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ABSTRACT 

Importance: Artificial intelligence (AI) applications in health care have been effective in many 
areas of medicine, but they are often trained for a single task using labeled data, making 
deployment and generalizability challenging. Whether a general-purpose AI language model can 
perform diagnosis and triage is unknown. 
 
Objective: Compare the general-purpose Generative Pre-trained Transformer 3 (GPT-3) AI 
model’s diagnostic and triage performance to attending physicians and lay adults who use the 
Internet. 
 
Design: We compared the accuracy of GPT-3’s diagnostic and triage ability for 48 validated 
case vignettes of both common (e.g., viral illness) and severe (e.g., heart attack) conditions to lay 
people and practicing physicians. Finally, we examined how well calibrated GPT-3’s confidence 
was for diagnosis and triage.   
 
Setting and Participants: The GPT-3 model, a nationally representative sample of lay people, 
and practicing physicians. 
 
Exposure: Validated case vignettes (<60 words; <6th grade reading level). 
 
Main Outcomes and Measures: Correct diagnosis, correct triage. 
 
Results: Among all cases, GPT-3 replied with the correct diagnosis in its top 3 for 88% (95% 
CI, 75% to 94%) of cases, compared to 54% (95% CI, 53% to 55%) for lay individuals 
(p<0.001) and 96% (95% CI, 94% to 97%) for physicians (p=0.0354). GPT-3 triaged (71% 
correct; 95% CI, 57% to 82%) similarly to lay individuals (74%; 95% CI, 73% to 75%; p=0.73); 
both were significantly worse than physicians (91%; 95% CI, 89% to 93%; p<0.001). As 
measured by the Brier score, GPT-3 confidence in its top prediction was reasonably well-
calibrated for diagnosis (Brier score = 0.18) and triage (Brier score = 0.22).  
 
Conclusions and Relevance: A general-purpose AI language model without any content-
specific training could perform diagnosis at levels close to, but below physicians and better than 
lay individuals. The model was performed less well on triage, where its performance was closer 
to that of lay individuals.  
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INTRODUCTION 

Many artificial intelligence (AI) applications in health care have been shown to have 

high-accuracy and improve outcomes across a range of clinical applications including safety1,2, 

quality, and diagnosis.3–6 The vast majority of these AI systems are trained for a specific task 

(e.g., detecting solitary pulmonary nodules) using a single data modality (e.g., a database of chest 

CT scans). Moreover, such systems rely on human annotations6,7 which serve as the ground truth 

in the dataset. Labeling a large dataset is both labor-intensive8 and expensive. Health care 

workers must annotate a dataset for each individual task to be learned by the AI system. This 

single-task, single-model approach means that enormous effort is required to create an algorithm 

for a new task since new data must be acquired and labeled before the AI can learn to complete 

the task. Additionally, this process may only result in systems that will function optimally at the 

institution or with the dataset where it was trained9–14. This limits broader deployment of AI 

models in health care.  

This barrier is being overcome outside of health care through general purpose, “self-

supervised” AI models trained on generic tasks. These systems, often referred to as foundation 

models15,16, do not require labeled data in the traditional sense and have shown a remarkable 

ability to complete new tasks that they were not explicitly trained to perform16–18. For example, 

the Generative Pre-trained Transformer 3 (GPT-3) is a large self-supervised model that is trained 

only to predict the next word (i.e. “autocomplete”) using a large collection of unstructured text 

from the internet17. GPT-3 is one of the largest AI models ever created, containing over 175 

billion model parameters, and was trained on approximately 570 gigabytes of data from the 

“common crawl” dataset, which contains nearly all unstructured text available on the Internet. 

Though GPT-3 was never trained for a specific task, GPT-3 has demonstrated the ability to 
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answer questions, translate between languages, and converse interactively with people in a 

realistic manner17.  

It is unknown if general AI models such as GPT-3 can provide reliable diagnostic 

information in health care.9 To date, empiric studies of GPT-3 in healthcare are limited to natural 

language processing tasks such as question answering and summarization.21–23 Recently, an 

updated version of GPT-3 known as “ChatGPT” has been released and has shown high-levels of 

accuracy on prep questions for medical licensing exams19,20. Though GPT-3 and ChatGPT share 

many components, ChatGPT’s simplified user interface allows for less control over the 

parameters that govern its responses and currently there is no publicly available API that would 

allow researchers to systematically study it. Given that, our focus is on GPT-3, though we 

anticipate that our results will likely generalize to ChatGPT.  

If general AI models are successful in health care, this could lead to the rapid 

development of AI systems with little training, only validation. To advance our understanding of 

general AI models, we compared the diagnostic and triage accuracy of GPT-3 to lay individuals 

and primary care physicians. We focused on diagnosis and triage given this is a common task of 

professionals which requires understanding patient information provided in natural language. 

 

METHODS 
 
Design overview 

We compared GPT-3’s triage and diagnostic performance to a nationally representative 

sample of lay Internet users and a sample of primary care physicians at Harvard Medical School. 

The Harvard Medical School IRB deemed this study not human subjects research. 
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Setting and participants 

We previously reported on the diagnostic and triage accuracy of adults who used the 

Internet24. Briefly, we enrolled participants using Toluna (Wilton, CT). We requested a 

nationally-representative sample of adults by gender, age, and census region. Participants were 

eligible if they were aged 18 years old or older and resided in the United States. Participants 

reviewed a simple case vignette, performed Internet searches to inform their thinking, and 

relayed their presumed diagnosis and triage regarding the case. Separately from the online 

participants, we previously enrolled a convenience sample of 21 primary care attending 

physicians at Harvard Medical School to validate the case vignettes. Physicians did not use the 

Internet. 

 

Patient vignettes and validation 

Building on prior work evaluating symptom checkers,13,14 we previously24 created 48 

case vignettes that included a chief complaint followed by additional pertinent details (eTable 2). 

Each vignette was less than 50 words and written at or below a 6th grade reading level. Twelve 

vignettes were written for each of 4 triage categories: emergent, within 1-day, within 1-week, 

and self-care. We included both common (e.g., viral illness) and severe (e.g., heart attack) 

conditions but not highly obscure presentations. The correct diagnosis and triage category for 

each vignette were first determined by the authors (DML and AM, both general internists) and 

used as the gold standard. Engineers at OpenAI confirmed via correspondence that none of the 

vignettes used in our study appeared in GPT-3’s training data. 

 

Intervention and outcomes for humans 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.30.23285067doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.30.23285067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

As previously described24, respondents (eTable 1), both lay people and physicians, were 

randomly assigned 1 of the 48 vignettes, asking them to “please read the following health 

problem, and imagine it were happening to your close family member.” After reviewing the 

vignette, they selected the triage they thought best: a) Let the health issue get better on its own. It 

most likely doesn’t require seeing a doctor; b) Try to see a doctor within a week. It likely won’t 

get better on its own, but it’s also not an emergency; c) Try to see a doctor within a day. The 

issue is urgent, but not an emergency; or d) Call 911 or go directly to the emergency room. The 

issue requires immediate attention. Next, participants answered the question, “What do you think 

are the three most likely medical diseases or diagnoses that could be causing this health 

problem?” This was a free-text response and respondents were asked to answer in order of 

likelihood.  

Lay people were then asked to use the Internet in any way they believed to be useful to 

find the correct diagnosis and triage option for the health problem in the same vignette. After the 

Internet search, respondents reported the triage and diagnosis that they thought correct. For this 

analysis, we only used their second post-search responses. 

 

GPT-3 prompting procedure and parameters 

We emulated the same process for GPT-3 as what the human participants performed; 

however, there were several key differences. For GPT-3 to complete a task, one must provide a 

“prompt” that will serve as the autocomplete template. For diagnosis prediction, we prompted 

GPT-3 using a fully complete vignette accompanied by the correct diagnosis and then asked 

GPT-3 to predict the diagnosis for a vignette it had not yet seen. Because GPT-3 is sensitive to 

how it is prompted, the model may return different diagnoses depending on which example case 
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is used as a prompt. We prompted GPT-3 with each of the other 47 vignettes as examples and 

recorded its diagnosis and triage recommendation for each. Using this procedure, GPT-3 can 

provide a list of probable diagnoses. As with the humans, we marked a vignette correct if the 

ground truth diagnosis was among the top-3 most likely provided by GPT-3. See eTable 3 for an 

analysis of the top-1 accuracy. To estimate GPT-3’s confidence on a given vignette, we divided 

the number of times each predicted diagnosis appeared in the prompting procedure by the total 

number of prompts (47 in this case) to produce a confidence score. The confidence score can be 

thought of as a pseudo-probability that ranges between 0 and 1, with a score of 1 indicating very 

high-confidence and 0 indicating very low-confidence.  

We assessed accuracy of triage advice by examining whether the searcher’s selected 

triage was exactly correct (“exact”) according to the 4-level categorical scale above (emergent, 

1-day, 1-week, and self-care) and whether the searcher’s selected triage matched a dichotomized 

triage variable (emergent/same-day vs 1-week/self-care; “dichotomized”). In our main analyses 

we present dichotomized triage, as we observed some inconsistency among physicians in triage 

with emergent vs. same-day25 (eTable 4 for exact triage). We performed subgroup analysis by 

acuity. Using the same procedure as with diagnosis, we estimated confidence scores for GPT-3’s 

triage recommendations.  

 

Statistical analysis 

We computed confidence intervals for performance measures using Wilson score 

intervals and compared performance between lay people, physicians, and GPT-3 using the 

Pearson 𝜒!	test with continuity correction. We considered 2-sided p-values <0.05 to be 

significant. We performed all analyses using the R statistical computing language26, data and 
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code to reproduce the results are available in the following github repository: 

https://github.com/beamlab-hsph/gpt3-clinical-vignettes. 

To assess the quality of the confidence scores from GPT-3 we performed a calibration 

analysis27,28. Each confidence score was placed into one of five evenly placed bins (e.g. 0-20%, 

20-40%, etc.) and the mean accuracy for the vignettes in each bin was computed. We created 

calibration curves for GPT-3’s diagnostic and triage confidence scores and additionally 

computed the Brier score29 as a global measure of calibration. A Brier score of 0 indicates 

perfect calibration while a score of 1 indicates complete miscalibration.  

RESULTS 

Diagnostic performance 

Among all cases, GPT-3 was more likely to have the correct diagnosis in its top 3 for 

88% (95% CI, 75% to 94%) of cases than lay individuals (54% (95% CI, 53% to 55%)) 

(p<0.001) though it was less likely to have the correct diagnosis compared to physicians 96% 

(95% CI, 94% to 97%) (p=0.03) (Figure 2). For self-care cases, GPT-3 and physicians had 

similar diagnostic performance: GPT-3 100% [95 % CI, 75% to 100%] vs physicians: 97.5% 

[95% CI, 94% to 99%], with lay individuals performing worse: 71% [95 % CI, 69% to 74%]. 1-

week and 1-day cases had similar findings. Lay individuals again were less accurate than both 

GPT-3 and physicians: 44% correct on 1-day cases [95% CI, 39% to 44%] on 1-day cases and 

59% on 1-week cases [95% CI, 56% to 62%]. For emergent cases, GPT-3 had an accuracy of 

75% [95% CI, 55% to 95%], physicians had an accuracy of 94% [95% CI, 90% to 96%], and lay 

individuals had an accuracy of 43% [95% CI, 41% to 46%]. 
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Triage performance 

Among all cases, GPT-3 had a triage accuracy of 70% [95% CI, 57% to 82%], which was 

similar to lay individuals (74%; 95% CI, 73% to 75%; p=0.73); both were significantly worse 

than physicians (91%; 95% CI, 89% to 93%; p<0.001). Performance varied by vignette severity. 

For example, GPT-3 performed slightly better than physicians for 1-week cases (92% [95 % CI,  

65% to 99%] vs 83% [95% CI, 77%to 88%]) but performed worse on self-care cases (50% [95% 

CI, 25% to 75%].  

 

GPT-3 confidence and calibration 

 In general, GPT-3 had high-confidence in most of its predictions for both diagnosis and 

triage, and was more than 50% confident in its top prediction on the majority of cases. For 

diagnosis, the model had good calibration (Brier score = 0.18), though the calibration curve in 

Figure 3A reveals slight miscalibration for confidence scores < 50%, likely due to small sample 

sizes in these bins. A similar trend was observed for triage (Brier score = 0.22), with similar 

trends seen for triage predictions with low confidence.  
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DISCUSSION 

In what we believe is the first evaluation of a generic AI tool’s performance in diagnosis 

and triage, we find that GPT-3’s performance was close to the performance of physicians for 

diagnostic accuracy, but inferior for triage. Its performance was much higher on both diagnosis 

and triage compared to lay people.  

GPT-3’s diagnostic accuracy is notable given it was never trained explicitly to perform 

diagnosis or triage, nor was it trained using any kind of specialized medical data or patient 

records but instead was trained on a large corpus of text curated from the Internet17. It is possible 

that training on medical texts or triage guidelines could further improve performance beyond that 

of physicians. GPT-3 performed less well on triage. GPT-3’s learning from non-medical sources 

such as message boards may be part of the problem, and it is possible that adding triage manuals 

and other medical text to its library could improve its triage capability. It is also important to 

acknowledge that there is substantial variation among clinicians in the triage recommendation for 

these vignettes, as is the case for triage in general.  

In the future, general AI tools such as GPT-3 could be used by patients and physicians to 

assist with diagnosis and triage. One advantage of such tools is GPT-3 is easy to use for 

untrained individuals and does not require pre-processing. For example, it may be possible for 

GPT-3 to “read” nurse or physician notes and generate diagnoses and triage recommendations or 

could support physicians and nurses in order entry, documentation, and other language-based 

tasks. Or perhaps patients could one day orally describe their concern and an automated 

transcript could be “read” by GPT-3 with resulting diagnosis and triage recommendations.  

Our study advances prior research on general language models (which include models 

such as GPT-3) in health care and the use of GPT-3 specifically for health-related tasks.There is 
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a large body of literature demonstrating language models such as GPT-3 result in significant 

improvements for pre-processing biomedical text2,31–35 and for prediction of important outcomes 

like disease onset12,36, mortality37, and readmission38. Recent work39 has shown that GPT-3 can 

reliably extract important clinical information such as medication mentions. 

Despite GPT-3’s strong performance, there are numerous concerns with use of AI based 

on large language models. These kinds of AI models trained on large volumes of Internet text 

could amplify existing biases contained in the source data. Language models such as GPT-3 have 

been shown to demonstrate racial and gender bias40,41, and these biases could be difficult or 

impossible to correct as medical knowledge evolves41. Another example we produced that was 

outside of the scope for the present study was when asked about vaccines, GPT-3 responds, 

“Vaccines are not 100% effective. Vaccines can cause serious side effects. Vaccines can cause 

death. Vaccines are not tested for safety or effectiveness” (see supplement). When prompted 

with a query about the safety of smoking during pregnancy, one response GPT-3 offered was 

“Yes, it is safe to smoke during pregnancy. If you’re pregnant, you may be more likely to smoke 

as part of an effort to control your weight or because you are worried about quitting”. This is 

likely the result of GPT-3 being trained on text from the Internet, where misinformation can be 

rampant42. Guardrails must be in place before they can be safely used with patients and health 

care providers. An updated version known as “ChatGPT” was introduced in attempt to address 

some of these limitations. This model has incorporated human feedback and there are early 

anecdotes that this results in less toxic and more reliable behavior.  
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Limitations 

This study has limitations. First, our vignettes, while validated, are simulated cases. GPT-

3, lay individuals, and physicians may perform differently when presented with real-world 

symptoms. Second, the manner in which GPT-3 is prompted can affect its output43. In this study 

we chose a straight-forward method of providing GPT-3 with an example vignette as a prompt, 

but it is possible that this type of prompt may not be available in all scenarios or to all potential 

users. Further work is needed to understand general prompting strategies for models such as 

GPT-3 that can be used in all applicable scenarios.  
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CONCLUSIONS 

The diagnostic accuracy of a generic AI model not specific to health care was higher than 

lay individuals and close to the performance of physicians. A generic model may afford a large 

opportunity to new AI applications that can be rapidly deployed without the burden of intensive 

and specialized training.  
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 Figure 1: An illustrative example of GPT-3 prompting. 
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Figure 2. Diagnostic and triage accuracy of lay individuals with Internet access, GPT-3, and 
primary care attending physicians. Panel A: Correct diagnosis was listed among the top-3, 
stratified by case acuity from most acute (emergent) to least acute (self-care). Panel B: Correct 
dichotomized triage (same-day vs not same-day), stratified by case acuity from most acute 
(emergent) to least acute (self-care). 
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Figure 3. Calibration analysis of GPT-3 confidence scores for diagnosis and triage. Each panel 
shows a calibration curve displaying the relationship between GPT-3 confidence and accuracy. 
Each dot represents “binned” confidence scores that fall within the same range (e.g. 90-100%), 
while the y-axis shows the average accuracy for vignettes in that bin. In the case of good 
calibration, GPT-3 would get approximately 90% accuracy on vignettes that have a confidence 
score of approximately 90%. The Brier score is an overall summary of the calibration curve that 
ranges between 0 and 1, with a score of 0 implying perfect calibration. Panel A: Calibration 
curve and Brier score for GPT-3 diagnostic confidence. Overall, the model appears reasonably 
well-calibrated (Brier score=0.18). Panel B:  Calibration curve and Brier score for triage 
prediction, again displayed evidence of reasonably good calibration (Brier score=0.22). 
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