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Abstract

Background: Time delays are important factors that are often neglected in gene regulatory network (GRN) inference
models. Validating time delays from knowledge bases is a challenge since the vast majority of biological databases
do not record temporal information of gene regulations. Biological knowledge and facts on gene regulations are
typically extracted from bio-literature with specialized methods that depend on the regulation task. In this paper, we
mine evidences for time delays related to the transcriptional regulation of yeast from the PubMed abstracts.

Results: Since the vast majority of abstracts lack quantitative time information, we can only collect qualitative
evidences of time delays. Specifically, the speed-up or delay in transcriptional regulation rate can provide evidences
for time delays (shorter or longer) in GRN. Thus, we focus on deriving events related to rate changes in
transcriptional regulation. A corpus of yeast regulation related abstracts was manually labeled with such events. In
order to capture these events automatically, we create an ontology of sub-processes that are likely to result in
transcription rate changes by combining textual patterns and biological knowledge. We also propose effective
feature extraction methods based on the created ontology to identify the direct evidences with specific details of
these events. Our ontologies outperform existing state-of-the-art gene regulation ontologies in the automatic rule
learning method applied to our corpus. The proposed deterministic ontology rule-based method can achieve
comparable performance to the automatic rule learning method based on decision trees. This demonstrates the
effectiveness of our ontology in identifying rate-changing events. We also tested the effectiveness of the proposed
feature mining methods on detecting direct evidence of events. Experimental results show that the machine
learning method on these features achieves an F1-score of 71.43%.

Conclusions: The manually labeled corpus of events relating to rate changes in transcriptional regulation for yeast
is available in https://sites.google.com/site/wentingntu/data. The created ontologies summarized both biological
causes of rate changes in transcriptional regulation and corresponding positive and negative textual patterns from
the corpus. They are demonstrated to be effective in identifying rate-changing events, which shows the benefits of
combining textual patterns and biological knowledge on extracting complex biological events.

Background
Living cells are the product of gene expression processes
which involve regulated transcription over thousands of
genes. Transcription is controlled by regulatory proteins
binding to specific promoter sequences. The biochem-
ical process by which a collection of regulatory proteins

associates with genes across a genome can be described
abstractly through a transcriptional regulatory network.
There are time delay or lag during the process where
the change of expression of the regulator is transmitted
to the change in the target gene expression. Gene regu-
lation with time delay is due to the intermediate pro-
cesses between the product and repressor/inducer. Time
delay is thus an important element in the construction
of a transcriptional regulatory network [1]. However, the
validation of time delay in gene regulation is a challenge
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as existing biological databases always lack time-related
information of gene regulation.
There is an abundance of biological knowledge and

facts in scientific articles [2-5]. Due to the ever-increasing
corpus of scientific articles, it is difficult, if not impossi-
ble, to manually extract these knowledge. Text mining
tools can help to automatically extract biological events
from literature. For example, a number of relation extrac-
tion methods have been applied to extract gene regula-
tion events [6-13].
The simplest approach is the co-occurrence based

method [13], which predicts the relation between co-
occurring entities at the sentence or abstract resolution.
The rationale is that entities that are repeatedly mentioned
together are somehow related. Prediction results of the
co-occurrence methods typically have a high sensitivity
but low specificity. Besides this limitation, details of the
regulation such as direction and types cannot be easily
determined using this method.
Pattern based extraction methods search for textual

patterns of events with the help of predefined rules.
Rules can be manually compiled [6] or learned from a
training corpora [8,9,14]. To extract and fire a rule, mul-
tiple ontologies have to be consulted in addition to bio-
entity vocabularies [9,10,14,15]. Concept ontologies, for
example, are constructed from text corpora by using
formal concept analysis [14]; the BioInfer project pro-
vides an ontology for diverse biological events [8,9];
Gene Regulation Ontology [10] is designed to model
complex events that are part of the gene regulatory pro-
cesses. Compared with the co-occurrence based meth-
ods, pattern based ones increase the specificity at the
expense of a decreasing sensitivity.
Semantics analysis using natural language processing

tools can help to extract complex rules from underlying
sentences. For example, the RelEx relation extraction sys-
tem [7] uses a simple set of rules to extract relation paths
from dependency parse trees. A set of hand-compiled
rules were proposed for linguistic analysis and conceptual
inference over semantic structures [12]. The rule-based
system then matched syntactic-semantic patterns to the
dependency structures. However, extracting rules manu-
ally from semantic structures is time-consuming and can-
not be done easily on large-scale corpora. A current trend
in feature design is to learn the semantic rules automati-
cally via machine learning methods. For example, previous
work investigated the performance of different Automatic
Content Extraction (ACE) feature sets for biomedical rela-
tion extraction in a supervised learning setting [11].
Positive and negative regulation relations in biomedical
pathways were learned from the lexical semantic annota-
tions in [16]. Rich graph-based feature sets were proposed
to extract complex biological events [17,18].

In this paper, we first construct a corpus by extracting
transcriptional regulation rate changing events for yeast
from PubMed abstracts. To automatically extract such
events, we need to extract the related textual patterns, but
there are rarely obvious textual patterns about rate
changes in transciptional regulation. We thus create two
ontologies from the corpus, based on the biological analy-
sis of sub-processes that may result in rate changes in the
transcriptional regulation, and the summarization of the
positive/negative textual patterns/rules for describing such
sub-processes. We then adopt the effective information
retrieval (IR) tools to detect target events. Both automatic
rule learning method and simple decision rule based
method are used to test the effectiveness of the generated
ontologies on identifying rate changes in transcriptional
regulation. We also extend the ACE-Style features [11]
and graph-based features [17,18] based on our ontologies
to obtain a set of conceptual, semantic and sentence graph
structure features which can be used to learn the direct
evidence for detecting transcriptional regulation rate chan-
ging events. The effectiveness of the proposed features has
been verified experimentally. A decision tree trained with
the proposed features achieves 71.43% F1-score over ten-
fold cross-validation.

Text preprocessing
Collecting abstracts and trigger words
We downloaded 181,517 abstracts related to yeast from
PubMed [19] on September 30, 2012. The downloaded
abstracts contain any of the terms “yeast”, “Saccharomyces
cerevisiae”, or “S. cerevisiae” in (i) title, abstract, article
fields, or (ii) the head of a Medical Subject Headings
(MeSH, a controlled vocabulary for manually annotating
PubMed articles) term for the article.
We collected the vocabulary of words related to gene

regulations from the BioInfer relation ontology [9] and
used heuristics to manually create a list of trigger words
relating to rate changes. We then extracted only those
sentences from the abstracts that contain both trigger
words about gene regulation and rate changes. To find
out which trigger words are commonly used in PubMed,
we randomly chose hundreds of sentences containing
different trigger words and manually pruned them. The
trigger word lists were pruned by removing relation
words unrelated to regulation and extending the rate
change word list with more words.

Word normalization
To identify all the genes of yeast, we obtained a list of
synonyms and identifiers from the Saccharomyces Gen-
ome Database [20]. We also manually created a diction-
ary to cluster semantically similar trigger words
together, using a stemming method like in [7]. We then
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performed word normalization by (i) replacing all gene
names with a placeholder word “genename” to eliminate
the differences between diverse genes; and (ii) replacing
all keywords in the dictionary with their stemmed coun-
terparts, i.e., the words in the first column of the dic-
tionary. Word normalization helps removing the
diversity of textual information, especially the article
keywords. It is therefore helpful for summarizing textual
patterns or rules for events.

Sentence filter
Since information extraction methods work poorly on
irrelevant raw data, we need text filtering to help reduce
the variability of textual data. It is commonly assumed
that the desired information is local to a sentence
[7-9,14]. We thus constrain the event extraction at the
sentence resolution.
Using gene regulation and rate change trigger words as

filters, relevant sentences were filtered from yeast gene
regulation and time related PubMed abstracts. The
MEDLINE abstracts were first segmented into individual
sentences by using Natural Language Toolkit (NLTK)
[21] sentence tokenizer. Afterwards, the sentences are
tokenized by NLTK word tokenizer into word tokens.
The final set of sentences must satisfy all of the following
conditions: (i) there are at least two occurrences of gene/
protein names tagged as noun in the sentence; (ii) the
sentence matches many words from the “regulate” key-
word list; and (iii) the sentence matches many words
from the rate change keyword list.
The first filter is easy to implement. To implement the

other two filters, we used the cosine similarity to quan-
tify the occurrence of keywords in the sentence. Cosine
similarity uses normalized counts that help to remove
the bias caused by the overlong sentences. Thus, it can
capture more informative sentences than by using
occurrence counts. Specifically, each trigger word list
(i.e., “regulate” or temporal information) is written as a
unit vector y. Each sentence is written as a binary vector
× which has a one in the dimension corresponding to a
matched word in the sentence from the trigger word
list. Vectors × and y have the same dimension as the
number of keywords in the trigger list. The cosine simi-
larity of the sentence with the keywords list is then
computed as

cos(x, y) =
x · y

||x|| ||y||
where x · y represents the inner product of vectors x

and y; and ∥∥ represents the L2 vector norm.
There are altogether 114,375 sentences that score

above zero in both two similarity scores. Since it is
infeasible to manually label all of them, we choose only
sentences whose cosine similarity to the “regulate” list

exceeds 0.1 and whose similarity to the temporal list
exceeds 0.15. The final corpus includes 1309 sentences,
which are then used as inputs to the next information
extraction task.

Corpus annotation
Records of transcriptional regulation rate changing event
To the best of our knowledge, we are the first group to
extract time-delayed gene regulation evidence from lit-
erature. Since specific/quantitative time-related informa-
tion is not common in literature, much less in abstracts,
we detect the events of rate changes in transcriptional
regulation instead. The detected rate changes provide
qualitative evidence (i.e., shorter or longer) for inferring
time delays in transcriptional regulation. Table 1 gives
two examples about transcriptional regulation rate chan-
ging events. The positive instance shows that “when glu-
cose repression of MTH1 expression is prevented”,
degradation of MTH1 is slowed, and a delay occurs in
“induction of HXT3 expression in response to glucose”,
thus contains transcriptional regulation rate changing
event. As a comparison, the negative instance indicates
that “dynamical activities of the key components” under-
goes rate changing, but the words “translational control
in the expression of cycle proteins Cdc13 and Cdc25”
indicates that it is in translational process instead of
transciptional process.
Note that the rate-changing regulation events are differ-

ent from positive/negative regulations, which have been
studied by others [11,12]. The positive regulation
(GO:0010628) and negative regulation (GO:0010629)
defined in the Gene Ontology [22] correspond to biological
processes that modulate gene expression to increase or
decrease, respectively. Both positive and negative regula-
tions belong to gene regulation process. In contrast, the
rate-changing regulation studied here refers to a change in
the speed or duration of the regulation process. As such,
both positive and negative regulations may have rate
changes as well.

Corpus annotation
We annotated the corpus by manually labeling sentences
containing transcriptional regulation rate changing events
as positive instances and others as negative instances. For
positive instances, we identified trigger words that indicate
mentions of transcriptional regulation processes or rate
changes of the processes. These words were annotated to
facilitate the creation of our time-delay (transcriptional
regulation rate change) ontology. In the negative class, the
sentence may only include information about gene regula-
tion without rate changes or about a biological process
other than transcriptional regulation.
Both direct and indirect evidences exist in the positive

instances. We thus further annotate the positive class
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with two types of events: (i) events with specific infor-
mation about regulator, regulatee and rate changes in
transcription regulation, and (ii) indirect evidences for
transcription regulation rate changing events.
A biological practitioner was employed to annotate the

corpus. Since there is a single annotator, we are unable to
report the inter-annotator agreement score about our
annotation. However, during the ontology extraction pro-
cess, whenever we found annotations inconsistent with the
extracted ontologies (biology knowledge), the annotator
was asked to double check and correct all annotations
(especially the positive class) again.

Biological knowledge driven ontologies for rate
changes in transcriptional regulation events
By combining statistical analysis on the annotated trigger
words with biological knowledge on gene regulation, we
were able to create two ontologies. The first ontology, as
shown in Figure 1, summarizes the textual patterns and
biological reasons for rate changes in transcriptional regu-
lation. The second ontology summarizes the negative rules
as illustrated in Figure 2.
In order to make our ontologies consistent with previous

work, we also provided logical relations between sub-
classes, events, or processes. Following the convention
used in the Gene Ontology database, is − a represents the
subtype relation and part − of is part-whole relation.
Following the Gene Regulation Ontology [10], result −
from refers to the result of some processes or explanations.
We also list transitive rules among these relations, which
is consistent with the Gene Ontology relation [23] and
Gene Regulation Ontology as follows.
∀ relation r ∈ {is − a, part − of , result − from}, we

have rules r ○ is − a ® r and is − a ○ r ® r; moreover,

part − of ◦ result − from → result − from

result − from ◦ part − of → result − from

part − of ◦ part − of → part − of

where r1 ○ r2 ® r3 means if A has relation r1 with B,
and B has relation r2 with C, we can infer that A has
relation r3 with C. Thus, according to these transitive
rules, we infer more relations between two terms if an
inferred relation path exists between them according to
the method in [24].

Biological knowledge based analysis about rate changes
in transcription regulation
The stages in which gene expression is regulated typically
include: (i) Chromatin domains; (ii) Transcription; (iii)
Post-transcription; (iv) Translation; and (v) Post-transla-
tion. The first two stages are mostly related to transcrip-
tional regulation. We thus analyze the causes in these
processes that may result in transcriptional regulation
rate change. The textual patterns for transcriptional regu-
lation rate changes related to these two processes are as
follows.
(i) Chromatin domains. Unlike prokaryotic, eukaryotic

linear DNA moleculars coil with nuleosomes tightly and
package into choromosomes. When some genes are to
be expressed, the region of the activation zone is
unpacked, the nuleosome is decomposed, and then tran-
scription related proteins come inside to form transcrip-
tion complex and perform transcription initialization.
Choromosome unpacking is often related to several
events such as nuleosomes composition and decomposi-
tion, and chromosome structure modification. Thus, all
of these events are the sub-events that result in tran-
scriptional regulation rate changes. Some chemical mod-
ifications around histones may change the chromosome
structure, which can eventually affect transcription [25].
The processes that modify histones include DNA
methylation, microRNA, or DNA-binding of proteins.
Example-1 in Table 2 indicates that gene “Mdm2” ubi-
quitylates chromatin proteins around the area of target
promoter and controls the transcription level of the tar-
get gene. The Example-2 in Tabel 2 indicates that gene
“chz1” relates to the ubiquitination of histone H2B and
di-methylation. As a result, the rate of binding process
of “Sir3p, and Sir4p” is increased.
(ii) Transcription. Transcriptional regulation controls

when transcription happens and how many copies of
RNA are synthesized. Transcription factors help RNA
polymerase bind to the target region. In this process,
protein-DNA and protein-protein interactions are
involved. Factors that affect the function of transcrip-
tional factors or RNA polymerase eventually lead to
transcriptional regulation rate changes, e.g., promoter
activity, RNA polymerase activity, and RNA polymerase
binding event. Example-3 in Table 2 indicates that
cofactor genes np14-1 and ufd1-2 are related to the

Table 1 Examples of Transcriptional Regulation Rate Change Events - one positive and one negative.

Negative
Instance

As the translational control in the expression of cycle proteins Cdc13 and Cdc25 constructs positive feedback loops, the
dynamical activities of the key components undergoes a rapid rising after a preliminary stage of slow increase. (PMID: 20303984)

Positive
Instance

In contrast, degradation of MTH1 is reinforced by glucose repression of MTH1 expression: disappearance of MTH1 is slowed when
glucose repression of MTH1 expression is prevented, and this results in a delay in induction of HXT3 expression in response to
glucose. (PMID: 16400179)

Words in bold indicate transcriptional regulations while rate changes in the regulation process are italicized.
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expression of gene cln1 by affecting the activity of the
cln1 promoter.

Negative rules for transcriptional regulation
We have applied the transcription rate change ontology
on the corpus with the goal of predicting transcription
regulation rate changing events. We obtained satisfac-
tory recall value. But there were many false positive
counts. By analyzing false positive samples, we discov-
ered some trigger words in the ontology, such as regula-
tion, binding, reducing, and delay, which are widespread
in many biological processes, but are not related to tran-
scription. We thus generated the negative transcriptional
regulation ontology based on the analysis of trigger

words in the false positive sentences. The negative rules
for transcriptional regulation are shown in Figure 2.
They are primarily derived from three types of events,
namely the cell cycle regulation, DNA replication, and
regulation of other biological processes.
Cell cycle is the process of cell-division, which is

sophisticatedly regulated by a series of cell signaling
events and gene regulation. Thus, when we apply “regu-
late” class of rules, we need to combine it with cell cycle
negative rules. Example-4 in Table 3 contains several
keywords associated with activation but its target is not
transcription. The regulation here refers to the cell-cycle
as indicated by the terms “nuclear segregation” and “ana-
phase I spindle”.

Figure 1 Transcriptional Regulation Rate Change Ontology. The column of big boxes contain the textual patterns corresponding to the sub-
processes of transcriptional regulation rate change events. The smaller boxes contain processes or classes of events. The numbers of instances
(sentences) corresponding to the process in the corpus are indicated in the bracket next to each process.
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In DNA replication processes, chromosomes must be
decomposed and nucleosomes need to re-deposited to
form newly-synthesized histones. Thus, when we use

rules of histone and chromosomes behaviors, we consider
DNA replication based negative rules. Example-5 in
Table 3 includes keywords about chromosome behaviors

Figure 2 Negative Transcriptional Regulation Ontology. The rightmost column of big boxes contain textual patterns corresponding to the
sub-processes of negative instances. The other boxes contain processes or classes of events. The numbers of instances (sentences)
corresponding to the process in the corpus are indicated in the bracket next to each process.
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such as “chromatin-remodeling"; however, these beha-
viors actually relate to DNA replication instead of gene
expression. The keyword “replication fork” positively
confirms this to be a process of DNA replication.
Specific biological processes other than transcription

are also included in the negative rules. Example-6 in
Table 3 contains the term “codon”, which indicates it to
be translation process.
The negative transcriptional regulation ontology helps

filter out events that are textually similar to transcription
regulation events. Note that each sentence in our corpus
contains both trigger words for regulation and rate
changes. Hence, the negative transcriptional regulation
ontology is based on the analysis of sentences that have
similar textual patterns with rate-changing regulation
events but are in fact not. They can help reduce the num-
ber of false positives from using the regulation ontology
alone.

Statistical analysis on ontologies
To test the coverage of the textual patterns embedded in
both ontologies, we shuffle the sentences and plot the
average cumulative fraction of textual patterns that occur
in randomly ordered sentences in Figure 3. The figure
shows that the first 20% randomly selected sentences con-
tain 60% of the transcriptional regulation rate change rules
embedded in the regulation ontology, and 53% negative
rules listed in the negative ontology. This demonstrates
that our ontologies have a good coverage.
Figures 1 and 2 also list the number of matching sen-

tences in each subclass of the two ontologies. For exam-
ple, the two largest counts in the rate change ontology
come from promoter activity (101) and transcription
behavior (343). Some sub-classes have just a handful of
instances, such as nuclear change (13), chromatin remo-
deling (12), DNA structure changes (1), chemical reac-
tion (11). However, due to their important biological

implication on the transcriptional regulation or negative
events, we also include them into the ontology. This
makes our ontology biologically more feasible and
complete.
A large number of sentences contain process

descriptions that resemble regulation but are in fact
non-transcription regulations. This can be seen in the
large counts of non-regulation processes. Keywords
such as “regulate”, which are used in transcription regu-
lation, are in fact quite generic, i.e., they are used to
describe other regulation processes like cell cycle regu-
lation (71), translation (35), DNA replication and repair
(49). This demonstrates the necessity of having a nega-
tive ontology of rules.

Identifying transcriptional regulation rate
changing events with rule-based methods
evaluating ontologies by automatic rules learning
method
We compared the proposed ontologies with two bench-
marks: BioInfer ontology [9] and GeneReg ontology [10].
The former has been used to recognize diverse biological
events [8,9]. The latter is designed to model complex
events that are part of the gene regulatory processes [10].
We extracted gene regulation rules from the BioInfer
ontology. We then extracted trigger words from both
ontologies as our regulation rules. To ensure a fair com-
parison, we extracted trigger words indicating rate
changes from our ontologies. The extracted trigger words
are listed in Table 4.
We used the decision tree from the Weka machine

learning package [26] as a tool to evaluate the discrimi-
native power of these ontologies on identifying the tran-
scriptional regulation rate changing event. Specifically,
we built several decision trees, each of which uses a spe-
cific ontology-based rules as rule bases (features). For
the BioInfor ontology and the GeneReg ontology, we

Table 2 Transcriptional Regulation Rate Change Pattern Examples.

Example-1 Endogenous Mdm2 is tethered in vivo, presumably via p53, to chromatin comprising the p53-responsive p21(waf1) promoter, and
Mdm2 overexpression enhances protein ubiquitylation in the vicinity of a p53 binding site within that promoter. (PMID: 15546622)

Example-2 Deletion of CHZ1 led to reduced ubiquitination of subtelomere-associated H2B, reduced subtelomeric H3K79 dimethylation, and
increased binding of Sir3p, and Sir4p at telomere-distal euchromatin regions, correlating with decreased gene expression in
subtelomeric regions. (PMID: 20008511)

Example-3 The cofactor npl4-1 and ufd1-2 mutants also exhibit G1 delay and reduced CLN1 promoter activity at 38:5°C, suggesting that Npl4-
Ufd1 complex mediates the function of Cdc48 at G1. (PMID: 21526151)

Table 3 Negative Patterns Examples.

Example-4 We show here that the role of these proteins is instead to promote nucleolar segregation, including release of the Cdc14
phosphatase required for Cdk1 inactivation and disassembly of the anaphase I spindle. (PMID: 12737807)

Example-5 Here we show that two highly conserved ATP-dependent chromatin-remodeling complexes in Saccharomyces cerevisiae, Isw2 and
Ino80, function in parallel to promote replication fork progression. (PMID: 18408730)

Example-6 Of the single codon changes, mutation of the first ATG (ATG1) resulted in the largest increase of the reporter gene PIS1(promoter)-
lacZ expression. (PMID: 16997274)
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incorporated them with rate change trigger words as the
rule (feature) set. For the proposed regulation rate
change ontology and negative rules, besides testing them
individually, we also evaluated a combination. These
decision trees are trained on a subset of the aforemen-
tioned corpus. They actually act as an automatic rule
pruning process [27]. After training, the refined rules
are tested over another portion of the corpus. By com-
paring the testing results, we see the discriminative
power of various ontologies.
Table 5 reports ten-fold cross-validation results of train-

ing decision trees with rule sets derived from various
ontologies. It can be seen that our ontologies outperform
the two benchmarks on all metrics. The proposed regula-
tion rate change ontology can predict the positive class
with high precision and recall. The proposed negative
rules can help reduce the false positive rate and improve
precision of regulation rate change ontology; the com-
bined ontologies thus achieve the highest F1-score of
about 76%. This demonstrates the effectiveness of both
our regulation rate change ontology and negative rules.

Deterministic rule-based methods
The proposed ontologies can be used to derive rules for
identifying transcriptional regulation rate changing
events. A straightforward rule is to treat sentences in

the corpus as a positive instances if they contain sub-
events from the regulation rate change ontology. We
name this as “Regulation-based Rule”. Table 6 shows the
results of predicting transcriptional regulation rate chan-
ging events using this method. Venturing a step further,
we also explored the feasibility of combining both the
regulation rate change ontology and negative rules
based ontology. Specifically, the following rules are used
to predict transcriptional regulation rate changing
events.

• If a sentence only contains sub-events from the
regulation rate change ontology, it is classified as a
positive instance.
• If it also contains sub-events from the non-regula-
tion ontology, in addition to containing sub-events
from the regulation rate change ontology, we classify
it as a negative instance.
• If no sub-events from the regulation rate change
ontology exist in the sentence, it is classified as a
negative instance.

The performance of the “Combined Rule” approach is
shown in Table 6.
From Table 6, it can be seen that both methods are

able to identify transcriptional regulation rate changing

Figure 3 The average cumulative distribution of textual patterns from each ontology, over the number of sentences. The data is taken
from the average over 100 random shuffles of the corpus sentences.

Table 4 Rate Change Trigger Words.

Quicken activate, accelerate, exert, extend, increase, rise, peak, drastically, rapidly, positive, promote, enhance, assist, acetylase inhibit

Delay block, deacetylase, prevent, suppress, abolish, reduce, decrease, degrade, compromise, sustain, alleviate, decline, lower, negative, repress,
diminish, limit, fail, lack, delay, late, slow, shut down, less effect, turn off

Change rate change, affect rate, alter, over period, during period
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events with reasonable accuracies. By comparing false
positive (FP) counts of the “Regulation-based Rule” with
the “Combined Rule”, we see that non-regulation ontol-
ogy has successfully reduced the false positive counts
from 223 to 158. Both precision and F1-scores are
improved, with a slight degradation (3%) in recall. We
also notice that the performance of our deterministic
rule-based methods are comparable to that of the deci-
sion tree approach using “Combined ontologies” as
shown in Table 5. This demonstrates the effectiveness
of our ontology on discriminating transcription regula-
tion rate changing events from other regulation events.

Identifying direct evidences for events by
machine learning methods
The above rule-based methods are capable of identifying
transcriptional regulation rate changing events, but fail
to identify specific details of the rate-changing regula-
tion events. The details are important as they are indis-
pensable for extracting gene regulatory network (GRN)
from literature. To extract detailed information, we need
to consider the position of genes and their relations
such as part-of-speech (POS) tags and grammatical rela-
tions between keywords, etc.

Direct and indirect evidence records for events
Through manual inspection of the transcription regula-
tion rate changing events, we discovered that there are
direct or indirect evidences of transcription regulation
rate changing events. The direct evidences provide com-
plete information about the regulator, regulatee and rate
changes of the event. The indirect evidences in the posi-
tive class have following two subclasses:

1 Subclass I: incomplete regulation information. The
sentence provides incomplete or partial regulation
information. For example, according to the snippet “a
decrease in the amount of HSP12 and HSP104
mRNAs” of Example-7 in Table 7, we know that the
expression of “HSP12 and HSP104” changes. However,

we are not sure about the regulation relationship and
regulation rate change. Thus, we need more informa-
tion to confirm it as a regulation rate changing event.
2 Subclass II: genetic engineering manipulation. The
sentence may include information about gene regu-
lation and transcription that are unnatural, which
means that the gene information included in the
sentences are not necessary the original genes in our
target organism. As Example-8 shown in Table 7,
“multicopy plasmid” and “GalIME1 construct” indi-
cates that the related genes are external or went
through some engineering manipulation. Thus, this
type of events only provide indirect evidence for our
target event; more information is needed to confirm
that the genes are indeed original.

To extract detailed information about transcriptional
regulation rate changing events, we need to detect
direct evidence from indirect evidence. As indicated by
the examples shown in Table 7, direct and indirect evi-
dence have similar textual patterns. We thus need to
formulate semantic structural features to extract the
direct evidence.

Learning direct evidences by decision tree
We propose a feature-based method that incorporates
diverse lexical, syntactic and semantic features to auto-
matically extract transcriptional regulation relations.
Inspired by the Automatic Content Extraction (ACE)
program features [11] and state-of-the-art rich graph
features [17,18], which have proven useful in detecting
relations between entities, we define three classes of fea-
tures, bag-of-words, graph and shortest path features as
follows:

1 Keyword-tag: a combination of the keywords
defined in our ontologies, and their POS tags, which
indicate their grammatical roles in sentences. The
keywords in the features are normalized to reduce
the diversity of words with the same tags.

Table 5 Performance of decision tree prediction using rule sets derived from different ontologies.

Model TP FP FN TN Prec.(%) Rec.(%) F1(%) Acc.(%)

BioInfer ontology 223 121 134 831 64.83 62.46 63.62 80.52

GeneReg ontology 235 109 122 843 68.31 65.83 67.05 82.35

Regulation rate change ontology 276 107 81 845 72.06 77.31 74.59 85.64

Combined ontologies 277 99 80 853 73.67 77.59 75.58 86.33

Table 6 Classification performance of various ontology rule-based methods.

TP FP FN TN Prec.(%) Rec.(%) F1(%) Acc.(%)

Regulation-based Rule 335 223 22 729 60.04 93.84 73.22 81.28

Combined Rule 322 158 35 794 67.08 90.20 76.94 85.26
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2 Word-relation-word: two words concatenated by
the name of their dependency relation type. The
relation is extracted from the shortest relation path
between genes and keywords in the dependency tree
derived from the Stanford NLP parser [28].
3 Gene-keyword-distance: a triplet of gene, keyword,
and length of the shortest relation path between
them in the dependency tree.

Compared with the classical window scoping and
chunking entity recognition approach [11], we extract
more concise and informative word features (keywords) by
using our structured ontologies. We also consider the tag
types of keywords in addition to considering the entity
type [11]. In [11], the full parsed features include the path
of phrase and phrase labels between two entity mentions
in the parser tree. To consider relational trigger words,
they also exploit features indicating whether the top
phrase in the parse path between the entity mentioned
contains the relation triggers. We also consider these two
kinds of features, but express them differently with the
help of the informative trigger words. Similar to the full
parsed features in [11], we consider the dependence rela-
tions between entity genes and the relation trigger words.
Specifically, we denote the shortest path in the full parse
tree between them as the “word-relation-word” form.
Thus, all phrase labels are in fact shown independently
and the phrase words are also included. We summarize
the shortest path length between gene and keywords as
the “gene-keyword-distance” feature. Hence, we in fact re-
formalize and improve the ACE features in [11] to use our
ontology for improved automatic relation extraction.
With the help of the informative keywords provided by

our ontologies, the proposed features actually incorporate
the state-of-the-art rich graph features [17,18]. Specifically,
“keyword-tag” feature is the combination of “token fea-
tures” and “POS of tokens” in [17,18]. Instead of using all
tokens in the path, we choose more informative keywords
from our ontologies. The “word-relation-word” feature
combines the 2-gram consecutive tokens and their “edge
feature” (i.e., dependency type of the edge) in the path
[17,18]. And “gene-keyword-distance” feature covers the
“frequency feature” which is the length of the shortest
path [17,18]. Thus, the proposed features in fact cover
state-of-the-art features [17,18] and are more informative
due to our ontologies. In fact, we also implemented the

experiment that adding all tokens in the path and their
POS into our features, but it didn’t improve any perfor-
mance. This indicates that the keywords from our ontolo-
gies provide enough information of tokens.
After extracting the graph features, we perform follow-

ing post-processing to reduce the diversity of features:
(i) for the dependency type of edge in the path, we use
generic types (i.e., the dependency types in the second
level of hierarchy tree of typed dependencies as shown in
[29]) instead of more specific ones; and (ii) for the length
of the shortest path, we use three nominal features (i.e.,
near, moderate and far) instead of the specific value. If the
length is less than three, it is treated as “near"; if the length
ranges from four to six, it is treated as “moderate"; and if
the length is larger than six, it is treated as “far”. Moreover,
to reduce the word diversity in the features, we also per-
formed word normalization by using their normalized
representation instead of original forms in texts. Experi-
mental results show that applying post-processing on
extracted features can improve the performance.
There are 357 sentences in total, where 211 sentences

belong to direct evidence classes, with the remaining
belonging to indirect evidence classes. To evaluate the
proposed feature-based approach, we performed tenfold
cross-validation on the rate-changing transcriptional
regulation events by using the decision tree as the classi-
fication method. The results are reported in Table 8
with the row header “Combined Features”.
As a baseline, we implemented the ACE features as

described in [11]. They use all words between entities/
keywords mentions as word features. Parser related fea-
tures among entities/keywords are also included. The
results of this method are shown in Table 8 with the row
header “Baseline features”. To show the performance of
ontologies on identifying direct evidences, we treated all
textual patterns from the two ontologies as features. The
results are listed in Table 8 with the row header “All
rules features”. To verity the effectiveness of post-proces-
sing, we implemented the experiment on combined fea-
tures without applying post-processing. The results are
shown in Table 8 with the row header “Original com-
bined features”, which also indicate the performance of
using graph features in [17,18]. Benchmarking against
these baselines is important as it shows whether the pro-
posed features are more effective than baseline features
[11], and in fact necessary to identify direct evidences.

Table 7 Examples of indirect evidence.

Example-7 The results indicate that during the first hours of microvinification there is an increase in the GPDI mRNA levels with a maximum
about one hour after inoculation, and a decrease in the amount of HSP12 and HSP104 mRNAs, although with differences between
them. (PMID: 12086182)

Example-8 Four different conditions were found to cause expression of Ime1 protein in vegetative cultures: elevated transcription levels due to
the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to alpha-factor
treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. (PMID: 8483452)
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As shown in Table 8, the proposed “Combined features”
significantly improve the recall (about 26% improvement)
compared to the baseline. It demonstrates the importance
of incorporating semantic patterns in the features. Besides,
the proposed features achieved an F1-score of 71.43%,
which is about 11% better than the baseline. This shows
that the proposed features are effective in mining patterns
from direct evidence instances.
When direct evidence records are detected, the specific

information of rate-changing transcriptional events are
identified automatically from the regulation, gene/protein
name, and rate change related trigger words. The rate
change directions are intuitively identified from the class
of rate changes related trigger words as shown in Table 4.
As suggested in [11], we can use the 13 frequent textual
patterns between “agent” and “patient” to identify regula-
tor and regulatee from gene/protein names. Besides, the
effective sentence simplification rules described in [30] can
be adopted to remove the irrelevant information, i.e. the
noisy genes or keywords.

Conclusions
In this paper, we manually created a corpus containing
events of rate-changing transcriptional regulation, which
can be downloaded from https://sites.google.com/site/
wentingntu/data. By statistically analyzing the textual
patterns of positive instances, combined with biological
reasoning over the transcriptional regulation rate change,
we cataloged sub-processes and their textual patterns
into a transcriptional regulation rate change ontology.
Similarly, we established an ontology to collect negative
transcriptional regulation textual patterns. Experimental
results show that our ontologies outperform state-of-the-
art gene regulation ontologies when used together with
our decision tree based rule learning method on our cor-
pus. We also proposed some deterministic decision rules
by using two established ontologies to identify the events.
Experimental results show that this deterministic rule-
based method can achieve comparable performance with
the automatic rule learning method. This demonstrates
the effectiveness of our ontologies and deterministic deci-
sion rules on identifying the transcriptional regulation
rate changing events.
Since both direct and indirect evidences exist in the

transcriptional regulation rate changing events, we need

to figure out direct evidence to confirm the final tran-
scriptional regulatory network with rate changes. How-
ever, ontology based rules fail to identify direct evidence
due to the similarity of their textual patterns with indir-
ect evidence. We thus proposed effective feature extrac-
tion methods based on the ontologies to identify direct
evidence of events. Experimental results show that it
achieves a 71.43% F1-score for ten-fold cross-validation.
This demonstrates the effectiveness of the proposed fea-
ture mining methods to identify direct evidences.
The detected transcriptional regulation rate changing

events can be used as a guidance on detecting time delays
from gene expression data [31]. It is also easy to use our
corpus and ontologies to collect other related events. As
our ontology catalogs sub-events of transcriptional regula-
tion rate changing events, it can be applied for sub-events
detection, e.g., promoter activity, expression changing
events, etc. How to combine the context information to
help predict the event information from the indirect evi-
dence remains an open problem.
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Table 8 Performance of ten-fold cross-validation decision tree methods with various feature sets on identifying direct
evidence instances.

TP FP FN TN Prec.(%) Rec.(%) F1(%) Acc.(%)

Baseline features [11] 131 88 80 58 59.82 62.09 60.93 52.94

All rules features 149 102 62 44 59.36 70.62 64.50 54.06

Original combined features 175 121 36 25 59.12 82.94 69.03 56.02

Combined features 185 122 26 24 60.26 87.68 71.43 58.54
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