the within-state distribution by definition.
Kuipers, Visser, and Molenaar (2018) proposed a test on
log-normality of the within-state response time distribution.
However, if the log-normality assumption fails, the above
mixture models are not suitable for the data.

As a solution, Molenaar et al. (2018) proposed to catego-
rize the continuous response times so that the resulting re-
sponse time distribution could be better captured using
category-specific threshold parameters. Specifically,
Molenaar et al. (2018) proposed to replace the log-normal
linear model above by a partial-credit model (Masters,
1982), which is an adjacent-category model for ordered cate-
gories, or any other model for ordered categories (e.g., the
graded response model [Samejima, 1969], which is a cumu-
lative probability model). With respect to the categorization of
the response times, Molenaar et al. (2018) proposed to use an
item-wise categorization procedure using the observed per-
centiles. For five or seven categories, this approach worked
well in terms of both parameter recovery and power.

Dependency between the states

In the general model in Eq. 5, it is assumed that the
latent class variables underlying the items, ζpi, are inde-
pendent. However, various examples show why the ζpi
variables can be dependent. First, if a respondent
guesses on one item, it may be more likely that this
respondent will also guess on the next item. A similar
example includes response strategies in general. That is,
if multiple solution strategies are possible that differ in
their efficiency, using an efficient solution strategy on
one item will probably increase the probability that this
strategy will also be used on the next item. Another
example includes posterror slowing (Rabbitt, 1979),
which refers to the phenomenon that respondents, who
know (or think) that they made an error on a given
item, slow down on the next item resulting in a depen-
dency between subsequent ζpis.

Within the general mixture framework in Eq. 5, Molenaar
et al. (2016) accounted for a possible dependency of the item
specific latent class variables of item i, ζpi, on the item specific
latent class variables of item i – 1, ζp(i–1). That is, in a model
for continuous log-normal response times, the assumption of
independent ζpi was relaxed by introducing a first-order
Markov structure (e.g., MacDonald & Zucchini, 1997) on
ζpi. Molenaar et al. (2016) showed that the presence of a
Markov structure in the data can successfully be detected
using fit indices BIC, CAIC, AIC with a triple penalty
(AIC3), and the sample-size-adjusted BIC (saBIC). The con-
ventional AIC (which uses a double penalty term) was asso-
ciated with an increased false positive rate.

Heteroscedasticity between the states

The categorized response time model and the Markov
structure thus provide a solution to the spurious-state
and independency challenges of the general framework
in Eq. 5. However, contrary to Wang and Xu (2015),
Wang et al. (2018), and Schnipke and Scrams (1997),
both models assume that the within-state response time
variance is homoscedastic (equal across states). In the
Markov mixture model, this assumption is explicit, as
σ0i = σ1i in the model by Molenaar et al. (2016). In the
categorized response time model it is less explicit, since
traditional item response theory models do not have a
variance parameter. However, the same thresholds are
applied in both states to categorize the response times
(since the marginal response time distribution is catego-
rized and not the within-state response time distribution,
because this distribution is unknown). Therefore,
heteroscedasticity across states will not be detected and
will bias the results, as we will demonstrate in the sim-
ulation study below.
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Proposed model

In this article, we thus propose a model that combines the
categorized response time model by Molenaar et al. (2018),
the Markov model by Molenaar et al. (2016), and the
heteroscedastic state model by Wang and Xu (2015), Wang
et al. (2018), and Schnipke and Scrams (1997) into a single

model. First, to be able to accommodate the general model in
Eq. 5 to include a Markov dependence among ζpi, we need to
consider the conditional density of the full vector of responses,
xp = [xp1, . . . , xpn], and the full vector of categorized response
times, tp' = [tp1', . . . , tpn'], where tpi' denotes the categorized
response times, tpi' = 0, 1, . . . , T–1. Next, Eqs. 5 and 6 change
into

d xp; t
0
pjθp; τp

� 	
¼ ∑1

ζp1¼0…∑1
ζpn¼0P ζp1

� �
∏n

i¼2P ζpijζp i−1ð Þ
� 	

∏n
i¼1gc xpijθp; ζpi

� �
hc t

0
pijτp; ζpi

� 	
ð10Þ

where P(ζp1 = 1) = π1 is the initial state parameter, and P(ζpi =
1| ζp(i − 1) = 0) = π1|0 and P(ζpi = 1| ζp(i − 1) = 1) = π1|1 are the
transition parameters. Note that P(ζp1 = 0), P(ζpi = 0| ζp(i −
1) = 0), and P(ζpi = 0| ζp(i − 1) = 1) can be calculated from these
parameters. In addition, we assume homogeneity of the
Markov structure over items. That is, the transition probabil-
ities are invariant over all items, P(ζpi|ζp(i–1)) = P(ζpj|ζp(j–1)) for
all i and all j = 1, . . . , n. This assumption is common in
Markov modeling (e.g., Bacci, Pandolfi, & Pennoni, 2014;
Gudicha, Schmittmann, & Vermunt, 2016; Zucchini,
MacDonald, & Langrock, 2016, p. 15). Besides being com-
mon practice, here, we also assume time homogeneity of the
Markov structure to prevent the model from becoming too
complex. Including a time non-homogeneous Markov struc-
ture would result in two additional parameters for each item
[probability of remaining in a class, P(ζpi = 1 | ζp(i–1) = 1), and

the probability of switching classes, P(ζpi = 1 | ζp(i–1) = 0)]
which makes the model very complex. Given that the model
from Molenaar et al. (2018) already includes four parameters
for each item response variable and T – 1 response time cate-
gory parameters, we did not consider such an extension of the
homogeneous Markov structure into a nonhomogeneous
Markov structure. However, this extension is straightforward
(i.e., in the syntax to fit the model in the Appendix, which will
be explained later, we indicate how to drop the time
homogeneity assumption). In addition, the assumption of time
homogeneity can be statistically tested (see, e.g., Tan &
Yılmaz, 2002).

Next, for the conditional probability function of the cate-
gorized response times, hc(.), we use the partial credit model
subject to heteroscedasticity (Hedeker, Berbaum, &
Mermelstein, 2006), as follows:

hc t
0
pi ¼ tjτp; ζpi ¼ c

� 	
¼ P t

0
pi ¼ tjτp; ζpi ¼ c

� 	
¼

exp ∑t
z¼0

νiz−δc−λiτp
σc


 �

∑T−1
j¼0exp ∑ j

z¼0

νiz−δc−λiτp
σc


 � ;

withδ1;σc > 0;

ð11Þ

where νit denotes the threshold of response time category t
on item i with νi0 arbitrarily set to 0. In Eq. 11, we assume
the intercepts and loadings to be invariant across states but
we model a scale and location difference between the states
using, respectively, δc and σc. That is, if δ0 = 0 for identi-
fication purposes, δ1 accounts for a location shift of the
thresholds in state 1 as compared to the thresholds in state
0. This reflects that the average raw response times are
different between the states. As δ1 > 0, the responses in
Class 1 are on average faster than the responses in Class
0. Parameter σc accounts for a scale difference in state 1 as
compared to state 0, which is due to the raw response times
being more variable in one state than in the other
(heteroscedasticity). Note that in the traditional partial-
credit model with only one state σc = σ is only identified

if two thresholds are fixed (Mehta, Neale, & Flay, 2004).
However, here, if σ0 = 1 for identification purposes, pa-
rameter σ1 is identified and represents the ratio between the
residual standard deviations in the two states. Thus, in the
case of homoscedasticity σ0 = σ1 = 1. In the case of
heteroscedasticity, σ1 > 1, denotes more variability in state
1 and σ1 < 1 denotes more variability in state 0. In the
model for categorized response times in Eq. 11, differences
in variability between items (i.e., differences in σci across i
in the continuous response time model in Eq. 7) are cap-
tured in the thresholds, νi and the factor loadings, λi.
Differences in variability between classes are captured by
σc.

Finally, for the conditional probability mass function
of the responses within each state, gc(xpi| θp, ζpi = c), we
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use Eq. 8 with a two-parameter model for P(xpi = 1 |
θp, ζpi = c), that is,

P xpi ¼ 1jθp; ζpi ¼ c
� � ¼ ω αciθpi þ βci

� �
: ð12Þ

Note that, contrary toWang and Xu (2015) andWang et al.
(2018), we follow Molenaar et al. (2018; Molenaar et al.,
2016) and use a two-parameter model for the responses (see
also Table 1). Our main reason is that we want to operate in a
generalized linear modeling framework that does not include
the three-parameter model as a special case.2 Using a three-
parameter model would increase our model complexity,
resulting in a potentially poorly identified model. Within the
generalized linear modeling framework, we are sure that the

model is identified and can be estimated properly. In addition,
our modeling interest is mainly in detecting possible differ-
ences in item discrimination and item easiness across the dif-
ferent states (suggesting different response processes).
However, extending the present model to a three-parameter
model would be possible in principle

The model given by Eq. 10, with hc(.) given by Eq. 11, g(.)
given by Eq. 8, and P(xpi = 1|θp, ζpi = c) given by Eq. 12,
constitutes the heteroscedastic hidden Markov mixture model.
If we assume a bivariate standard normal distribution for τp
and θp with correlation ρ, and if η denotes the vector of free
parameters in the model (i.e., α0i, α1i, β0i, β1i, and λi for all i,
νit for all i and for t = 1, . . . , T – 1, and δ1, σ1, π1, π0|1, and ρ),
then the resulting full marginal log-likelihood function of the
model is given by

ℓ ηð Þ ¼ ln∫ ∫
∞

−∞
∑
1

ζp1¼0
… ∑

1

ζpn¼0
P ζp1
� �

∏
n

i¼2
P ζpijζp i−1ð Þ
� 	

∏
n

i¼1
gc xpijθp; ζpi
� �

hc t
0

pi
jτp; ζpi


 �
k τp; θp
� �

dθdτ ; ð13Þ

where k(.) is a bivariate standard normal distribution with
correlation ρ.

We focus on five instances of the general model above:

1. Baseline: A baseline model with one state (see Table 1).
2. Heteroscedastic Markov states: The full model with a

Markov structure on the latent class variables and
heteroscedastic states.

3. Homoscedastic Markov states: A model with a Markov
structure on the latent class variables and homoscedastic
states.

4. Heteroscedastic independent states: A model with inde-
pendent latent class variables and heteroscedastic states

5. Homoscedastic independent states: A model with inde-
pendent latent class variables and homoscedastic states

In all models, we use categorized response times. In the
simulation study below, we investigate the viability of the
general model in terms of parameter recovery and the resolu-
tion to distinguish between the different models above in re-
sponses and categorized response time data.

Categorization of response times

The models proposed require categorization of the continuous
response times. Because the results potentially depend on the
exact categorization scheme, categorization should be done

with care. In the partial credit model above, the adjacent cat-
egories logit in the baselinemodel (i.e., δc = 0 and σc = 1 for all
c) is given by

log
hc t

0
pi ¼ tjτp

� 	

hc t0pi ¼ t−1jτp
� 	

8<
:

9=
; ¼ νit−λiτp:

In this equation, the threshold parameter νit is directly in-
fluenced by the cut-off values at which the continuous re-
sponse times are categorized. In principle, this is not a prob-
lem, as the other parameters are relatively unaffected by the
exact choice of the cutoff values. However, this choice does
affect the power to detect differences between states.
Therefore, the cutoff values should be chosen in an optimal
way. Here we propose to categorize the continuous response
times in such a way that the adjacent categories logits show
large, but, constant differences across categories. This will
result in thresholds parameters νit that are equidistant and well
spread over the τp range so that the information about τp in the
categorized response times is approximately constant over τp
(at least in the interval – 3, 3). A possible way to accomplish
this is to choose the cutoff values on basis of equally spaced
values in a symmetrical distribution (e.g., logistic or normal
distribution). Here we use – 2, – 2/3, 2/3, and 2 in a normal
distribution. This corresponds to cumulative probabilities of
.0228, .2525, .7475, and .9773, which are used to categorize
the continuous response times (i.e., at percentiles 2.28, 25.25,
74.75, and 97.73). In Fig. 2, this procedure is illustrated for a
simulated-data example. Specifically, for a single item re-
sponse time variable, the figure contains a histogram of the

2 However, note that it is possible to specify the three-parameter model as a
mixture of a two-parameter model and a guessing model, which is a general-
ized linear model.
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raw response times, a bar plot of the categorized response
times, a plot of the conditional probability of each response
time category, and the information of the categorized response
times across τp. Applying the partial-credit model to data such
as those in Fig. 2 will result in νit estimates that are well spread
out over the τp range (at least in the – 3, 3 range), such that the
information about τp is relatively constant in the range (– 3, 3).
An alternative approach to categorizing the continuous re-
sponse times may be to use equidistant percentiles like 20,
40, 60, and 80; however, as is illustrated in Fig. 3, such an
approach will result in conditional response time category
probabilities (bottom left plot) that are mainly centered around
τp = 0. Applying the partial-credit model to data such as those
in Fig. 3 will result in νit estimates that are close together for a
given item i. As a result, the information about the latent speed
variable, τp, peaks at 0 and decreases relatively fast for values
further away from 0. In the present study, we therefore con-
sider the former approach (based on percentiles derived from a
normal distribution at – 2, – 2/3, 2/3, and 2).

Estimation

The models above were implemented in LatentGold (Vermunt
& Magidson, 2013) and estimated using marginal maximum

likelihood. We optimized the marginal log-likelihood function
in Eq. 13 above by numerically integrating the double integral
using ten quadrature points for each dimension. Next, we used
the Baum–Welch adapted EM algorithm (Baum, Petrie,
Soules, & Weiss, 1970; Welch, 2003) to obtain reasonable
starting values, after which we used the Newton–Raphson
algorithm to find the maximum of the likelihood function.
Because this procedure is full-information, missing data in
the responses or the response times do not pose a problem as
long as these are missing at random (Little & Rubin, 1987).
The syntax to fit the full model (heteroscedastic Markov
states) is available in the Appendix.

Simulation study

Design

To study the viability of the proposed models, we investigated
the parameter recovery of the latent state parameters αic, βic,
π1, π1|0, and π1|1. We considered the situation in which the
response time distribution departs from a log-normal distribu-
tion such that the continuous response time mixture model for

Fig. 2 Illustration of the categorization procedure, based on percentiles
derived from a normal distribution (2nd, 25th, 75th, and 98th percentiles).
(Top left) Histogram of the raw response times. (Top right) Bar plot of the

categorized response times. (Bottom left) Conditional probabilities of
each response time category. (Bottom right) Information in the
categorized response times as a function of the latent speed variable τp
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the response times in Eq. 7 is unsuitable (i.e., as it will produce
bias and false positives as discussed above).

The general procedure was as follows: We simulated re-
sponses and response times for 1,000 respondents on 20 items
according to five scenarios that correspond to the five models
above. We first simulated responses and continuous response
times, after which the response times were categorized.
Continuous response time data for the five scenarios were
simulated according to a Box–Cox-transformed log-normal
response time model that corresponds to the given scenario
(e.g., for the heteroscedastic Markov states scenario, this will
be a heteroscedastic Markov states model in which the partial
credit model in Eq. 11 is replaced by a Box–Cox-transformed
log-normal model). The Box–Cox transformation was used in
order to make the response time data overly skewed, such that
the response times do not follow a log-normal distribution,
which invalidates models like the one in Eq. 7 discussed
above. Below we discuss how we exactly simulated the re-
sponses and continuous response time data in each scenario:

Heteroscedastic Markov states To generate data for the
first scenario, we used the heteroscedastic Markov states
model with a continuous log-normal response time

distribution with mean νi − δc − τp and standard deviation
σc, which is the continuous version of Eq. 11 from the
heteroscedastic Markov states model for categorized re-
sponse times. For the mixture parameters, we used π1 =
.666 for the initial state parameter and π0|1 = .231 and π1|1
= .769 for the transition parameters (note that these
choices imply that π0 = .333, π1|0 = .231, and π0|0 =
.769). These effect sizes correspond to moderately imbal-
anced initial state probabilities (Dias, 2006) and moder-
ately unstable transition parameters (Bacci et al., 2014).
The responses were simulated using α0i = 1.5 and α1i = 1
for all i for the discrimination parameters. For the easiness
parameter, we used increasing, equally spaced values be-
tween – 2 and 0 for β0i and between 0 and 2 for β1i. For
the response times, we simulated τpwith στ = √0.13 and a
correlation between τp and θp of .4. For the intercepts, we
used νi = 2 for all i, δ0 = 0, and δ1 = 0.5. For the residual
standard deviations, we used σ0 = √0.39 and σ1 = √0.13.
These choices result in communalities of .25 in Class 0
and .5 in Class 1 on the log-scale (as we simulated log-
normal data; see above). In addition, the intercept differ-
ences of 0.5 between the states were considered of medi-
um effect size by Molenaar et al. (2018). After the log-

Fig. 3 Illustration of the categorization procedure based on equidistant
percentiles (the 20th, 40th, 60th, and 80th percentiles). (Top left)
Histogram of the raw response times. (Top right) Bar plot of the

categorized response times. (Bottom left) Conditional probabilities of
each response time category. (Bottom right) Information in the
categorized response times as a function of the latent speed variable τp
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normal response time data were simulated, we log-
transformed the simulated response times resulting in
normally distributed log-response times. These log-
response times were subsequently transformed using the
Box–Cox transformation, ξ(x + 1)ζ, with transformation
parameter ξ = 0.3, such that the raw response times (i.e.,
the exponentially transformed Box–Cox log-response
times) are overly skewed as compared to a log-normal
distribution. As we mentioned, this makes these data un-
suitable for mixture models like the one in Eq. 7, calling
for our categorized response time mixture model. See
Fig. 4 for an example response time distribution from
the present simulation study.
Homoscedastic Markov states In this scenario, we used
the same setup and procedure as for the Heteroscedastic-
Markov-States scenario but with σ0 = σ1 = √0.13.
Heteroscedastic independent states In this scenario, we
used the same setup and procedure as in the
Heteroscedastic-Markov-States scenario but without the
Markov structure on the states (i.e., P(ζpi = 1) = π1 for all i)
Homoscedastic independent states In this scenario, we
used the same setup and procedure as in the
heteroscedastic independent states scenario, but with σ0
= σ1 = √0.13.
Baseline In this scenario, we used a baseline model with-
out mixture (i.e., only one state: δ0 = δ1 = 0, σ0 = σ1 = σ,
α0i = α1i = αi, and β0i = β1i = βi). For the response time
parameters νi and σi, we used the parameters from state 0
in the homoscedastic independent states model above.
For the responses we used αi = 1.5 and equally spaced
values between – 2 and 2 for βi. All other parameters
were the same as in the homoscedastic independent states

model above. In addition, like in the other scenarios, the
response times data were transformed according to the
Box–Cox transformation as explained above.

After the responses and continuous response times had
been simulated, the raw response times were categorized at
percentiles 2.28, 25.25, 74.75, and 97.73, resulting in five
response time categories. Note that it does not make a differ-
ence whether the raw or transformed response times are cate-
gorized as the percentile scores will be the same. The percen-
tiles that we used are obtained from a standard normal distri-
bution at – 2, – 2/3, 2/3, and 2.

We used 50 replications for each data scenario. To the
replications within each data scenario we fit the five models
discussed above. Note that we thus did not fit the truemodel to
the simulated data as the data were generated according to the
Box–Cox-transformed log-normal model, and we fit a model
for categorized response times. However, if the categorized
model is viable, the latent state parameters αic, βic, π1, π1|0,
and π1|1 should be correctly recoverable despite the response
times being categorized. The recovery of the response time
measurement model parameters νit, λi, and σc cannot be stud-
ied as they do not have a corresponding true parameter value.

For each model we considered which of the five models is
the best-fitting model according to the following fit indices:
the Bayesian information criterion (BIC; Schwarz, 1978),
Akaike’s information criterion (AIC; Akaike, 1974), AIC3
(Bozdogan, 1993), the consistent AIC (CAIC; Bozdogan,
1987), and the sample-size-adjusted BIC (saBIC; Sclove,
1987). All these fit indices are based on the maximum mar-
ginal log-likelihood, ℓ η̂ð Þ, where η̂ contain the parameter
values that maximize ℓ(η) from Eq. 13. That is, the general

Fig. 4 Example distribution of continuous response times in the
simulation study, which depart from a log-normal distribution. These
continuous response times are subsequently categorized. (Left)
Histogram of the log-transformed continuous response times (which

should be normal if the response times followed a log-normal distribu-
tion). (Right) Log-normal QQ-plot of the response times (which should
be on the straight line if the response times followed a log-normal
distribution)

Behav Res (2019) 51:676–696 685



form of these fit indices is: −2ℓ η̂ð Þ þ P. The main difference
between the fit indices above is the penalty term, P, that is
used. That is,

AIC : P ¼ 2� npar;
BIC : P ¼ log Nð Þ � npar;
AIC3 : P ¼ 3� npar;
CAIC : P ¼ 2� npar npar�1ð Þ= N�npar�1ð Þ;
saBIC : P ¼ log Nþ 2ð Þ=24ð Þ � npar;

where npar denotes the number of estimated parameters in a
given model. For all the fit indices it holds that a smaller value
indicates a better model fit.

Results

Parameter recoveryWe limit our presentation of the parameter
recovery results to the most complex model (heteroscedastic
Markov states model) as this is the model of key interest and
the most challenging model to fit in terms of the number of
parameters, but the results for the other, more parsimonious,
models are comparable.

To study the parameter recovery of the model, Fig. 5 de-
picts box plots of the item parameter estimates β0i, β1i, α0i,
and α1i across replications for the heteroscedastic Markov
states model in the heteroscedastic Markov states scenario.
As can be seen, all parameters seem to be recovered accept-
ably, with more variability in the discrimination parameters
than in the easiness parameters. In addition, overall, the pa-
rameter estimates in state 0 (gray in the figure) are associated
with somewhat more variability than the parameter estimates
in state 1, as state 0 is smaller than state 1.

Statistics concerning the parameter recovery of the Markov
parameters (π1, π1|0, and π1|1) and the correlation between θp
and τp (ρ) of the heteroscedastic Markov states model in the
heteroscedastic Markov states scenario is depicted in Table 2.
As can be seen, all parameters seem unbiased, with acceptable
sampling properties (in terms of the 95% coverage rates, and
the standard deviations and RMSEs of the estimates as com-
pared to the mean standard error), although the coverage rate
of π1|0 is somewhat too small (.900 instead of .950). However,
overall, we think the results do not indicate any problems with
the model.

To study the effects of unmodeled heteroscedasticity be-
tween the states, Fig. 6 depicts box plots of the parameter

Fig. 5 Parameter recovery for the easiness parameters (left) and discrimination parameters (right) for the two states (gray: state 0, the slower state; white:
state 1, the faster state), in the presence of heteroscedasticity in the response times between states that is explicitly accounted for using the scale factor

Table 2 Recovery results for the Markov parameters and for ρ

Parameter True MEAN(Est) SD(Est) RMSE MEAN SE Coverage

ρ – . 400 – . 420 . 033 . 038 . 032 . 940

π1 . 667 . 661 . 085 . 085 . 073 . 940

π1|0 . 231 . 222 . 014 . 016 . 015 . 900

π1|1 . 769 . 768 . 018 . 017 . 014 . 960

BEst^ denotes the estimates of the corresponding parameter across the different replications, RMSE is the root-mean squared error, BSE^ refers to the
analytical standard errors of the parameter estimates (Est), and BCoverage^ refers to the 95% coverage rates
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estimates for the discrimination and easiness parameters in the
heteroscedastic Markov states scenario but for the homosce-
dastic Markov states model. Comparing Figs. 5 and 6, it can
be seen that neglecting the heteroscedasticity between states
(Fig. 6) biased the parameter estimates (most notably in α1i,
β0i, and β1i) and increased the variance of the estimates of α1i

and β1i (as compared to Fig. 5). In addition, it can be seen that
neglecting heteroscedasticity in the data decreased the vari-
ance of α1i and β1i as compared to the case in which
heteroscedasticity was accounted for. This is due to the size
of state 1 (the faster state) being overestimated: π1 has an
average estimate of .816 (SD: .040), where the true value
equaled .666. In addition, state 0 was relatively unstable:
The average estimate of transition parameter π0|1 was equal
to .463 (SD: .0452), where the true value equaled .231. State 1
was estimated to be relatively stable: The average estimate of
transition parameter π1|1 was equal to .844 (SD: .010), where
the true value equaled .769. Thus, Class 1 was still relatively
stable, while Class 0 appeared relatively unstable.

True positive rates See Table 3 for the detection rates of the fit
indices in each data scenario. The detection rate of a given
model is the proportion of replications in which that model
was indicated to be the best-fitting model among the five
models considered. In the table, the true positive rates of a
model are marked in gray. The true positive rate of a model
is the detection rate of that model in the case that the model is
fit to its corresponding scenario (e.g., the baseline model to the
baseline scenario).3 All other detection rates in Table 3 are false

positives, which ideally should be close to 0. We consider true
positive rates between .80 and 1.00 to indicate a good true
positive rate, rates between .70 and .80 as acceptable, rates
between .50 and .70 as moderate, and rates below .500 as poor.

As can be seen from Table 3, for the baseline model and the
heteroscedastic Markov states model, true positives are perfect
(i.e., 1.00) for all fit indices, but the true positive rate for the
AIC is only .24 for the baselinemodel. As can be seen from the
false positive rate in the baseline scenario, using the AIC fit
index, the baseline model is hard to distinguish from the ho-
moscedastic Markov states model, which is associated with a
false positive rate of .40. For the homoscedastic Markov states
model, true positives are all acceptable to good, with values
between .86 and .98. For the heteroscedastic independent states
model, the true positives are also considered acceptable to
good, with values between .72 and 1.00, and for the homosce-
dastic independent states model, the true positive rate is mod-
erate for the AIC, with a rate of .62, but acceptable to good for
the other fit indices, with values between .80 and .98.

Conclusion

In conclusion, it appeared that parameter recovery is accept-
able and that all fit indices but the AIC behaved acceptably in
selecting among the different models under the circumstances
simulated. The poor behavior of the AIC in model selection is
in line with the findings of Molenaar et al. (2016), who also
found poor performance of the AIC in selecting among models
that did and did not include (Markov) mixtures. In addition, we
found that neglecting heteroscedasticity between classes may
bias the item parameter estimates and increase their variance.

The main purpose of these simulations was a proof of prin-
ciple in the sense that we wanted to show that we can adequate-
ly recover the true parameter values of the model and that we

Fig. 6 Parameter recovery for the easiness parameters (left) and discrimination parameters (right) for the two states (gray: state 0, the slower state; white:
state 1, the faster state), in the presence of unmodeled heteroscedasticity in the response times

3 Note that we cannot speak of the Btrue model,^ because the response time
data were simulated under a different model (a categorized Box–Cox-trans-
formed log-normal model) from the model applied to the data (a partial-credit
model; see Eq. 11).
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can distinguish well between the different models given a rea-
sonable sample size and reasonable effect sizes. However, the
results above depend on the choices we made concerning pa-
rameter values. That is, true positives will decrease for decreas-
ing differences between the states in terms of δc and βci and αci.
In addition, if the stability of the states decreases (reflected by
larger values for π1|0 and smaller values for π1|1) true positives
will also decrease (see, e.g., Molenaar et al., 2016).

Illustration

Data

In this section, we demonstrate the viability of the present
modeling approach in a real dataset. We used the responses
and response times to the block design subtest of the
Hungarian WAIS-IV (Nagyné Réz et al., 2008). These data

Table 3 Detection rates of the BIC, AIC, AIC3, CAIC, and saBIC for the five models in each data scenario

Model

Data Scenario

Base-

line 

Hetero.

Markov

States

Homo.

Markov

States

Hetero.

Indep.

States

Homo.

Indep.

States

BIC

Baseline 1.00 .00 .00 .00 .00

Hetero. Markov states .00 1.00 .00 .00 .00

Homo. Markov states .00 .02 .98 .00 .00

Hetero. independent states .00 .00 .00 1.00 .00

Homo. independent states .00 .00 .00 .06 .94

AIC

Baseline .24 .18 .40 .04 .14

Hetero. Markov states .00 1.00 .00 .00 .00

Homo. Markov states .00 .14 .86 .00 .00

Hetero. independent states .00 .28 .00 .72 .00

Homo. independent states .00 .06 .20 .12 .62

AIC3

Baseline 1.00 .00 .00 .00 .00

Hetero. Markov states .00 1.00 .00 .00 .00

Homo. Markov states .00 .06 .94 .00 .00

Hetero. independent states .00 .08 .00 .92 .00

Homo. independent states .00 .02 .06 .12 .80

CAIC

Baseline 1.00 .00 .00 .00 .00

Hetero. Markov states .00 1.00 .00 .00 .00

Homo. Markov states .00 .02 .98 .00 .00

Hetero. independent states .00 .00 .00 1.00 .00

Homo. independent states .00 .00 .00 .02 .98

saBIC

Baseline 1.00 .00 .00 .00 .00

Hetero. Markov states .00 1.00 .00 .00 .00

Homo. Markov states .00 .04 .96 .00 .00

Hetero. independent states .00 .02 .00 .98 .00

Homo. independent states .00 .02 .02 .10 .86

Gray shading indicates the true positive rates (the detection rate for a model in its corresponding scenario—e.g., the baseline model in the baseline
scenario); the other rates are false positive rates. In addition: BHetero.^ denotes BHeteroscedastic^ and BHomo.^ denotes BHomoscedastic^
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have been analyzed by Molenaar, Bolsinova, Rósza, and De
Boeck (2016), who analyzed these data using a mixture model
for the responses but not for the response times. The data

consist of the responses and response times of 978 respon-
dents to 14 items. The items were designed to be decreasing
in easiness. The raw response times are between 1 and 360 s.
We omitted Item 1 from the analysis as this item caused nu-
merical problems due to the high success rate (.999). We used
the same procedure as in the simulation study. That is, we used
the same categorization procedure for the raw response times,
we considered the same models, and we used the same esti-
mation procedure.

Results

See Table 4 for the model fit indices of the models considered.
As can be seen, all fit indices indicate the heteroscedastic
Markov states model to be the best-fitting model. Below we
discuss the results from this model. First, it appeared that
Class 1 (the faster class) is somewhat larger with an initial
state parameter π1 estimate of .617 (SE: 0.052). In addition,
the classes seem relatively stable with transition parameters
π1|0 and π1|1 estimated to be .124 (SE: 0.016) and .840 (SE:
0.015), respectively. In addition, δ1 was estimated to be 3.484
(SE: 0.210), and the residual standard deviation in Class 1, σ1,
was 1.695 (SE: 0.131), indicating that Class 1 is associated
with more variability in the response times.4

In Fig. 7, the item easiness parameters, discrimination pa-
rameters, and marginal probabilities of a correct response in
the two classes are plotted. As can be seen, the easiness pa-
rameters in Class 1, β1i, are generally larger than the easiness
parameters in Class 0, β0i. For the discrimination parameters,
there is a less clear difference: It seems that the discrimination
parameters in Class 1, α1i, are somewhat larger than the dis-
crimination parameters in Class 0,α0i, for the items later in the
test (from Item 4 onward, with Item 10 as an exception), but
this effect is small.

Figure 8 depicts the raw response times, the item-wise
standardized response times, and the posterior probabilities

Table 4 Model fit indices for the five models considered in the application, for T = 5

Model BIC AIC AIC3 CAIC sBIC

Baseline 27,612 27,163 27,255 27,704 27,320

Heteroscedastic Markov states 27,043 26,442 26,565 27,166 26,652

Homoscedastic Markov states 27,068 26,472 26,594 27,190 26,681

Heteroscedastic independent states 27,428 26,837 26,958 27,549 27,044

Homoscedastic independent states 27,437 26,851 26,971 27,557 27,056

The best values of the fit indices are in boldface

4 For numerical reasons, we estimated the logits of the initial-state and transi-
tion parameters. In addition, we estimated exp(– σ1). The reported standard
errors were obtained using the delta method.

Fig. 7 Parameter estimates for the easiness parameters (top) and discrim-
ination parameters (middle), together with the implied marginal probabil-
ities of a correct response in Class 0 (black lines) and Class 1 (gray lines)
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of Class 0 according to the heteroscedastic Markov states
model for three example respondents. The raw response times
are hard to interpret, as the items differ in their time intensity.
The item-wise standardized response times provide an ad-hoc
method to account for this confounding effect. However,

besides the ad-hoc nature of this method, a drawback is that
it does not account for the dependency between adjacent items
and for the response outcome (correct or incorrect). As can be
seen, the posterior probabilities generally give an improved
picture of the response dynamics, as compared to the

Fig. 8 Raw response times, the item-wise standardized response times, and posterior probabilities of Class 0 for three example respondents. Solid dots
denote that the response to that item was correct
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standardized response times, with a clearer pattern. In addi-
tion, the classification is sometimes different for the posterior
probabilities than for the standardized response times. For
instance, for Respondent 62, the responses to Items 9, 10,
and 12 are the fastest among all items according to the stan-
dardized response times, but according to the posterior prob-
abilities, these responses are likely in Class 0 (the slower
class).

Robustness analysis

To see whether the results above are robust to the exact number
of response time categories used, we also conducted the above
analyses using T = 3 and T = 2 response time categories. In the
case of T = 3, we categorized the continuous response times of
each item at percentiles 15.87 and 84.13 (obtained from a stan-
dard normal distribution at – 1 and 1). In the case of T = 2, we
used a median split of the continuous response times of each
item (i.e., we used a cutoff corresponding to percentile 50).

First, the estimates of parameters π1, π1|0, and π1|1 are .599
(SE: .059), .152 (SE: .027), and .848 (SE: .016) for T = 3, and
.582 (SE: .067), .241 (SE: .018), and .759 (SE: .021) for T = 2.
As we discussed above, for T = 5 these estimates were, re-
spectively, .617 (SE: .052), .124 (SE: .016), and .840 (SE:
.015), respectively. As judged by the standard errors, these
estimates do not differ importantly.

Tables 5 and 6 contain the fit measures for the different
models for, respectively, T = 3 and T = 2. As can be seen, all
fit measures favor the full model in both the T = 3 and T = 2
data. This is in line with the conclusions draw above for the T

= 5 case (see Table 4). To compare the parameter estimates
from the T = 5, T = 3, and T = 2 data, we plotted the person
parameter estimates of θp and τp (Fig. 9) and the item param-
eter estimates of β0i, β1i, α0i, and α1i (Fig. 10) for the T = 5, T
= 3, and T = 2 data. As can be seen from Fig. 9, there is a
strong one-to-one correspondence between the person param-
eter estimates obtained from the different datasets. In Fig. 10,
it can be seen that for the item parameters, the correspondence
between the T = 5, T = 3, and T = 2 parameter estimates is best
for β0i and β1i. For α0i, the correspondence is associated with
somewhat more noise than for β0i and β1i. For α1i the corre-
spondence is noisiest. This has to do with the relatively large
standard error of the α1i parameters as compared to the other
item parameters. However, for the item parameters overall,
there does not seem to be a systematic difference between
the parameter estimates from the different datasets. We there-
fore conclude that the robustness of the results across the
different numbers of response time categories is acceptable.

Discussion

In this article, we presented a mixture model to detect hetero-
geneity in the response processes underlying psychometric
test items. The new model combines the strengths of previous
mixture models by Schnipke and Scrams (1997), Wang and
Xu (2015), Wang et al. (2018), Molenaar et al. (2016), and
Molenaar et al. (2018). In our modeling approach we used
mixture modeling in an indirect application (Yung, 1997).
That is, the mixture components in our model are not

Table 5 Model fit indices for the five models considered in the application for T = 3

Model BIC AIC AIC3 CAIC sBIC

Baseline 20,553 20,231 20,297 20,619 20,343

Heteroscedastic Markov states 20,158 19,689 19,785 20,254 19,853

Homoscedastic Markov states 20,178 19,709 19,805 20,274 19,873

Heteroscedastic independent states 20,417 19,958 20,052 20,511 20,118

Homoscedastic independent states 20,426 19,967 20,061 20,520 20,128

The best values of the fit indices are in boldface

Table 6 Model fit indices for the five models considered in the application for T = 2

Model BIC AIC AIC3 CAIC sBIC

Baseline 18,603 18,344 18,397 18,656 18,435

Heteroscedastic Markov states 18,096 17,686 17,770 18,180 17,829

Homoscedastic Markov states 18,102 17,696 17,779 18,185 17,838

Heteroscedastic independent states 18,408 18,008 18,090 18,490 18,148

Homoscedastic independent states 18,404 18,008 18,089 18,485 18,147

The best values of the fit indices are in boldface
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necessarily substantively interpretable but are rather statistical
tools to detect heterogeneity in the data that is due to differ-
ences in response processes. This is different from the model-
ing perspective by for instance Wang and Xu who used mix-
ture modeling in a direct application (Dolan & van der Maas,
1998) in which the mixture components are substantively
interpreted. Specifically, Wang and Xu distinguished between
a fast guessing process and a solution process. Regardless of
the nature of the mixture application (direct or indirect), the
methodology presented in this article is equally amenable to
the modeling of fast guessing and solution behavior. That is, if
the measurement model for the responses in the faster state is
restricted to represent fast guessing (i.e., discrimination equal
to 0, see Table 1), the model is in essence the model by Wang
and Xu, but with Markov-dependent states. Other restrictions
are possible, which we will illustrate below. However, such
restrictions need a strong theory about the response processes,
which is not always available.

Throughout this article, we have assumed two latent states
to underlie the item responses and response times, this has
mainly a pragmatic reason in the sense that we think that
two states can capture the most important patterns in the data.
In addition, some theories describe binary processing, for in-
stance the automated versus controlled processing theory
(Shiffrin & Schneider, 1977), and the fast versus slow intelli-
gence theory (DiTrapani, Jeon, De Boeck, & Partchev, 2016;
Partchev &DeBoeck, 2012). However, it can certainly be that
some situations require more than two states (e.g., if three
clearly distinct solution strategies underlie the response be-
havior of the respondents). In principle, it is straightforward
to extend the present model to include three or more item

specific states. However, the number of parameters rapidly
grows. That is, for three item specific states, six parameters
need to be estimated for each response variable (three discrim-
inations and three easiness parameters). In such a situation,
either the sample sizes should be very large, or one should
incorporate reasonable model restrictions. That is, model re-
strictions can be thought of that are either pragmatically de-
fendable or that are derived from theory. For instance,
Molenaar et al. (2018) considered a model in which the item
parameters have an overall difference across states and not an
item specific difference (as in the models considered in the
present article). In addition, Molenaar et al. (2016) used the
restrictions that van der Maas and Jansen (2003) derived from
the developmental theory by Siegler (1981) to distinguish dif-
ferent solution strategies underlying the Piagetian balance
scale task. Using these restrictions, Molenaar et al. (2016)
identified up to five states in a hidden Markov model for
responses and continuous response times.

To solve the problem of spurious mixtures, we followed
Molenaar et al. (2018) and categorized the continuous re-
sponse times. This approach is pragmatic but shown effective
in countering false positives in the case of distributional misfit.
However, the approach has the drawback that information
about individual differences is decreased such that the power
to detect an effect may depend on arbitrary choices concerning
the number and location of the cut-off values. It is therefore
advisable to always investigate the robustness of the results
with respect to the cut-off values as was illustrated in our real
data example.

Another aspect of the general mixture modeling framework
considered in this article (Table 1) is the operationalization of

Fig. 9 Plot of the estimates for θp (first row of plots) and τp (second row of plots) for different numbers of response time categories, T (left plots: T = 2 vs.
T = 3; middle plots: T = 2 vs. T = 5; right plots: T = 3 vs. T = 5). The solid gray lines denote one-to-one correspondences
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response processes in terms of the item properties (discrimi-
nation and easiness) and the expected response times. That is,
a response process difference is assumed to be characterized
by (1) a difference in the discrimination and/or easiness pa-
rameter and (2) a difference in the expected response time.
This operationalization in Difference 1 can be justified by
the statistical theory about measurement invariance
(Mellenbergh, 1989; Meredith, 1993), which dictates that a
difference in measurement model parameters indicates a dif-
ference in the interpretation of the underlying latent variable.
That is, if faster responses are associated with different mea-
surement parameters (discrimination and/or easiness) as com-
pared to the slower responses, the latent variable has a differ-
ent interpretation for these responses indicating a different

response process . As we discussed before , the
operationalization in Difference 2 can be justified by the the-
ory about response times in experimental psychology (e.g.,
Luce, 1986), which dictates that the response times indicate
the time that is needed for a certain psychological process to
be executed. A difference in expected response time thus in-
dicates a different process (all other things being equal).

An alternative to the statistical operationalizations of
response processes adopted here are process-modeling
operationalizations from mathematical psychology. In
this framework, stronger assumptions are made about
the response process (e.g., a response process consists
of noisy information accumulation that stops if enough
information for one of the response alternatives is

Fig. 10 Plot of the estimates for β0i (first row of plots), β1i (second row of
plots), α0i (third row of plots), and α1i (fourth row of plots) for different
numbers of response time categories, T (left plots: T = 2 vs. T = 3; middle

plots: T = 2 vs. T = 5; right plots: T = 3 vs. T = 5). The solid black lines
denote one-to-one correspondences
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gathered). From these assumptions, a mathematical mod-
el can be derived that is fit to the data. Examples of such
models include the diffusion model (Ratcliff, 1978), the
linear accumulator model (Brown & Heathcote, 2008),
and the race model (Audley & Pike, 1965). However,
these models are mathematically more complex, which
made them less suitable to the aims of the present article.
Yet it will certainly be interesting to consider models
from mathematical psychology in light of the present
mixture modeling framework.

Author note The research by D.M. was made possible by a grant from
the Netherlands Organization for Scientific Research (NWO VENI-451-
15-008).

Appendix

The syntax below can be used to fit the heteroscedastic hidden
Markov mixture model to responses and categorized response
times in LatentGOLD.

options

maxthreads=all;

algorithm 

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=16 tolerance=1e-005 iterations=50;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing  includeall;

output      

parameters=first standarderrors estimatedvalues=model classification=posterior;

variables

caseid ID;

dependent X, catT ordinal;

independent item nominal;

latent

Ability  continuous, 

Speed  continuous, 

Cluster nominal 2 dynamic;

equations

(1) Ability;

(1) Speed;

Ability <-> Speed;

Cluster[=0] <- 1;

Cluster <- 1 a Cluster[-1];  // replace by “Cluster <- 1 | Cluster[-1] Item” to drop the assumption of

// time homogeneity

X <- 1 | Item Cluster + (+) Ability | Item Cluster;

catT <- 1 | item + (-) Cluster +  Speed|item;

catT<<- cluster;

end model
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