
fpsyg-12-654779 October 1, 2021 Time: 16:2 # 1

ORIGINAL RESEARCH
published: 07 October 2021

doi: 10.3389/fpsyg.2021.654779

Edited by:
Luca Romeo,

Marche Polytechnic University, Italy

Reviewed by:
Sandra Cano,

Pontificia Universidad Católica
de Valparaiso, Chile

Giulia Pazzaglia,
Marche Polytechnic University, Italy

*Correspondence:
Koichi Yamagata

koichi.yamagata@uec.ac.jp

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal
Frontiers in Psychology

Received: 17 January 2021
Accepted: 20 September 2021

Published: 07 October 2021

Citation:
Yamagata K, Kwon J,

Kawashima T, Shimoda W and
Sakamoto M (2021) Computer Vision
System for Expressing Texture Using

Sound-Symbolic Words.
Front. Psychol. 12:654779.

doi: 10.3389/fpsyg.2021.654779

Computer Vision System for
Expressing Texture Using
Sound-Symbolic Words
Koichi Yamagata1* , Jinhwan Kwon2, Takuya Kawashima1, Wataru Shimoda1 and
Maki Sakamoto1

1 Graduate School of Informatics and Engineering, The University of Electro Communications, Chofu, Japan, 2 Department of
Education, Kyoto University of Education, Kyoto, Japan

The major goals of texture research in computer vision are to understand, model,
and process texture and ultimately simulate human visual information processing
using computer technologies. The field of computer vision has witnessed remarkable
advancements in material recognition using deep convolutional neural networks
(DCNNs), which have enabled various computer vision applications, such as self-driving
cars, facial and gesture recognition, and automatic number plate recognition. However,
for computer vision to “express” texture like human beings is still difficult because texture
description has no correct or incorrect answer and is ambiguous. In this paper, we
develop a computer vision method using DCNN that expresses texture of materials. To
achieve this goal, we focus on Japanese “sound-symbolic” words, which can describe
differences in texture sensation at a fine resolution and are known to have strong and
systematic sensory-sound associations. Because the phonemes of Japanese sound-
symbolic words characterize categories of texture sensations, we develop a computer
vision method to generate the phonemes and structure comprising sound-symbolic
words that probabilistically correspond to the input images. It was confirmed that
the sound-symbolic words output by our system had about 80% accuracy rate in
our evaluation.

Keywords: texture, sound-symbolic words, tactile sensation, onomatopoeia, image databases

INTRODUCTION

Recent years have witnessed remarkable advances in machine learning. One important
breakthrough technique is known as “deep learning,” which uses machine learning algorithms
that automatically extract high-level features in data by employing deep architectures composed
of multiple non-linear transformations. Unlike conventional machine learning methods, deep
learning is similar to the human brain, which is organized as a deep neural network and processes
information through multiple stages of transformation and representation. By exploiting a deep
neural network to learn features at multiple levels of abstraction from data automatically, deep
learning methods enable a system to perform highly complex functions that directly map raw
sensory input data to the output without human manipulation. Many recent studies have reported
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excellent performance by applying deep learning techniques
to a variety of applications, including speech recognition
(Dahl et al., 2012; Hinton et al., 2012; Graves et al., 2013;
LeCun et al., 2015) and natural language processing (Collobert
and Weston, 2008; Conneau et al., 2016; Goldberg, 2016;
Manning, 2016). Among others, remarkable advancements have
been achieved in the field of computer vision using deep
convolutional neural network (DCNNs). Convolutional neural
networks (CNNs) combined with large-scale datasets such as
ImageNet (Russakovsky et al., 2014) have made great progress
in object and material recognition as well as scene classification.
Unlike conventional machine learning, the effective features
of an image can be automatically and quantitatively extracted
in the learning process when using CNNs (Krizhevsky et al.,
2012; Girshick et al., 2014; Sermanet et al., 2014; Simonyan and
Zisserman, 2014; Zeiler and Fergus, 2014; Szegedy et al., 2015).
Therefore, CNNs have received a large amount of attention in
the general object recognition field since the ImageNet Large
Scale Visual Recognition Challenge in 2012, and many CNN
architectures (e.g., VGG, GoogLeNet, R-CNNs, and Over-feat)
have demonstrated excellent performance in object recognition
and scene classification (Girshick et al., 2014; Sermanet et al.,
2014; Simonyan and Zisserman, 2014; Szegedy et al., 2015).
In material recognition, DCNN features also achieved excellent
performance. Cimpoi et al. (2014) proposed representing
material images with state-of-the-art image representations,
improved Fisher vectors (Perronnin et al., 2010), and DCNN
features extracted by DeCAF (Donahue et al., 2014), and
achieved a recognition rate of 67.1% for 10-class material photo
classification of the Flickr Material Database (FMD). In recent
years, Google obtained state-of-the-art results (an error rate of
6.6%) in the field of object category recognition in the 2014
ImageNet Large Scale Visual Recognition Challenge. In addition,
Microsoft Research Asia (MSRA) achieved an error rate of 3.5%
in the same contest. Furthermore, effective methods for learning
such as dropout have been reported (Srivastava et al., 2014).
Cimpoi et al. (2016) employed very deep CNNs for material
recognition and achieved a recognition rate of 82.2% on FMD
and 75.5% on the Describable Texture Dataset (DTD).

Various computer vision applications using DCNNs have been
employed in domains such as self-driving cars, facial and gesture
recognition, and automatic number plate recognition. Despite
the recent advances in material recognition, high-level human
cognition such as texture remains one of the most challenging
open problems. It is still difficult for computer vision methods
to express texture like a human because texture you feel from
materials has no correct or incorrect answer. For example, the
answer to the question “what’s this” for a cat is supposed to be “a
cat.” On the other hand, the answer to the question “how do you
feel the texture of a cat” could be light and feathery or warm and
fluffy. Inspired by the successes of deep learning, in this paper, we
attempt to develop computer vision that expresses the texture of
materials in the sense of “shitsukan” introduced by Komatsu and
Goda (2018). Texture in the sense of “shitsukan” is not confined
to material property and surface quality as well as the feel of a
finish or texture. It is also related to how you feel about the object.
In the words of Komatsu and Goda (2018), Shitsukan ( ) is

a Japanese word whose literal meaning is the sense (kan, ) of
quality (shitsu, ), and it is commonly used to cover the wide
range of topics to which material perception in a broad sense is
assigned. Although every sensory modality is involved in material
perception, we will focus mainly on it through vision.

Shitsukan perception is achieved by a process in which the
various physical quantities (e.g., surface shape and color) of
objects are detected by human sensory receptors and perceived
in the brain. Material and texture perception have been studied
in various fields such as neuroscience, psychophysics, and
vision psychology and has been revealed to involve glossiness,
transparency, wetness, and roughness perceptions (Tamura et al.,
1978; Lederman et al., 1986; Whitaker et al., 2008; Bensmaia,
2009; Lederman and Klatzky, 2009; Tiest, 2010). Although a
human perceives texture almost unconsciously and expresses it
easily, no computer system can express the texture of materials
as richly as humans. In this paper we developed a computer
vision system that expresses texture using sound-symbolic words
(SSWs). SSWs, or onomatopoeia, in Japanese, can describe
differences in texture sensation at a fine resolution. For example,
Japanese has more than 300 touch-related SSWs, more than
twice the number of adjectives that describe touch experiences
(Sakamoto and Watanabe, 2013). The texture of materials is
not represented by a single texture-related adjective. That is, a
product or material is usually expressed by two or more texture-
related adjectives, while it can be expressed by only one SSW.
For example, the texture of a down quilt can be expressed as
softness and a light and fluffy texture, while it can be expressed
by one SSW such as “fuwa-fuwa.” The texture of sand paper will
be expressed as a dry and rough texture, while it can be expressed
by one SSW “zara-zara.” “Sara-sara” and “zara-zara,” which are
different only in the first syllable of the repetition unit, denote
totally different tactile sensations. While the former is used for
expressing dry but smooth and pleasant touch, the latter is used
for expresses dry, rough and unpleasant touch.

In recent years, research interest has been growing in the
relationship between sound symbolism and perceptual matching
(Parise and Spence, 2012; Bremner et al., 2013; Sucevic et al.,
2013; Revill et al., 2014; Supeviü et al., 2015). Many researchers
have studied sound symbolism as an integrated expression
of texture and have verified its effectiveness (Sakamoto and
Watanabe, 2016, 2017, 2018; Sakamoto et al., 2016; Doizaki et al.,
2017). Sakamoto and Watanabe (2018), for example, shows that
for vowels, positive tactile ratings were associated with the back
vowel (/u/), while negative ratings were associated with the front
vowels (/i/and/e/). The central vowels (/o/and/a/) were mainly
associated with rough, hard, and dry feelings. Consonants were
categorized based on vocal features and articulation. The category
of the voiced consonants (e.g., /dz/and/g/) corresponded to
feelings of roughness, while that of voiceless consonants (e.g., /ţ/,
and/s/) corresponded to feelings of smoothness. The categories
of the bilabial plosive (/p/and/b/) and voiced alveolar nasal (/n/)
consonants were mainly related to soft, sticky and wet feelings,
while that of voiceless alveolar affricate (/ /ţ/) and voiceless velar
plosive (/k/) consonants were related to hard, slippery and dry
feelings. Kitada et al. (2021) conducted a functional magnetic
resonance imaging experiment and showed that the brain regions
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engaged in tactile texture processing of object properties are also
involved in mapping sound symbolic information with tactually-
perceived object properties. The existence of SSWs has been
demonstrated in a wide variety of languages (Köhler, 1929;
Sapir, 1929; Bolinger, 1950; Hinton et al., 1994; Nuckolls, 1999;
Ramachandran and Hubbard, 2001; Schmidtke et al., 2014).
For example, English words starting with “sl-” such as “slime,”
“slush,” “slop,” “slobber,” “slip,” and “slide” symbolize something
smooth or wet (Bloomfield, 1933). Although various assumptions
have been proposed for how linguistic phoneme are associated
with certain stimuli and there is still no generally consensus
(Sidhu and Pexman, 2018), we assume that learning process
may be involved in the associative relationship between speech
sounds and sensations. For example, Japanese repeatedly hear
the phoneme “s” in “sara-sara” to express dry but pleasant
textures, and the phoneme “s” in “sube-sube” to express dry but
smoother ones. Interestingly, the phoneme with “s” is associated
with smooth in English as exemplified “slippery,” “slime,” “slush,”
“slop,” and “slide.” As another example, the phoneme “gl” is
associated with something bright in Japanese such as “gila-gile.”
In the same way, roughly half of the English words starting
with “gl-” imply something visual and bright, as in glance, glare,
gleam, glimmer, glamor, glass, glaze, glimpse, glint, glisten, glitter,
globe, glossy, and glow (Crystal, 1995). Based on this repetition,
we may learn what kind of sensation tends to be associate with
certain phonemes. In other words, we assume that the human
brain has a database of phonemes and perceptual learning. In
this study, therefore, we aim to extract textural expressions
using the learning process of sound symbolism and perceptual
characteristics. More specifically, we develop a computer vision
system using a DCNN that expresses the texture of materials
using texture terms. To achieve this goal, we use Japanese
SSW, which can describe differences in texture sensation at a
fine resolution and are known to have a strong and systematic
association between phonemes and texture sensations. In this
study, we aim to generate textural expressions using DCNN and
SSWs as variables to converge the various material and texture
features.

The specific contributions of this paper are twofold. First, we
created a new material image data set called the Texture-based
FMD and collected SSWs corresponding to the Texture-based
FMD. Our material image data set is suitable for capturing texture
representation and machine learning. Second, we developed a
DCNN-based computer vision system that expresses the texture
of materials using SSWs. This system can stochastically represent
the probabilistic phonemic elements and structure, including
correlation information, that comprise SSWs using a DCNN
and can describe various textures of materials and objects. The
integrated expression of the texture through SSWs is a challenge
for texture and material expression in the future.

In the remainder of this paper, we reported related works
about material datasets in section “Material Datasets,” and we
describe the new material image data set and learning model of
the DCNN in section “Materials and Methods,” then we describe
the results in section “Results.” We then validate our model by the
accuracy rate of SSWs output by the system for images in section
“Accuracy Evaluation”.

MATERIAL DATASETS

For material and texture perception, there have been two
major approaches to creating material datasets. First, researchers
published datasets that were focused on a single material
representation created under controlled conditions (Dana et al.,
1999; Hayman et al., 2004; Caputo et al., 2005; Liu et al.,
2013). These datasets’ samples are photographed under various
lighting conditions, viewing angles, and scales. However, these
datasets are not enough to generalize material representation
under complex real-world conditions because the material
instances are only measured under controlled illumination or lab
environments. Dana et al. (1999) created the CUReT database,
which contains 61 different texture and material samples
photographed in 205 different lighting and viewing conditions.
The CUReT dataset was the first large-scale texture and material
dataset and has become the standard for evaluating three-
dimensional texture classification algorithms. This database
was used for instance-level texture or material classification
tasks (Leung and Malik, 2001; Varma and Zisserman, 2005).
Hayman et al. (2004) extended the CUReT database to the
KTH-TIPS database by adding scale variation and imaging 10
categories from the CUReT dataset at different scales. They
varied the distance of the acquired sample to the camera to
consider the scale of the textures and to change viewpoint and
illumination angles. Subsequently, KTH-TIPS2 was introduced
by Caputo et al. (2005) and contains 4,608 images from 11
material and texture categories, where each category has four
samples. KTH-TIPS2 increased the intra-class variation by
photographing images under a variety of conditions. Specifically,
all the samples are imaged under various lighting conditions
(from the front, side at 45◦, and top at 45◦ and under ambient
light), viewing angles (frontal, rotated 22.5◦ left, and 22.5◦
right) and scales (nine scales equally spaced logarithmically
over two octaves). The KTH-TIPS2 database has been used
for studying material recognition because it represents novel
instances of materials. The limitations of all these databases
are the limited measurements and acquisition under controlled
lab environments. Therefore, the variation and complexity of
material and texture of real-world scenes are not included within
them. In contrast, the second category of datasets is characterized
by acquisition under uncontrolled conditions (Sharan et al.,
2009; Cimpoi et al., 2014). For instance, researchers have created
datasets using images from an Internet image database such as
Flickr. The datasets have the merits that the intra-class variance
of materials and the environmental conditions can be considered.

The FMD was created to represent the large intra-class
variation of materials in complex real-world scenes (Sharan
et al., 2009). The FMD consists of Flickr photos downloaded
from Flickr.com and material samples under uncontrolled
illumination and viewing conditions. It contains 1,000 images
from ten common material categories: “Fabric,” “Foliage,”
“Glass,” “Leather,” “Metal,” “Paper,” “Plastic,” “Stone,” “Water,”
and “Wood.” The 100 color photographs in each category are
characterized by 50 close-ups and 50 object-level views. These
images capture the diversity of real-world material appearance
by avoiding the poor intra-class variation found in earlier

Frontiers in Psychology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 654779

http://Flickr.com
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-654779 October 1, 2021 Time: 16:2 # 4

Yamagata et al. System Expressing Texture Using SSW

databases. In addition, Cimpoi et al. (2014) released the DTD,
which includes 5,640 texture images representing real-world
texture images. They annotated the texture images with one
or more adjectives (describable texture attributes) selected in
a vocabulary of 47 English words such as banded, chequered,
dotted, fibrous, grid, meshed, and zigzagged. They used a crowd-
sourcing service, Amazon Mechanical Turk, to select good
images from images gathered from the Web. DTD addresses how
the problem of texture description differs from those of material
recognition considered in CUReT, KTH, and FMD. Specifically,
they addressed the fact that the describable attributes depend
on subjective properties such as human judgments, whereas
materials are objective. However, the objects we encounter
in every-day life are hardly represented by a single adjective
(describable texture attributes) because they usually have two
or more attributes. In addition, the GeoMat dataset, which
provides real world material images and geometric information
and the Materials in Context database, which consists of many
full scenes with material labels, are also available (Bell et al., 2015;
DeGol et al., 2016).

MATERIALS AND METHODS

Texture-Based Flickr Material Database
In this study, we focus on FMD, which contains the diversity
of real-world material appearances and has been acquired under
uncontrolled conditions (Sharan et al., 2009). However, it is
difficult to describe and extract the texture features from FMD

images because multiple objects and textures are included in
the images. In fact, there are four spatial scales for visual
recognition: surface (extreme close-up views), material (close-
up views), object (regular views), and scene (zoomed-out views),
but the FMD depicts spatial scales in the range from material
(close-up views) to scene (zoomed-out views) (Sharan et al.,
2013). Therefore, in this study, we created a new image dataset
suitable for texture and deep learning. To create this new
dataset, we conducted an experiment to identify texture images
from FMD images.

One hundred participants (25 women and 75 men, mean age
22.1 years) participated in the experiment and were divided into
10 groups. All participants had normal hearing and normal or
corrected-to-normal visual acuity, and were not informed of the
purpose of the experiment. Participants were paid to take part
in the experiments, and written informed consent was obtained.
These experiments were approved by the ethics committee of
the University of Electro-communications. We divided all 100
images in each 10 material categories (fabric, foliage, glass,
leather, metal, paper, plastic, stone, water, and wood) into 10
groups. As a result, 1,000 FMD images were classified into 10
groups. Figure 1A shows an example of the FMD image stimuli.
Each group of visual stimuli were presented for each participant
group. Each trial was conducted in an isolated test room under
controlled lighting conditions. Participants were kept at a viewing
distance of approximately 50 cm from a touch panel display
showing the visual stimuli. The visual stimuli were presented
vertically at eye height in a random order using the slideshow
function of Microsoft Power-Point 2010. Participants were given

FIGURE 1 | (A) Examples of FMD images and (B,B′) examples of extracted FMD texture images.
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TABLE 1 | SSWs described freely by the participants in the experiment conducted in section “System That Expresses Texture Using Sound-Symbolic Words
Corresponding to the Texture-Based Flickr Material Database”.

Id Image SSW Id Image SSW

1 Gowagowa(8), zarazara(4),
zowazowa(1), tikutiku(1),

mosamosa(1), mofumofu(1)

2 sarasara(7), turuturu(4),
tuyatuya(2), subesube(2),

syansyan(1), kushikushi(1),
kirikiri(1)

3 Turuturu(6), tekateka(4), gingin(2),
tuyatuya(2), moyomoyo(1),

pikapika(1), shinshin(1),
gotsugotsu(1), katikati(1)

4 zarazara(4), butubutu(3),
togetoge(2), tikutiku(2),

tubutubu(2), botubotu(1),
pokopoko(1), fuwafuwa(1),

zitozito(1)

5 Pikapika(4), turuturu(4), tekateka(3),
tuyatuya(3), subesube(1),

syunsyun(1), syakisyaki(1), kinkin(1),
hinyaLi(1)

6 Sarasara(2), minmin(1),
perapera(1), tekateka(1),
turuturu(1), surusuru(1),

zarazara(1), gusyagusya(1)

7 turuturu(5), tekateka(4), pikapika(3),
tuyatuya(2), sarasara(1), katukatu(1)

8 Gotugotu(8), garigari(2),
bokoboko(2), zarazara(2),
gowagowa(2), gorigori(1),
garagara(1), katukatu(1),
gatigati(1), dekadeka(1),

tubutubu(1)

9 Kirakira(3), tekateka(2), yurayura(1),
powapowa(1), pochapocha(1),

pokopoko(1), fuyofuyo(1),
pikapika(1), numenume(1),
turuturu(1), chapuchapu(1),
taputapu(1), shitoshito(1),
shiQtoLi(1), sarasara(1)

10 Zarazara(9), boroboro(1),
bosoboso(1), tubutubu(1),

tikutiku(1), zerizeri(1),
gowagowa(1)

11 sarasara(7), surusuru(2),
fuwafuwa(1), fuyofuyo(1), funifuni(1),
hirahira(1), teratera(1), tuyatuya(1),

zowazowa(1), gowagowa(1)

12 surusuru(2), siwasiwa(2),
howahowa(1), fusafusa(1),

hirahira(1), surusuru(1),
zawazawa(1), gowagowa(1)

13 Turuturu(2), nurunuru(2),
tekateka(2), moyomoyo(1),

pochapocha(1), puyopuyo(1),
punipuni(1), numenume(1),

tuyatuya(1)

14 Gowagowa(4), zarazara(4),
tekateka(2), turuturu(1),

surusuru(1), zuyazuya(1),
zirazira(1), gatagata(1)

15 Bokoboko(3), zarazara(3),
pikapika(3), kirakira(2), turuturu(2),

pokopoko(1), botubotu(1),
pukupuku(1), tokotoko(1),

syarisyari(1), zarazara(1), kinkin(1)

16 Turuturu(2), surusuru(2),
zarazara(2), sarasara(2),
surusuru(1), sarasara(1),

gowagowa(1)

17 Turuturu(7), tuyatuya(3), teratera(1),
tekateka(1), pokopoko(1),
pikapika(1), tubutubu(1),
surusuru(1), subesube(1)

18 Zarazara(6), sarasara(3),
bosoboso(2),

mosomoso(1), fuwafuwa(1),
tubutubu(1), zuruzuru(1),

gowagowa(1), gozogozo(1),
guigui(1)

19 Pichapicha(2), pochapocha(2),
tekateka(2), yurayura(1),

moyomoyo(1), huyohuyo(1),
pasyapasya(1), nurunuru(1),

turuturu(1), tuyatuya(1),
chapuchapu(1), tapotapo(1),

taputapu(1), shitoshito(1),
sarasara(1), kirakira(1), pityupityu(1)

20 Zarazara(5), gotugotu(3),
bokoboko(2),

gowagowa(2), kotukotu(1),
guriguri(1), gishigishi(1),
katukatu(1), kasakasa(1)

The numbers mean the number of times the SSWs were described.
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TABLE 2 | 88-Dimensional SSW array.

Phonological
characteristics

Dimensions Phonemes

Vowels 1 (v1) 5 /a/,/i/,/u/,/e/,/o/

Consonants 1 (c1) 27 /k/,/ky/,/g/,/gy/,/s/,/sy/,/z/,/zy/,/t/,/ty/,
/d/,/dy/,/n/,/ny/,/h/,/hy/,/b/,/by/,/p/,/py/,
/m/,/my/,/y/,/r/,/ry/,/w/or absence

Special phonemes 1
(s1)

3 /N/,/Q/,/R/

Vowels 2 (v2) 5 /a/,/i/,/u/,/e/,/o/

Consonants 2 (c2) 27 /k/,/ky/,/g/,/gy/,/s/,/sy/,/z/,/zy/,/t/,
/ty/,/d/,/dy/,/n/,/ny/,/h/,/hy/,/b/,/by/,
/p/,/py/,/m/,/my/,/y/,/r/,/ry/,/w/or
absence

Special phonemes 2
(s2)

4 /N/,/Q/,/R/,/Li/

Repetition (r) 1 Presence or absence

MD5 (h) 16 Binary sequence

a brief explanation of SSWs with some examples of SSWs that
were assumed to be used for texture. Participants were asked to
describe texture spontaneously using SSWs and mark the part of
the visual stimulus they focused on when describing the texture.
We then cropped each image part that three or more participants
marked on each image to produce a new image set. Figures 1B,B′
show examples of cropped images. For example, two images
were cropped from the left and center images of Figure 1A,
respectively, and one image was cropped from the right image
of Figure 1A. Because the average size of the image parts marked
by participants was approximately 100 pixels, we cropped square
images of 150× 150 pixels from the original images of 512× 384
pixels. We obtained about 2 cropped images from each original
image. Consequently, we obtained a total of 1,946 image samples.

System That Expresses Texture Using
Sound-Symbolic Words Corresponding
to the Texture-Based Flickr Material
Database
In this section, we report the results of an experiment to
investigate SSWs corresponding to the Texture-based FMD.

FIGURE 3 | Learning curve (the blue line is training data and the red line is
test data).

Because texture representations can be expressed by a variety
of SSWs by various phonemes, and because there is not one
correct answer, we asked 10 subjects per image to describe
texture spontaneously using SSWs. One hundred participants
(25 women and 75 men, mean age 20.6 years) took part in the
experiment and were divided into 10 groups. All participants
had normal hearing and normal or corrected-to-normal visual
acuity, and were not informed of the purpose of the experiment.
Participants were paid to take part in the experiments, and
written informed consent was obtained. These experiments were
approved by the ethics committee of the University of Electro-
communications. The apparatus and procedure were the same as
in the above experiment with the following exceptions: We used
the newly created 1,946 image samples, which were classified into
10 groups. Each group of visual stimuli was presented to each
participant group. Participants were given a brief explanation
of SSWs with some examples of SSWs that were assumed to be
used for texture. Participants were instructed to spontaneously
describe the texture of the material shown in each image using
one to six SSWs. As a result, we obtained 29,443 SSW tokens
(1,885 different SSWs). Table 1 shows SSWs described freely

FIGURE 2 | Overview of our method.
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by the participants for 20 images out of 1,946 images used in
this experiment. The numbers in this table mean the numbers
of times the SSWs were described for each image. Some of the
them are commonly used, such as “gowa-gowa” and “sara-sara,”
while some are unfamiliar and unique, such as “moyo-moyo” and
“kiri-kiri”.

Learning Model
When detailed textures are freely expressed by SSWs, there is no
single correct answer, and a variety of SSWs can be used. The
probability distributions of phonemes in SSWs used here can
be expected to contain detailed information about the texture.
In this paper, we construct a learning model that estimates the
probability distribution of phonemes in SSWs for images to
construct a system to generate SSWs.

The training data are pairs of images and phonetic binary
vectors of SSWs, and we developed a model that predicts
phonological probability vectors from images. The phonological
vectors consist of 5, 27, 3, 5, 27, 4, 8, 1, and 16 dimensional
binary vectors v1, c1, s1, v2, c2, s2, r, and h (see Table 2).
The five-dimensional hot-one vectors v1 and v2 correspond
to the vowels of the first and second phonemes, respectively.
The 27-dimensional hot-one vectors c1 and c2 correspond to
the consonants of the first and second phonemes, respectively.
The binary vectors s1 and s2 represent the presence or absence
of special phonemes following the first and second phonemes.
The single binary value r represents the presence or absence
of repetition. Since our model estimates each probability of
phonological element independently, above vectors alone do not
reflect the probabilistic correlations. To account for probabilistic
correlations, we added a 16-dimensional binary sequence h
generated by hashing v1, c1, s1, v2, c2, s2, and r using MD5. Since
MD5 breaks independence uniformly, we can expect h to contain
correlation information.

Figure 2 shows the overview of the learning model used in
our study. This model takes images as input and outputs 88-
dimensional vectors to estimate phonological vectors. We used
VGG 16, a learning model of 1,000 types of general object
recognition performed in 2015, as a reference CNN model,
which contains 13 CONV layers and 3 FC layers (Simonyan and
Zisserman, 2014). In addition, we applied dropout to the first
two FC layers to avoid overfitting with a dropout ratio set to 0.5.
The output vectors are divided into 5, 27, 3, 5, 27, 4, 8, 1, and
16 dimensional vectors, and the loss function is the sum of loss

functions for phonological vectors v1, c1, s1, v2, c2, s2, r, and h.
The log-softmax loss function is used for v1, c1, v2, c2, and the
log-sigmoid loss function is used for s1, s2, r, h. Note that the
total cross entropy loss for several independent models is the sum
of the cross-entropy losses for each model. We used stochastic
gradient descent and mini-batch training with a batch size of
40 and a momentum factor 0.5. We set the learning coefficient
parameter to 0.0000025, number of epochs to 1,00, and CONV
layers were frozen. The 1,946 images were divided into 1,751
training data and 195 test data for 10-fold cross-validation.

RESULTS

Figure 3 shows the learning curves obtained by the learning
model with 29,443 pairs of images and phonetic binary vectors
of SSWs. The decrease of cross-entropy losses can be confirmed.

The aim of this research is to output the stochastic phonemes
describing the material textures. Table 3 shows the estimated
probability vectors for the phonemes with the exception of MD5,
which were output when the leftmost image in Figure 1B was
input to the model. This system can stochastically represent the
output frequency of the phonemes and structure comprising
the SSW. In particular, if we select and combine phonemic and
structural elements with the highest number of occurrences, the
SSW becomes “gowa-gowa.” In fact, “gowa-gowa” was the most
frequently answered SSW by the participants. Furthermore, when
we used the next highest numbers of occurrences, we obtained
the SSWs “zara-zara,” “mosa-mosa,” and “boko-boko.” This
probabilistic phoneme output led to a new method that expressed
the diversity of a material’s texture. The output corresponding to
MD5 can exclude undesirable combinations of phonemes such
as “zowo-zowo” and “garu-garu,” because cross-entropy losses of
these SSWs for vector h are high.

ACCURACY EVALUATION

In order to evaluate the accuracy of the system, we attempted to
obtain the accuracy rate of SSWs output by the system for images.
Since there are a huge number of possibilities of combination of
phonemes for SSWs, and since there is no one right answer for an
image, some restrictions and rules are necessary. We restricted
SSWs to the 1,885 different SSWs that were answered in the
experiment. Our system can compute cross entropy loss for an

TABLE 3 | Example of output array translated to normalized weight by softmax and sigmoid functions (S/P is the special phoneme category and the numerical values
show the output frequency rates).

First mora Second mora Repetition

Vowel Consonant S/P Vowel Consonant S/P

O 0.56 g 0.34 N 0.02 a 0.75 w 0.38 N 0.01 Re 0.96

A 0.29 z 0.22 Q 0.01 o 0.11 r 0.19 Q 0.02

U 0.08 m 0.15 R 0.01 u 0.07 s 0.13 R 0.01

I 0.05 b 0.10 i 0.05 k 0.09 L 0.01

. . . . . . . . . . . . . . . . . . . . . . . .
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TABLE 4 | SSWs generated by the system for some images that is not used for the learning.

Id Image SSWs generated by the system SSWs answered in the
experiment

1539 1.turuturu*
2.zarazara*
3.gotugotu

Giragira(4), zarazara(3), turuturu(2),
bokoboko(1), butubutu(1),
pikapika(1), nuranura(1),
tekateka(1), tuyatuya(1),
gowagowa(1)

1511 1.zarazara
2.turuturu
3.sarasara*

meshiq(1), mishimishi(1),
fuwafuwa(1), biribiri(1), turun(1),
surasura(1), suuQ(1),
shimashima(1), sarasara(1),
gishigishi(1), gizagiza(1),
gasagasa(1)

84 1.turuturu*
2.zarazara*
3.toratora

Turuturu(3), zuruzuru(2), zarazara(2),
pikapika(1), teratera(1), tekateka(1),
zuyazuya(1), tuyatuya(1),
subesube(1), zarizari(1), zaazaa(1),
gowagowa(1)

818 1.zarazara*
2.gawagawa
3.turuturu

Mofumofu(4), bosabosa(2),
mosamosa(2), fuwafuwa(2),
wasyawasya(1), wasawasa(1),
mosomoso(1), mozyamozya(1),
mokomoko(1), bosoboso(1),
hokahoka(1), booboo(1), piropiro(1),
surusuru(1), syarasyara(1),
zarazara(1), gowagowa(1)

1323 1.turuturu*
2.tekateka*
3.pukupuku

Turuturu(5), pikapika(3), tekateka(2),
tuyatuya(2), kirakira(2), tekaLi(1),
turuLi(1), katikati(1)

1701 1.sarasara*
2.fuwafuwa
3.yurayura

Perapera(2), kusyakusya(2),
kasakasa(2), sarasara(1),
gowagowa(1), gosogoso(1),
gunyoQ(1), gusya(1)

294 1.turuturu*
2.tuyatuya
3.tekateka*

Turuturu(4), zarazara(2), yurayura(1),
boyaboya(1), tekateka(1),
syurusyuru(1), kurakura(1)

1781 1.turuturu*
2.gotugotu
3.tuyatuya

Pikapika(4), tekateka(4), turuturu(4),
hiyahiya(1), zuQshiLi(1), gongon(1),
kotikoti(1), goon(1), kinkin(1),
giragira(1), kirakira(1), kankan(1),
katikati(1), gatagata(1), bikabika(1)

1244 1.turuturu*
2.gotugotu
3.sarasara*

Kirakira(3), sarasara(2), betabeta(1),
funwaLi(1), hirahira(1), pityaputya(1),
pikapika(1), numenume(1),
turuturu(1), subesube(1),
syarasyara(1), zyabazyaba(1),
zarazara(1), sara(1)

1452 1.sarasara*
2.turuturu
3.kirakira

Sarasara(3), wasawasa(1),
merimeri(1), pirapira(1),
pasapasa(1), saQkuri(1),
kusyakusya(1)

These are the three SSWs with the smallest cross entropy loss for each image. Each generated SSW is marked by asterisk if the same SSW was answered in the
experiment conducted in section “System That Expresses Texture Using Sound-Symbolic Words Corresponding to the Texture-Based Flickr Material Database”.
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image and SSW pair. Therefore, we selected the SSW with the
lowest loss in the 1,885 SSWs for a given image as the first and
second candidate SSWs. Furthermore, we defined the candidate
SSW is correct if it is included in the SSWs answered in the
experiment for the given image. Table 4 shows SSWs generated by
the system for some images that is not used for the learning. These
are the three candidate SSWs with the smallest cross entropy loss
for each image. Each generated SSW is marked by asterisk and
considered the correct answer if the same SSW was answered
in the experiment conducted in section “System That Expresses
Texture Using Sound-Symbolic Words Corresponding to the
Texture-Based Flickr Material Database.” The curves in Figure 4
shows the accuracy rate of the first candidate SSWs given by our
system. We can see that even the test images, which is not used
for training, have accuracy rates of about 80%. In the same way,
we computed the accuracy rates of the second candidate SSW.
The curves in Figure 5 shows the accuracy rate of the second
candidate SSWs given by our system. We can confirm that the
second candidate SSW has about 40% of accuracy rates.

FIGURE 4 | Accuracy rate curves of first candidate SSWs (the blue line is
training data and the red line is test data).

FIGURE 5 | Accuracy rate curves of second candidate SSWs (the blue line is
training data and the red line is test data).

CONCLUSION AND FUTURE WORK

In this paper, we developed a DCNN-based computer vision
system that expresses the texture of materials. To achieve this
goal, we used Japanese SSW expressing texture, which can
describe differences in texture sensation at a fine resolution and
are known to have strong and systematic associations between
perceptual sensations and phoneme. As a result, it became
possible to stochastically represent the output frequency of the
phonemes and structure of the SSWs for the input images. It was
confirmed that the SSWs output by our system had about 80%
accuracy rate in our evaluation.

One application of this technique is to create new names
according to the characteristics of a texture. Previous studies
have pointed out that consumers associate fictitious brand
names with product’s property-related information (Dana et al.,
1999; Hayman et al., 2004). For example, a previous study
demonstrated that people expected a creamier, richer, and
smoother ice cream when it was named “Frosh” rather than
“Frish” (Caputo et al., 2005). In this study, we focused on the
relationship between texture and perceptual phonemes and thus,
it was possible to output perceptual phonemes according to the
texture characteristics. Therefore, our concept could be applied
when creating new names for new textures, materials, or new
objects. It is said that humans and robots will coexist in the future.
If a computer vision that can express textures like humans is
created, robots equipped with such computer visions may be able
to teach textures for blind people.

The limitation of this study is that it was studied only
in Japanese. However, we believe that this concept could be
applied to other languages in the future and the output of
perceptual phonemes on images could be investigated and
applied globally. In fact, the existence of sound-symbolic
words (SSWs) has been demonstrated in a wide variety of
languages (Köhler, 1929; Sapir, 1929; Bolinger, 1950; Hinton
et al., 1994; Nuckolls, 1999; Ramachandran and Hubbard, 2001;
Schmidtke et al., 2014). English words starting with “sl-” such
as “slime,” “slush,” “slop,” “slobber,” “slip,” and “slide” symbolize
something smooth or wet (Bloomfield, 1933). Doizaki et al.
(2017) conducted an experiment at a workshop held at the
World Haptics 2013 conference and observed the “bouba-
kiki” effect in touch using eight tactile stimuli. Around 60
people participated in the workshop, and more than half of the
participants were from Europe, the United States, and other
countries. Universality of sound symbolism has been suggested
by the previous researches. However, we assume that learning
process may be involved in the associative relationship between
speech sounds and sensations. Therefore, each language or
culture may need its own database to create a computer vision
expressing texture.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article
will be made available by the authors, without undue
reservation.

Frontiers in Psychology | www.frontiersin.org 9 October 2021 | Volume 12 | Article 654779

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-654779 October 1, 2021 Time: 16:2 # 10

Yamagata et al. System Expressing Texture Using SSW

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. The patients/participants
provided their written informed consent to participate
in this study.

AUTHOR CONTRIBUTIONS

KY designed the method and the system. JK and TK were
responsible for much of the system development. MS was an
expert in Kansei systems and her contribution to the idea was

significant. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by the MEXT (Grant Nos. JP23135510
and JP25135713) and JSPS KAKENHI (Grant No. JP15H05922).

ACKNOWLEDGMENTS

We thank Kim Moravec, Ph.D. from Edanz Group
(www.edanzediting.com/ac) for editing a draft of
this manuscript.

REFERENCES
Bell, S., Upchurch, P., Snavely, N., and Bala, K. (2015). “Material recognition in

the wild with the Materials in Context Database,”.Procceeding of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (Boston, MA)
3479–3487. doi: 10.1109/CVPR.2015.7298970

Bensmaia, S. J. (2009). Texture from touch. Scholarpedia 4:7956.
Bloomfield, L. (1933). Language. New York, NY: Henry Holt.
Bolinger, D. (1950). Rime, assonance, and morpheme analysis. Word 6, 117–136.

doi: 10.1080/00437956.1950.11659374
Bremner, A. J., Caparos, S., Davidoff, J., de Fockert, J., Linnell, K. J., and Spence, C.

(2013). “Bouba” and “Kiki” in Namibia? A remote culture makes similar shape-
sound matches, but different shape-taste matches to Westerners. Cognition 126,
165–172. doi: 10.1016/j.cognition.2012.09.007

Caputo, B., Hayman, E., and Mallikarjuna, P. (2005). Class-specific material
categorization. ICCV 2, 1597–1604.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014).
“Describing textures in the wild,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (Washington, D.C) 3606–3613.

Cimpoi, M., Maji, S., Kokkinos, I., and Vedaldi, A. (2016). Deep Filter Banks
for Texture Recognition, Description, and Segmentation. Internat. J. Comput.
Vision 118, 65–94. doi: 10.1007/s11263-015-0872-3

Collobert, R., and Weston, J. (2008). “A unified architecture for natural language
processing: Deep neural networks with multitask learning,”.in Proceedings of the
25th international conference on Machine learning. (ACM), 160–167.

Conneau, A., Schwenk, H., Barrault, L., and Lecun, Y. (2016). Very
deep convolutional networks for natural language processing. arXiv
2016:1606.01781.

Crystal, D. (1995). The Cambridge Encyclopedia of the English Language.
Cambridge, MA: Cambridge University Press.

Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pretrained
deep neural networks for large-vocabulary speech recognition. IEEE Transact.
Audio Speech Lang. Proc. 20, 30–42. doi: 10.1109/tasl.2011.2134090

Dana, K. J., Van-Ginneken, B., Nayar, S. K., and Koenderink, J. J. (1999).
Reflectance and texture of real world surfaces. ACM Transact. Graph. 18, 1–34.
doi: 10.1145/300776.300778

DeGol, J., Golparvar-Fard, M., and Hoiem, D. (2016). “Geometry-Informed
Material Recognition,” In Proceeding of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Las Vegas) 1554–1562. doi: 10.1109/
CVPR.2016.172

Doizaki, R., Watanabe, J., and Sakamoto, M. (2017). Automatic Estimation of
Multidimensional Ratings from a Single Sound-symbolic Word and Word-
based Visualization of Tactile Perceptual Space. IEEE Transac. Hapt. 10, 173–
182. doi: 10.1109/TOH.2016.2615923

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., et al. (2014).
Proceedings of the 31st International Conference on Machine Learning. PMLR
32, 647–655.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. Las Vegas: CVPR.

Goldberg, Y. (2016). A Primer on Neural Network Models for Natural Language
Processing. J. Artif. Intell. Res. (JAIR) 57, 345–420. doi: 10.1613/jair.
4992

Graves, A., Mohamed, A. R., and Hinton, G. (2013). “Speech recognition with deep
recurrent neural networks. Acoustics, speech and signal processing (icassp),”
in Proceedings of the 2013 IEEE international conference on. (Karlsruhe) 6645–
6649.

Hayman, E., Caputo, B., Fritz, M., and Eklundh, J.-O. (2004). On the significance
of realworld conditions for material classification. ECCV 2004. LNCS
2004:3024.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., et al. (2012).
Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine 29, 82–97.
doi: 10.1109/msp.2012.2205597

Hinton, L., Nichols, J., and Ohala, J. (1994). Sound Symbolism. Cambridge, MA:
Cambridge University Press.

Kitada, R., Kwon, J., Doizaki, R., Nakagawa, E., Tanigawa, T., Kajimoto, H., et al.
(2021). Brain Networks Underlying the Processing of Sound Symbolizm Related
to Softness Perception. Sci. Rep. 11, 1–13.

Köhler, W. (1929). Gestalt Psychology. NewYork, NY: Liveright Publishing
Corporation.

Komatsu, H., and Goda, N. (2018). Neural Mechanisms of Material Perception:
Quest on Shitsukan. Neuroscience 392, 329–347. doi: 10.1016/j.neuroscience.
2018.09.001

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Adv. Neural Inform. Proc. Syst.
1097–1105.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lederman, S. J., and Klatzky, R. L. (2009). Haptic perception: A tutorial. Attent.
Percept. Psychophy. 71, 1439–1459. doi: 10.3758/APP.71.7.1439

Lederman, S. J., Thorne, G., and Jones, B. (1986). Perception of texture by vision
and touch: Multidimensionality and intersensory integration. J. Exp. Psychol.
Hum. Percept. Perf 12, 169–180. doi: 10.1037/0096-1523.12.2.169

Leung, T., and Malik, J. (2001). Representing and recognizing the visual appearance
of materials using three-dimensional textons. Internat. J. Comp. Vision 43,
29–44.

Liu, C., Yang, G., and Gu, J. (2013). “Learning discriminative illumination and
filters for raw material classification with optimal projections of bidirectional
texture functions,” in proceedings of the 2013 IEEE Conference on Computer
Vision and Pattern Recognition. (Portland) 1430–1437. doi: 10.1109/CVPR.
2013.188

Manning, C. D. (2016). Computational linguistics and deep learning.Comput. Ling.
41, 701–707.

Nuckolls, J. (1999). The case for sound symbolism. Annu. Rev. Anthropol. 28,
225–252. doi: 10.1146/annurev.anthro.28.1.225

Parise, C. V., and Spence, C. (2012). Audiovisual crossmodal correspondences and
sound symbolism: A study using the implicit association test. Exp. Brain Res.
220, 319–333. doi: 10.1007/s00221-012-3140-6

Frontiers in Psychology | www.frontiersin.org 10 October 2021 | Volume 12 | Article 654779

http://www.edanzediting.com/ac
https://doi.org/10.1109/CVPR.2015.7298970
https://doi.org/10.1080/00437956.1950.11659374
https://doi.org/10.1016/j.cognition.2012.09.007
https://doi.org/10.1007/s11263-015-0872-3
https://doi.org/10.1109/tasl.2011.2134090
https://doi.org/10.1145/300776.300778
https://doi.org/10.1109/CVPR.2016.172
https://doi.org/10.1109/CVPR.2016.172
https://doi.org/10.1109/TOH.2016.2615923
https://doi.org/10.1613/jair.4992
https://doi.org/10.1613/jair.4992
https://doi.org/10.1109/msp.2012.2205597
https://doi.org/10.1016/j.neuroscience.2018.09.001
https://doi.org/10.1016/j.neuroscience.2018.09.001
https://doi.org/10.1038/nature14539
https://doi.org/10.3758/APP.71.7.1439
https://doi.org/10.1037/0096-1523.12.2.169
https://doi.org/10.1109/CVPR.2013.188
https://doi.org/10.1109/CVPR.2013.188
https://doi.org/10.1146/annurev.anthro.28.1.225
https://doi.org/10.1007/s00221-012-3140-6
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-654779 October 1, 2021 Time: 16:2 # 11

Yamagata et al. System Expressing Texture Using SSW

Perronnin, F., Sanchez, J., and Mensink, T. (2010). Improving the fisher kernel for
large-scale image classification. Proc. of Eur. Conf. Comp. Vision doi: 10.1007/
978-3-642-15561-1_11

Ramachandran, V. S., and Hubbard, E. M. (2001). Synaesthesia—A window into
perception, thought and language. J. Consc. Stud. 8, 3–34.

Revill, K. P., Namy, L. L., DeFife, L. C., and Nygaard, L. C. (2014). Crosslinguistic
sound symbolism and crossmodal correspondence: Evidence from fMRI and
DTI. Brain Lang. 128, 18–24. doi: 10.1016/j.bandl.2013.11.002

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2014).
ImageNet Large Scale Visual Recognition Challenge. arXiv 1409:0575

Sakamoto, M., and Watanabe, J. (2013). “Effectiveness of Onomatopoeia
Representing Quality of Tactile Texture: A Comparative Study with
Adjectives,”. In proceedings of the Papers from the 13th National Conference
of the Japanese Cognitive Linguistics Association.(University at Nagoya)
473–485.

Sakamoto, M., and Watanabe, J. (2016). Cross-Modal Associations between Sounds
and Drink Tastes/Textures: A Study with Spontaneous Production of Sound-
Symbolic Words. Chem. Sen. 41, 197–203. doi: 10.1093/chemse/bjv078

Sakamoto, M., and Watanabe, J. (2017). Exploring Tactile Perceptual Dimensions
Using Materials Associated with Sensory Vocabulary. Front. Psychol. 8, 1–10.
doi: 10.3389/fpsyg.2017.00569

Sakamoto, M., and Watanabe, J. (2018). Bouba/Kiki in Touch: Associations
Between Tactile Perceptual Qualities and Japanese Phonemes. Front. Psychol.
9, 1–12. doi: 10.3389/fpsyg.2018.00295

Sakamoto, M., Yoshino, J., Doizaki, R., and Haginoya, M. (2016). Metal-like
Texture Design Evaluation Using Sound Symbolic Words. Internat. J. Design
Creat. Innov. 4, 181–194. doi: 10.1080/21650349.2015.1061449

Sapir, E. (1929). A study in phonetic symbolism. J. Exp. Psychol. 12, 225–239.
doi: 10.1037/h0070931

Schmidtke, D. S., Conrad, M., and Jacobs, A. M. (2014). Phonological iconicity.
Front. Psychol. 5:80. doi: 10.3389/fpsyg.2014.00080

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y.
(2014). “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” in Proccedings of the International Conference on
Learning Representations (ICLR2014), (CBLS).

Sharan, L., Liu, C., Rosenholtz, R., and Adelson, E. H. (2013). Recognizing materials
using perceptually inspired features. Internat. J. Comp. Vis. 103, 348–371.

Sharan, L., Rosenholtz, R., and Adelson, E. H. (2009). Material perception: What
can you see in a brief glance? J. Vis. 9, 784–784. doi: 10.1007/s11263-013-0
609-0

Sidhu, D. M., and Pexman, P. M. (2018). Five mechanisms of sound symbolic
association. Psychon Bull. Rev. 25, 1619–1643. doi: 10.3758/s13423-017-1361-1

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv. 1409:1556.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res. 15, 1929–1958.

Sucevic, J., Jankovic, D., and Kovic, V. (2013). When the sound-symbolism effect
disappears: The differential role of order and timing in presenting visual and
auditory stimuli. Psychology 4, 11–18. doi: 10.4236/psych.2013.47A002

Supeviü, J., Saviu, A. M., Popoviu, M. B., Styles, S. J., and Koviu, V. (2015). Bal-
loons and bavoons versus spikes and shikes: ERPs reveal shared neural processes
for shape-sound-meaning congruence in words, and shape-sound congruence
in pseudowords. Brain Lang. 145, 11–22. doi: 10.1016/j.bandl.2015.03.011

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going
deeper with convolutions. CVPR 2015:2015. doi: 10.1109/CVPR.2015.7298594

Tamura, H., Mori, S., and Yamawaki, T. (1978). Textural features corresponding
to visual perception. Syst. Man Cybern. IEEE Trans. 75, 460–473. doi: 10.1109/
TSMC.1978.4309999

Tiest, W. M. B. (2010). Tactual perception of material properties. Vis. Res. 50,
2775–2782. doi: 10.1016/j.visres.2010.10.005

Varma, M., and Zisserman, A. (2005). A statistical approach to texture classification
from single images. Internat. J. Comp. Vis. 62, 61–81. doi: 10.1007/s11263-005-
4635-4

Whitaker, T. A., Simões-Franklin, C., and Newell, F. N. (2008). Vision and touch:
independent or integrated systems for the perception of texture? Brain Res 1242,
59–72. doi: 10.1016/j.brainres.2008.05.037

Zeiler, M. D., and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In ECCV. New York, NY: Springer, 818–833. doi: 10.1007/978-3-319-
10590-1_53

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Yamagata, Kwon, Kawashima, Shimoda and Sakamoto. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Psychology | www.frontiersin.org 11 October 2021 | Volume 12 | Article 654779

https://doi.org/10.1007/978-3-642-15561-1_11
https://doi.org/10.1007/978-3-642-15561-1_11
https://doi.org/10.1016/j.bandl.2013.11.002
https://doi.org/10.1093/chemse/bjv078
https://doi.org/10.3389/fpsyg.2017.00569
https://doi.org/10.3389/fpsyg.2018.00295
https://doi.org/10.1080/21650349.2015.1061449
https://doi.org/10.1037/h0070931
https://doi.org/10.3389/fpsyg.2014.00080
https://doi.org/10.1007/s11263-013-0609-0
https://doi.org/10.1007/s11263-013-0609-0
https://doi.org/10.3758/s13423-017-1361-1
https://doi.org/10.4236/psych.2013.47A002
https://doi.org/10.1016/j.bandl.2015.03.011
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/TSMC.1978.4309999
https://doi.org/10.1109/TSMC.1978.4309999
https://doi.org/10.1016/j.visres.2010.10.005
https://doi.org/10.1007/s11263-005-4635-4
https://doi.org/10.1007/s11263-005-4635-4
https://doi.org/10.1016/j.brainres.2008.05.037
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Computer Vision System for Expressing Texture Using Sound-Symbolic Words
	Introduction
	Material Datasets
	Materials and Methods
	Texture-Based Flickr Material Database
	System That Expresses Texture Using Sound-Symbolic Words Corresponding to the Texture-Based Flickr Material Database
	Learning Model

	Results
	Accuracy Evaluation
	Conclusion and Future Work
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


