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Abstract

In animal models of stroke, behavioral assessments could be complemented by a variety of

neuroimaging studies to correlate them with recovery and better understand mechanisms of

improvement after stem cell therapy. We evaluated morphological and connectivity changes

after treatment with human mesenchymal stem cells (hMSCs) in a rat stroke model, through

quantitative measurement of T2-weighted images and diffusion tensor imaging (DTI). Tran-

sient middle cerebral artery occlusion rats randomly received PBS (PBS-only), FBS cultured

hMSCs (FBS-hMSCs), or stroke patients’ serum cultured hMSCs (SS-hMSCs). Functional

improvement was assessed using a modified neurological severity score (mNSS). Quantita-

tive analyses of T2-weighted ischemic lesion and ventricular volume changes were per-

formed. Brain microstructure/connectivity changes were evaluated in the ischemic recovery

area by DTI-derived microstructural indices such as relative fractional anisotropy (rFA), rela-

tive axial diffusivity (rAD), and relative radial diffusivity (rRD), and relative fiber density (rFD)

analyses. According to mNSS results, the SS-hMSCs group showed the most prominent

functional improvement. Infarct lesion volume of the SS-hMSCs group was significantly

decreased at 2 weeks when compared to the PBS-only groups, but there were no differ-

ences between the FBS-hMSCs and SS-hMSCs groups. Brain atrophy was significantly

decreased in the SS-hMSCs group compared to the other groups. In DTI, rFA and rFD val-

ues were significantly higher and rRD value was significant lower in the SS-hMSCs group

and these microstructure/connectivity changes were correlated with T2-weighted morpho-

logical changes. T2-weighted volume alterations (ischemic lesion and brain atrophy), and

DTI microstructural indices and rFD changes, were well matched with the results of behav-

ioral assessment. These quantitative MRI measurements could be potential outcome pre-

dictors of functional recovery after treatment with stem cells for stroke.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0246817 February 16, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Son JP, Sung JH, Kim DH, Cho YH, Kim

SJ, Chung J-W, et al. (2021) Brain morphological

and connectivity changes on MRI after stem cell

therapy in a rat stroke model. PLoS ONE 16(2):

e0246817. https://doi.org/10.1371/journal.

pone.0246817

Editor: Quan Jiang, Henry Ford Health System,

UNITED STATES

Received: October 19, 2020

Accepted: January 26, 2021

Published: February 16, 2021

Copyright: © 2021 Son et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This study was supported by a grant

from the Korea Health Technology R&D Project,

the Ministry of Health & Welfare (HI14C16240000

and HI14C3484). S&E bio, Inc. provided support

for this study in the form of salaries for JHS, EHK,

and OYB. The specific roles of these authors are

articulated in the ‘author contributions’ section. The

funders had no role in study design, data collection

https://orcid.org/0000-0002-8655-3495
https://doi.org/10.1371/journal.pone.0246817
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246817&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246817&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246817&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246817&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246817&domain=pdf&date_stamp=2021-02-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0246817&domain=pdf&date_stamp=2021-02-16
https://doi.org/10.1371/journal.pone.0246817
https://doi.org/10.1371/journal.pone.0246817
http://creativecommons.org/licenses/by/4.0/


Introduction

Although most preclinical studies show promising results for stem cell therapy in various

small animal models of stroke, randomized trials of stem cell therapy in stroke patients show

negative or mixed results [1–8]. A systematic search for reports of experiments using stem

cells in animal models of stroke showed that while stem cells appear to be of some benefit in

animal models of stroke, the validity of preclinical data is potentially confounded by poor

study quality, lack of standards in the conducting and reporting of experiments, publication

bias, and significant experimental design differences between clinical and preclinical trials

[9–11].

In addition, such discrepancy between preclinical and clinical studies calls for the need for

objective parameters to evaluate the effects of stem cells in small animal models of stroke. In

animal models of stroke, behavioral assessments could be complemented by a variety of neuro-

imaging studies to identify correlations with recovery after stroke [12–14], and thus better

understand mechanisms of improvement. Recently, there have been growing efforts to visual-

ize the microstructure and anatomical connectivity of the brain, using noninvasive imaging

methods [15, 16]. Most importantly, modern magnetic resonance imaging (MRI) techniques

such as diffusion tensor imaging (DTI) play important roles in both clinical and preclinical

research. Diffusion tensor imaging is able to visualize microstructural alterations in various

neurological disorders [17–21]. Moreover, recent experimental studies in rodent stroke mod-

els have shown that quantitative changes in diffusion tensor tractography and DTI indices,

such as fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), can detect

changes in axonal integrity and remyelination [12–14, 22, 23]. Therefore, imaging-based bio-

markers can be good tools to investigate the therapeutic efficacy of stem cell therapy in ische-

mic stroke.

We aimed to evaluate morphological and connectivity changes after stem cell therapy in an

animal model of stroke. A randomized controlled trial of stem cell therapy for ischemic stroke

patients (STem Cell Application Researches and Trials in NeuroloGy [STARTING]-2 trial.

Clinicaltrial.gov@indentifier NCT01716481) is currently evaluating the objective improve-

ment and underlying mechanisms of recovery using multimodal MRI features, including DTI

[8, 24]. Comparison of the effects of stem cell therapy, in both preclinical and clinical studies

using the same MRI measurements, would be valuable. To this end, we evaluated MRI mea-

surements (including T2-weighted MRI for ischemic lesion and ventricular volume changes,

and DTI for microstructural indices and fiber density changes) after intravenous injection of

human mesenchymal stem cells (hMSCs), either naïve or preconditioned, in a rat transient

middle cerebral artery occlusion (tMCAo) stroke model.

Materials and methods

All human subject research was approved by the Institutional Review Board (Samsung Medical
Center Institutional Review Board, Approval No. SMC 2011–10-047-047). All patients or guard-

ians of patients provided written informed consent to participate in this study. All animal

experimental procedures were approved by Institutional Animal Care and Use Committee

(Laboratory Animal Research Center; AAALAC International approved facility, Approval No.

001003) of the Samsung Medical Center and performed in accordance with the Animal

Research: Reporting of In Vivo Experiments (ARRIVE) guidelines [25]. All animals were kept

under the conditions of a temperature of 22±1 ˚C, a relative humidity of 50±10%, a lighting

time of 12 hours (8 a.m. to 8 p.m.), a ventilation frequency of 10 to 20 times/hr, and an illumi-

nance of 150 to 300 Lux. All animals were observed twice daily for health monitoring and
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no adverse events occurred. A completed ARRIVE guidelines checklist is included in S1

Checklist.

Focal cerebral ischemia model

Adult male Sprague-Dawley rats (Orient Bio Inc., Seongnam, South Korea) weighing 250 to

300 g (7–8 weeks old) were used in this study. Rats were induced with tMCAo as previously

described [26]. Briefly, anesthesia was delivered using a face mask with 5% isoflurane, and

maintained with 2.0% isoflurane in 70% N2O and 30% O2. During the surgical procedure,

body temperature was maintained at 37.0 ˚C to 37.5 ˚C (measured rectally). The right com-

mon carotid artery (CCA), external carotid artery, and internal carotid artery were loosely

ligated with a 4–0 silk suture. The right middle cerebral artery (MCA) was occluded with a sili-

con-coated nylon suture (tip diameter: 330–380 mm) from the right CCA. After 90 minutes of

occlusion, reperfusion was performed by removing the suture.

Preparation of serum and mesenchymal stem cells

Serum was collected from ischemic stroke patients enrolled in the STARTING-2 trial within

90 days after onset of stroke (n = 9, 30.4 ± 18.1 day) [24]. Single aliquots of serum were stored

at –70 ˚C until further use. Patient basal characteristics were previously reported [26].

Passage 2 hMSCs at were purchased from Lonza, Basel, Switzerland (Cat No. PT-2501) and

grown in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA, USA) with

10% fetal bovine serum (FBS; Hyclone, Victoria, Australia) for the first passage. The medium

was then replaced with 10% FBS or 10% stroke patients’ serum (SS). Passage 5 hMSCs (2 x 106

cells) were transplanted to study their therapeutic effects [26].

Experimental groups and intravenous infusion of hMSCs

In this study, a total of 45 animals were randomly grouped according to treatment: intravenous

infusion of hMSCs (2 x 106 cells in 1 mL total fluid volume) cultured with ischemic stroke

patients’ serum (SS-hMSCs group); intravenous infusion of hMSCs cultured with FBS (FBS-

hMSCs group); intravenous infusion of phosphate-buffered saline (PBS-only group). The sus-

pended hMSCs or PBS were slowly administered one day after tMCAo (immediately after the

first MRI session) via tail vein of the rat. Four animals died within 24 h after stroke were

excluded (SS-hMSCs, n = 2; FBS-hMSCs, n = 1; PBS-only, n = 1). Four animals without

observable neurological deficits were excluded (SS-hMSCs, n = 1; FBS-hMSCs, n = 1; PBS-

only, n = 2). Two animals with subarachnoid hemorrhage were excluded (SS-hMSCs, n = 1;

FBS-hMSCs, n = 1). A total of 35 animals were included in the final analysis (SS-hMSCs

group, n = 5 for MRI and n = 6 for behavioral testing; FBS-hMSCs group, n = 6 for MRI and

n = 6 for behavioral testing; PBS-only group, n = 6 for MRI and n = 6 for behavioral testing).

MRI image acquisition

MRI was performed using a 7T small animal MR scanner (Bruker Biospin 70/20 USR, Fällan-

den, Switzerland). A quadrature birdcage coil (inner diameter = 72 mm) was used for excita-

tion and an actively decoupled 4-channel phased array surface coil was used for receiving the

signal. T2-weighted and DTI, were acquired 1 day, 2 weeks and 5 weeks after stroke onset,

under isoflurane anesthesia (5% for induction, 1.5% for maintenance).

T2-weighted images were acquired using a turbo rapid acquisition with refocusing echoes

(Turbo RARE) sequence with the following parameters: repetition time (TR)/echo time
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(TE) = 3000/60 ms, field of view = 30 x 30 mm2, image matrix = 192 x 192, and in-plane resolu-

tion = 0.156 x 0.156 x 0.75 mm3.

DTI images were acquired using a 4 shot spin-echo echo planar imaging sequence (Stejs-

kal-Tanner pulsed-gradient sequence) with the following parameters: TR/TE = 4500/45 ms,

field of view = 30 x 30 mm2, image matrix = 192 x 192, in-plane resolution = 0.156 x 0.156 x

0.75 mm3, diffusion encoding gradient directions = 30, gradient duration (δ) = 5 ms, gradient

separations (Δ) = 15 ms, and b-value = 1000 s/mm2.

MRI image analysis

All MRI images were analyzed blinded to the experimental group information. Analyses of T2-

weighted images were performed to estimate the ischemic lesion area and lateral ventricular

volume. The infarct lesion area on each T2-weighted image slice was identified by those voxels

with a T2 value higher than the mean + two standard deviations (mean + 2SD) of normal tissue

in the contralateral hemisphere [14, 23]. Lateral ventricular volume was delineated from 8 con-

tiguous T2-weighted images with reference to Paxinos stereotaxic rat brain atlas [27]. Ischemic

lesion and lateral ventricle volumes were normalized to the volume at day 1, to compensate for

individual bias.

Analysis of DTI data was performed to observe the microstructural reorganization of ische-

mic lesions using FMRIB’s Diffusion Toolbox (FSL, http://fsl.fmrib.ox.ac.uk/fsl), and DSI Stu-

dio (http://dsi-studio.labsolver.org). Raw DTI images were pre-processed, using the following

procedures: 1) separate brain from non-brain structures and create a brain mask image using

the FSL’s brain extraction tool (BET), 2) realign diffusion weighted images to the non-diffu-

sion weighted b0 image for correction of artifacts due to head motion and eddy current distor-

tions, using the FSL’s Eddycorrect tool, and 3) calculate diffusion tensor at each voxel and

create a DTI index map, such as FA, AD, and RD, using the FSL’s DTIFIT tool. After calcula-

tion of diffusion tensor, fiber tracking using a generalized deterministic algorithm was per-

formed using DSI studio [28]. Fiber tracking was terminated at locations where the FA value

fell below 0.15 or the turning angle was greater than 45 degrees. Fiber tractography results

were analyzed using fiber density (FD), which was calculated by dividing the total number of

reconstructed fiber tracts by the number of seeding voxels.

For quantification of microstructural indices and FD values, a region of interest (ROI) was

selected in the ischemic recovery area on T2-weighted images at 5 weeks after stroke onset [22,

23]. The ischemic damaged area was delineated by the mean, plus twice the standard deviation

of T 2-weighted signal intensity of the contralateral side, at 1 day and 5 weeks after experimen-

tal stroke. In T2-weighted images, the ischemic damaged areas on day 1 were consistently

larger than those at 5 weeks after stroke. Thus, the recovery area was defined as our ROI, by

subtracting the ischemic damaged areas at 5 weeks from the ischemic damaged area, 1 day

after stroke (Fig 1). Contralateral homologous ROIs were also defined in the contralateral side.

Relative changes in FA (rFA), AD (rAD), RD (rRD), and FD (rFD) values were calculated by

dividing the values of ipsilesional ROI by those of contralesional ROI to compensate for indi-

vidual variation.

Behavioral testing

In all animals, behavioral tests were performed before tMCAo, and at 1 day, 2 weeks and 5

weeks after tMCAo, by an investigator who was blind to the experimental groups. Modified

Neurological Severity Scores (mNSS) were calculated as a measure of motor and sensory reflex

functions, and balance using modified versions of sensory tests, as previously described [26,

29]. The total mNSS was scaled from 0 to 18 (normal = 0, maximal deficit = 18) and
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determined by measuring responses to being raised by the tail (subtotal score = 0 to 3: forelimb

flexion = 0 to 1, hindlimb flexion = 0 to 1, and head movement over 101 degrees to the vertical

axis within 30 s = 0 to 1), the results of sensory tests (subtotal score = 0 to 12: visual placement

of forelimbs = 0 to 3, tactile placement of forelimbs = 0 to 3, proprioceptive adduction of hin-

dlimbs = 0 to 3, tactile placement of hindlimbs = 0 to 3), and the results of beam balance tests

(subtotal score = 0 to 6: balances with steady posture = 0, grasps side of beam = 1, hugs beam

and one limb falls down = 2, hugs beam and two limbs fall down or spins after 60 s = 3,

attempts to balance on beam but falls off after 40 s = 4, attempts to balance on beam but falls

off after 20 s = 5, falls off and makes no attempt to balance or hang onto beam within 20 s = 6).

Immunostaining

To visualize myelinated fiber in the ischemic damaged area, immunostaining was performed.

Animals were euthanized and transcardially perfused with PBS and 4% paraformaldehyde

(PFA) immediately after the final MRI scanning at 5 weeks after treatment. The paraffin-

embedded brains were sectioned coronally between 3 and 4 mm posterior to the bregma to a

thickness of 18 μm in accordance with the MRI images using a Cryocut Microtome (Leica

Microsystems). Glass mounted, 18 μm brain sections were stained with luxol fast blue (LFB)

after deparaffinization and rehydration.

Statistical analysis

All data are presented as mean ± SD. To evaluate the interaction between treatment effect and

time, a generalized estimating equation (GEE) model was used [14]. Statistical analysis

between treatment groups at each time period were performed using one-way analysis of

Fig 1. Ipsilesional region of interest (ROI) was defined by subtracting the ischemic damaged regions at 5 weeks after ischemia from those at day

1. Mirror ROI was defined as our contralesional ROI.

https://doi.org/10.1371/journal.pone.0246817.g001
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variance (ANOVA) followed by Tukey post hoc analysis only when the p-value of GEE model

test attained < 0.05. To analyze the relationship between morphological changes in T2-

weighted imaging and DTI results, Pearson correlation analysis was performed. Correlation

analysis results are expressed as Pearson correlation coefficients (r) and p values. P values<0.05

were considered statistically significant. Statistical analyses were performed using the commer-

cially available software package, SPSS version 18 (SPSS Inc., Chicago, IL, USA). Graphs were

drawn using Graph Pad Prism 8 (Graph Pad Software Inc., San Diego, CA, USA).

Results

Functional improvement after MSC treatment

To examine functional recovery after MSC therapy, behavioral testing was performed serially

using mNSS (Fig 2 and S1 Table). In the GEE model, behavioral testing results showed statisti-

cally significant interaction between time and treatment (p<0.001). At 2 weeks after treatment,

there were no significant functional improvement differences between groups, but the SS-

hMSCs group showed better trend when compared to the PBS-only group (p = 0.087). At 5

weeks after treatment, both the FBS-hMSCs and SS-hMSCs groups showed significant func-

tional improvement compared with the PBS-only groups (p<0.01 in both cases). However, the

SS-hMSCs group showed significant functional improvement compared with the FBS-hMSCs

group (p = 0.001).

Fig 2. Modified neurological severity score. Functional behavioral improvements were serially assessed in rats treated with PBS-only (n = 6), FBS-

hMSCs (n = 6), and SS-hMSCs (n = 6) using modified neurological severity scores (mNSS) (PBS-only vs. SS-hMSCs, ��p<0.01; PBS-only vs. FBS-

hMSCs, ##p<0.01; FBS-hMSCs vs. SS-hMSCs, §§p<0.01; one-way ANOVA, Tukey post-hoc test).

https://doi.org/10.1371/journal.pone.0246817.g002
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Brain morphological changes

To compare the effects of MSC therapy on infarct volume reduction and atrophic changes

after stroke, we measured ischemic lesion volume and lateral ventricular volume on T2-

weighted images (Fig 3 and S2 Table). In the GEE model, relative changes of lesional volume

and ventricular volume showed statistically significant interaction between time and treatment

(p<0.001). There were no significant differences in ischemic lesion volumes on day 1 (just

before treatment) among the groups (PBS-only vs. FBS-hMSCs, p = 0.635; PBS-only vs. SS-

hMSCs, p = 0.916; FBS-hMSCs vs. SS-hMSCs, p = 0.880). Compared to the PBS-only group,

the normalized ischemic lesion volume of the SS-hMSCs group was significantly decreased at

2 weeks (p = 0.003), but not at 5 weeks (p = 0.112). Compared to the PBS-only group, the nor-

malized ischemic lesion volume of the FBS-hMSCs group was numerically decrease at both 2

weeks (p = 0.083) and 5 weeks (p = 0.081), but statistically insignificant. At day 1 (just before

treatment), there was no significant difference in lateral ventricular volumes among the groups

(PBS-only vs. FBS-hMSCs, p = 0.821; PBS-only vs. SS-hMSCs, p = 0.314; FBS-hMSCs vs. SS-

hMSCs, p = 0.683). Normalized lateral ventricular volume markedly increased in the PBS-only

group, and significantly, but to a lesser degree, in the SS-hMSCs group at 2 (p = 0.025) and 5

weeks (p = 0.04). No significant difference was observed between the PBS-only and FBS-

hMSCs groups and the FBS-hMSCs and SS-hMSCs groups, at 2 and 5 weeks (p>0.05 for all

cases).

Brain microstructure/connectivity changes

To explore the microstructure/connectivity changes of the ischemic damaged brain after

MSCs therapy, quantitative DTI analysis was performed in the ROI at 1 day, and 2 and 5

weeks after tMCAo. Fig 4 and S3 Table demonstrates the representative microstructural

Fig 3. Ischemic lesion and ventricular volume changes. (a) Representative T2-weighted images of rats treated with PBS-only (n = 6, left), FBS-

hMSCs (n = 6, middle), and SS-hMSCs (n = 5, right). (b) Bar graph representing serial changes in ischemic lesion volume (left) and ventricular

volume (right) (PBS-only vs. SS-hMSCs, �p<0.05, ��p<0.01; one-way ANOVA, Tukey post-hoc test).

https://doi.org/10.1371/journal.pone.0246817.g003
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indices maps of each group and the relative changes in FA, AD, RD, and FD values calculated

for the ischemic recovery area (ischemic recovery area/homologous contralateral area). There

were no statistical differences in contralateral absolute FA, AD, RD, and FD values between

groups at all follow-up times (p>0.05 for all cases). In the GEE model, relative changes of FA,

AD, RD, and FD showed statistically significant interaction between time and treatment

Fig 4. DTI and fiber tractography results. (a) Representative microstructural indices maps of rats treated with PBS-only (n = 6, left), FBS-hMSCs

(n = 6, middle), and SS-hMSCs (n = 5, right). (b) Quantitative analysis of relative fractional anisotropy (rFA), relative axial diffusivity (rAD), relative

radial diffusivity (rRD), and relative fiber density (rFD) (PBS-only vs. SS-hMSCs, �p<0.05, ��p<0.01; FBS-hMSCs vs. SS-hMSCs, §p<0.05, §§p<0.01;

one-way ANOVA, Tukey post-hoc test).

https://doi.org/10.1371/journal.pone.0246817.g004
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(p<0.001). In normal rats (n = 6), the relative microstructural indices such as FA, AD, and RD

were 1.00 ± 0.03, 0.98 ± 0.02, and 0.98 ± 0.02, respectively. At 1 day after tMCAo, relative FA

values of the PBS-only, FBS-hMSCs, and SS-hMSCs groups were 0.58 ± 0.06, 0.61 ± 0.08, and

0.56 ± 0.02, relative AD values were 0.61 ± 0.05, 0.65 ± 0.11, and 0.65 ± 0.09, and relative RD

values were 0.75 ± 0.05, 0.79 ± 0.16, and 0.80 ± 0.11, respectively. There were no significant dif-

ferences of microstructural indices among the groups at 1 day. At 2 weeks, significant differ-

ences in the relative FA values were observed between the PBS-only and SS-hMSCs groups

(p = 0.004), but not between other groups (PBS-only vs. FBS-hMSCs, p = 0.221; FBS-hMSCs

vs. SS-hMSCs, p = 0.090). There were no significant differences of the relative AD and RD val-

ues among the groups (p>0.05) at 2 weeks. At 5 weeks, significant differences in the relative

FA values were observed between the PBS-only and SS-hMSCs groups (p<0.001) and between

the FBS-hMSCs and SS-hMSCs groups (p = 0.003). The relative FA values of the FBS-hMSCs

groups were improved compared to those of the PBS-only group, but did not reach statistical

significance (p = 0.054). Except only the lower relative RD value of SS-hMSCs groups than

PBS-only groups (p = 0.038), there were no significant differences of the relative AD and RD

values among the groups at 5 weeks.

Fig 5 shows representative tractography images in the contra-/ipsilesional ROIs at 5 weeks

after stroke. At 1 day after tMCAo, the relative FD values of the PBS-only, FBS-hMSCs, and

SS-hMSCs groups were 0.53 ± 0.06, 0.54 ± 0.06, and 0.54 ± 0.04, respectively (1.05 ± 0.02 in

non-operated naïve rats, n = 6), and there were no significant differences among the groups.

At 2 weeks, significant differences in the relative FD values were observed between the PBS-

only and SS-hMSCs groups (p<0.001) and between the FBS-hMSCs and SS-hMSCs groups

(p = 0.015), but not between the PBS-only and FBS-hMSCs groups (p = 0.16). At 5 weeks, a

significant increase in FD values was observed in the SS-hMSCs group compared to the PBS-

only group (p = 0.008), but not when comparing the FBS-hMSCs and PBS-only groups

(p = 0.225).

Correlation between brain morphological changes and DTI

To investigate associations between morphological and microstructure/connectivity changes,

correlation analyses between T2-weighted images and DTI findings were performed (Fig 6). At

2 weeks, there was a significant correlation between infarct volume and relative FA (r = −0.532,

p = 0.028) and FD (r = −0.656, p = 0.004) ratios. Similarly, there was a significant correlation

between ventricular volume and relative FA (r = −0.494, p = 0.044) and FD (r = −0.591,

p = 0.012) ratios. Such correlations were statistically insignificant at 5 weeks, except for the cor-

relation between relative FA and degree of brain atrophy (r = −0.499, p = 0.042). There were

no significant correlation between T2-weighted morphological changes and the relative

AD/RD values at both time points (p>0.05).

Histological analysis

Five weeks after treatment, immunostaining with LFB for visualization of the myelinated fibers

in the ischemic damaged area was performed to test whether MRI results could reflect micro-

structural alterations after treatment of hMSCs (Fig 7). From FA map, compared to the contra-

lateral side, white matter rearrangement was occurred in the ischemic damaged area of

ipsilateral side, and these areas appeared to be more extended in the hMSCs groups than the

PBS-only group. The LFB staining showed a larger amount of myelinated fibers in the ische-

mic damaged region of the SS-hMSCs group than other groups.
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Discussion

The major findings of this study are (a) functional recovery after MSC therapy is associated

with morphological and microstructure/connectivity changes on MRI, (b) DTI techniques can

be used to compare the effects of two different MSC therapies, and (c) T2-weighted imaging

and DTI features correlate with each other, particularly during the early stage after tMCAo.

Our overall approach of using MR imaging data for MSCs therapeutic efficacy monitoring is

well taking current STEPS criteria [30]. This might help to provide better correspondence

between preclinical and clinical data in the field.

MRI can monitor morphological changes after neurological diseases, noninvasively. In

ischemic stroke, infarct volume changes in the acute and chronic stage are important

Fig 5. Diffusion tensor tractography images. (a) Imaging plane and color information. Color indicates predominant

orientation of reconstructed fiber tracts (red for left-right, green for superior-inferior, and blue for anterior-posterior).

Representative fiber tractography from the contra-/ipsilesional ROIs at 5 weeks after treatment with (b) PBS-only, (c)

FBS-hMSCs, and (d) SS-hMSCs.

https://doi.org/10.1371/journal.pone.0246817.g005
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Fig 6. Correlation between T2-weighted images and DTI findings. Relationship between (a) normalized ischemic

lesion volume and fractional anisotropy (FA), (b) normalized ischemic lesion volume and fiber density (FD), (c)

normalized ventricular volume and FA, (d) normalized ventricular volume and FD. The left panel shows results at 2

weeks after experimental stroke, and the right panel shows results at 5 weeks. Data are presented as Pearson correlation

ratios (r) and p values.

https://doi.org/10.1371/journal.pone.0246817.g006

PLOS ONE MRI methods for monitoring cell therapy efficacy

PLOS ONE | https://doi.org/10.1371/journal.pone.0246817 February 16, 2021 11 / 18

https://doi.org/10.1371/journal.pone.0246817.g006
https://doi.org/10.1371/journal.pone.0246817


prognostic factors, and lateral ventricular volume dilation is a secondary factor to atrophic

changes in the peri-infarct area [31]. Therefore, serial quantitative analysis of these changes,

calculated from T2-weighted imaging, is widely used to detect time dependent restoration or

treatment efficacy in ischemic stroke. The present data suggests that morphological changes

on T2-weighted imaging can be used as a sensitive indicator for neurorestoration, and possibly

neuroprotection, after ischemic brain damage and stem cell therapy.

In this study, quantitative DTI results were used as an important imaging outcome factor,

which were well matched to functional behavioral recovery as measured by mNSS. DTI is a

noninvasive imaging technique for visualizing brain microstructural alterations and connec-

tivity, which uses anisotropic diffusion of water molecule [15, 16, 21]. After ischemia, neuror-

estorative processes such as neurogenesis, angiogenesis and synaptogenesis cause

reorganization of neuronal fibers in the peri-infarct area [32–35]. This axonal remodeling

increases anisotropic diffusion of water molecules in that microenvironment. The FA value

derived from diffusion tensor calculations can indicate the extent of directionality of water dif-

fusion. The increase in FA appears to be correlated with neural fiber tract integrity or gliosis,

while a reduction in FA is correlated with functional deficits [12, 14, 22, 36–40]. The other

Fig 7. Representative FA maps and immunostaining with LFB. White arrows indicate white matter rearrangement on FA maps, and black arrows

indicate the distribution of myelinated fibers.

https://doi.org/10.1371/journal.pone.0246817.g007
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DTI-derived parameters such as AD and RD allow a better understanding of white matter

rearrangement after neuronal damage, rather than FA alone. Song and colleagues have dem-

onstrated that RD accurately reflects myelin integrity in mice experimental demyelination

model, and Jung and colleagues have suggested that progressive increase of AD and RD at

later stages of experimental stroke indicates spontaneous recovery after ischemia [13, 41].

Another DTI derived technique is fiber tractography, which is the only method available for

visualizing neural tracts and anatomical connectivity in vivo. Reconstructed tracts derived

from diffusion tensor tractography show general agreement with histology in post-mortem

human and nonhuman animals [42, 43]. In the present study, rats treated with stroke patients’

serum-preconditioned hMSCs showed significant decreases in RD, and increases in FA and

reconstructed fiber tracts (Figs 4 and 5). Our previous immunofluorescence staining results

[26] showed that MSC therapy increased neurogenesis and angiogenesis in the peri-infarcted

area and subventricular zone. Moreover, our present immunostaining results confirmed that a

high FA values in the ischemic boundary region of SS-hMSCs treated rats might due to a large

number of myelinated fibers. Based on our present histological results, quantitative analysis of

DTI-derived microstructural indices and FD can be used as potential imaging biomarkers to

identify reorganization of the brain after injury.

In the recovery phase of neurodegenerative diseases, there have been several studies on the

relationship between DTI parameters [13, 19, 44]. In the present study, there showed a positive

correlation between rFA and rFD (r = 0.818, p<0.001 at 2 weeks and r = 0.617, p = 0.008 at 5

weeks), and a negative correlation between FA and RD (r = −0.495, p = 0.043 at 2 weeks and

r = −0.567, p = 0.018 at 5 weeks). Our results are in line with the results of previous study

which suggested FA as a highly sensitive indicator reflecting axonal integrity [44]. Based on

our present immunostaining results with LFB, the recovery mechanism of stem cells after

experimental stroke is probably related to both the increase of axonal integrity and distribution

of myelinated fibers. However, no significant correlation was observed between FD and RD

values, which suggest that unmyelinated fibers or other neural cells may involved in the rear-

ranged white matter tracts. Further study is needed to elucidate the relationship between vari-

ous DTI parameters and complex recovery mechanisms.

Our analyses showed that DTI parameters were correlated with morphological changes

(both infarct volume and atrophic changes) during the early stage of infarct. Conversely, dur-

ing the later stage of infarct, only the degree of brain atrophy was correlated with DTI parame-

ters. This could be due to the following reasons. First, a marked reduction in infarct volume

was observed in all groups, while brain volume/atrophic changes were more consistent. Sec-

ond, infarct volume may represent neuroprotective effects while brain volume/atrophic

changes and DTI may represent neurorestorative effects of stem cells. Up until now, most pre-

clinical studies of stem cell therapy measured the infarct volume at 7–21 days after stroke, and

showed conflicting results concerning the degree of reduction of infarct volume [26, 45, 46].

The present study showed that DTI parameters more consistently predicted functional

improvement at 5 weeks, than infarct volume. Therefore, it is conceivable that both morpho-

logical and microstructure/connectivity images are needed to evaluate the action of stem cells

after stroke, which was not performed simultaneously in previous studies.

Various MRI markers are increasingly used to monitor post-stroke recovery after stem cell

and pharmacological therapies, in experimental models and humans [47]. Anatomical MRI

studies of small animal stroke models have shown conflicting results regarding the effects of

stem cell therapy on the reduction of infarct size, and none of the randomized trials of stem

cell therapy in stroke patients have compared infarct size between cell therapy groups and con-

trols. Our results are in line with MRI data from our previous clinical study, which showed

atrophy within peri-infarct areas and secondary dilations of the adjacent ventricle were less
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prominent in MSC-treated patients than in control patients [48]. A recent small study showed

cavity-filling by new neural tissue formation in patients who received intracerebral injection of

a neural stem cell line [49]. Jiang and colleagues used DTI techniques to measure white matter

recovery after stem cell therapy in a rat stroke model [22], and Chen and colleagues undertook

a stem cell therapy clinical study and showed that DTI fiber number asymmetry scores were

correlated with functional recovery, and were reduced in patients who received stem cells [50].

In the present study, two different stem cell therapies, i.e., the FBS-hMSCs and SS-hMSCs

groups, were applied to test whether MRI measurements could be used to compare the effects of

two different stem cell therapies in a rat model of stroke. Our data showed that treatment with

stroke patients’ serum-preconditioned hMSCs (the SS-hMSCs group) is superior to FBS-cul-

tured hMSCs (the FBS-hMSCs group) according to MRI-based assessment, as well as functional

behavioral testing. Therefore, multimodal quantitative MRI measurements could be used to

monitor the effects of novel cell-based therapy compared to preexisting therapies (e.g., naïve

MSCs). The choice of medium is important for the end result of stem cell therapy. Zacharek and

colleagues showed that treatment of stroke with bone marrow stem cells obtained from stroke

rats resulted in improved functional outcomes, compared to treatment with cells from normal

rats, suggesting the possible role of circulating factors on the activation of MSCs in stroke [29].

Our previous preclinical studies showed that culture expansion of MSCs, with serum obtained

in the acute phase of stroke, regulated trophic factor release and microRNA profiles, and

enhanced recovery after stroke by increasing proliferation rates and decreasing senescence of

MSCs, increasing migration to the infarcted brain area, and increasing neurogenesis/angiogene-

sis [26, 32, 51]. The results of the present preclinical study are in line with a randomized clinical

trial [8], and will be confirmed by an ongoing prespecified substudy of recovery MRI [24].

However, caution should be taken when interpreting DTI data. Diffusion tensor modeling

is not consistent when voxels contain multiple or crossing fibers, because of the partial volume

effect. Also, reconstructed fiber tracts from seeds generally agree with histological data, but

regions remote from ROIs could be misinterpreted [43]. Nonetheless, conventional DTI is a

simple and promising tool, due to the short acquisition time and ease of processing. In addi-

tion, it is well known that DTI-derived microstructural indices, such as FA, AD, and RD val-

ues, reflect brain microstructural alterations after damage. In the case of ischemic stroke,

neurorestorative processes in the peri-infarct area appear to play an important role in func-

tional recovery after ischemic damage, however, it has not yet been clearly defined how com-

plex these regenerated axonal structures are and what structures are connected to each other.

Therefore, we acquired conventional DTI data and performed quantitative analysis of micro-

structural indices and FD in the ischemic recovered area. Combining high resolution data

with advanced diffusion MRI techniques, such as diffusion spectrum magnetic resonance

imaging (DSI), more detailed exploration of the complicated recovery mechanisms in ischemic

stroke can be carried out. The present study has other limitations. First, correlation between

behavioral recovery and MRI measurements was not able to be assessed in individual animals,

because previous studies showed that repeated isoflurane-induced inhalational anesthesia for

MRI scanning affects the results of behavioral testing [52]. Second, quantitative analysis of

immunostaining was not performed in this study. Finally, resting state functional MRI tech-

niques could provide information on functional connectivity in stroke models, which is ongo-

ing in MSC extracellular vesicular therapy studies for small animal models of stroke.

Conclusion

In conclusion, the results of this study indicate that quantitative measurement of T2-weighted

volume changes and DTI-derived microstructural indices and FD changes well reflect
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neurological behavioral improvements in rat experimental stroke. Our data suggests that these

MRI imaging-based biomarkers could be potential outcome indicators of functional recovery,

after stem cell therapy in experimental models and possibly humans.
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