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Abstract
Purpose Evidence exists regarding the beneficial effects of diets rich in plant-based foods regarding the prevention of 
cardiometabolic diseases. These plant-based foods are an exclusive and abundant source of a variety of biologically active 
phytochemicals, including polyphenols, carotenoids, glucosinolates and phytosterols, with known health-promoting effects 
through a wide range of biological activities, such as improvements in endothelial function, platelet function, blood pres-
sure, blood lipid profile and insulin sensitivity. We know that an individual’s physical/genetic makeup may influence their 
response to a dietary intervention, and thereby may influence the benefit/risk associated with consumption of a particular 
dietary constituent. This inter-individual variation in responsiveness has also been described for dietary plant bioactives 
but has not been explored in depth. To address this issue, the European scientific experts involved in the COST Action 
POSITIVe systematically analyzed data from published studies to assess the inter-individual variation in selected clinical 
biomarkers associated with cardiometabolic risk, in response to the consumption of plant-based bioactives (poly)phenols 
and phytosterols. The present review summarizes the main findings resulting from the meta-analyses already completed.
Results Meta-analyses of randomized controlled trials conducted within POSITIVe suggest that age, sex, ethnicity, patho-
physiological status and medication may be responsible for the heterogeneity in the biological responsiveness to (poly)
phenol and phytosterol consumption and could lead to inconclusive results in some clinical trials aiming to demonstrate the 
health effects of specific dietary bioactive compounds. However, the contribution of these factors is not yet demonstrated 
consistently across all polyphenolic groups and cardiometabolic outcomes, partly due to the heterogeneity in trial designs, 
low granularity of data reporting, variety of food vectors and target populations, suggesting the need to implement more 
stringent reporting practices in the future studies. Studies investigating the effects of genetic background or gut microbiome 
on variability were limited and should be considered in future studies.
Conclusion Understanding why some bioactive plant compounds work effectively in some individuals but not, or less, in 
others is crucial for a full consideration of these compounds in future strategies of personalized nutrition for a better preven-
tion of cardiometabolic disease. However, there is also still a need for the development of a substantial evidence-base to 
develop health strategies, food products or lifestyle solutions that embrace this variability.
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Key messages 

• A balanced diet, rich in plant-based foods is known for the prevention of obesity, diabetes, and cardiovascular 
disease risk.

• (Poly)phenols and phytosterols displayed a range of biological effects of relevance to contribute to the cardiometa-
bolic health benefits of plant foods

• However, inter-individual variability in response to plant food bioactive consumption exists, and there is a need 
to understand the causes of this variation.

• Analysis of published RCTs examining impact of consumption of (poly)phenols and phytosterols on cardiometabolic 
risk factors demonstrated that a number of factors including age, sex, adiposity and health status could contribute 
to the effect demonstrated within these studies.

• Genome and microbiome studies will help identify what may be causing this variation.
• More studies, specifically designed to investigate individual variation are needed to fully understand the factors 

responsible for and the impact of this variation
• Once fully understood, such variation should be used in directing personalised nutrition advice.

Keywords Diet · Bioactive · Plant · Variation · Cardiometabolic diseases · Metabolism · Microbiome · Metabotype · 
Response · Gene expression · Health

Abbreviations
APOA1  Apolipoprotein A1
APOB  Apolipoprotein B
ApoE  Apolipoprotein E
BMI  Body mass index
BP  Blood pressure
CCL2  Monocyte chemoattractant protein-1
CI  Confidence interval
CMD  Cardiometabolic disease
DNA  Deoxyribonucleic acid
FASN  Fatty acid synthase
FMD  Flow-mediated dilation
GWAS  Genome-wide association studies
HDL  High-density lipoprotein
HDL-c  HDL-cholesterol
HOMA-IR  Homeostatic model assessment of insulin 

resistance
IL6  Interleukin 6
LDL-c  LDL-cholesterol
LDL  Low-density lipoprotein
MTHFR  Methylene tetra hydro folate reductase
PAI-1  Plasminogen activator inhibitor 1
PPAR-alpha  Peroxisome proliferator-activated receptor 

alpha
PPAR-gamma  Peroxisome proliferator-activated receptor 

gamma
RCT   Randomized controlled trial
SMD  Standardized mean difference
SNP  Single-nucleotide polymorphism
T2DM  Type 2 diabetes mellitus
TAG   Triacylglyceride
TC  Total cholesterol
UTR   Untranslated region
WC  Waist circumference

Introduction

Many societies struggle with the societal and economic con-
sequences of the rise in cardiometabolic diseases (CMD), 
including heart disease, stroke and type 2 diabetes mellitus 
(T2DM) [1]. Poor dietary habits are recognized as a major 
determinant of risk of CMD [2] and focus on the promotion 
of healthful diets has been identified by policymakers as a 
cornerstone for public health strategies. From a number of 
population-based and intervention studies, a consensus has 
emerged on the beneficial effects of a balanced diet, rich in 
plant-based foods for the prevention of obesity, diabetes, 
and cardiovascular disease [3–5]. Thus far, recommenda-
tions for plant foods are promoted at a population level in 
a “one-size fits-all approach”, which does not necessarily 
ensure that everyone is adequately exposed to and benefit 
from the protective constituents provided by these foods. 
In addition to providing low energy and essential micro-
nutrients, plant-based foods are exclusive and abundant 
sources of a variety of biologically active phytochemicals 
with known health-promoting effects [6]. These bioactive 
compounds include (poly)phenols (i.e., flavonoids, phenolic 
acids, ellagitannins), carotenoids, glucosinolates and phytos-
terols (plant sterols and stanols), known to display a wide 
range of biological activities linked to the prevention of a 
broad range of chronic diseases [7–10]. A growing body of 
evidence indicates that increased intake of these bioactive 
compounds, especially (poly)phenols and phytosterols, may 
help to reduce the risk of CMD [11–13]. For example, the 
lipid-lowering effects of phytosterols have been extensively 
studied and reviewed in a meta-analysis, showing that daily 
consumption of plant sterol-enriched foods lowers total 
serum and low-density lipoprotein (LDL) cholesterol levels 
[14]. This effect is mediated by competitive inhibition of 
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cholesterol absorption and transcriptional induction of genes 
involved in the intestinal and hepatic metabolism of choles-
terol [15]. Some physiological effects with implications for 
cardiometabolic health attributed to (poly)phenols include 
improvements in endothelial function, platelet function, 
blood pressure, blood lipid profile and insulin sensitivity 
[16, 17]. The underlying mechanisms of action are thought 
to be related to the ability of (poly)phenols to modulate oxi-
dative processes and inflammation regulating cell signaling, 
insulin resistance, glucose and lipid metabolism amongst 
other; most of these modulations being mediated by changes 
in gene expression [18, 19]. More recently, these compounds 
have been proven to have modulatory properties on the gut 
microbial ecology with potential repercussions on metabolic 
health [20, 21].

Research to date has shown that an individual physical/
genetic makeup influences their response to dietary interven-
tions, and thereby may influence the benefit/risk associated 
with consumption of a particular dietary constituent [22]. 
Whilst still poorly specifically explored, this inter-individual 
variation in responsiveness is considered to be of particular 
relevance for dietary plant bioactives [19, 23, 24]. In addi-
tion to physical and genetic effects, the influence of the gut 
microbiota on the biological effect is also of interest, as it 
is known to be extensively involved in the metabolism of 
a number of plant bioactives [25]. Together with genetic 
background and gut microbiome, other factors such as age, 
sex, lifestyle (diet, smoking, physical activity), ethnicity, 
pathophysiological status and medication could also be 

responsible for the heterogeneity in the biological respon-
siveness to plant food bioactives consumption, and could 
lead to inconclusive results in some clinical trials aiming to 
demonstrate the health effects of specific dietary bioactive 
compounds [26] (Fig. 1).

A clear understanding of why some bioactive plant com-
pounds work effectively in some individuals but not, or 
less, in others is crucial for a full consideration of these 
compounds in future strategies of personalized nutrition 
for a better prevention of CMD in the long run. To address 
this issue, the European scientific experts involved in the 
COST Action POSITIVe systematically analyzed data from 
published studies to assess the inter-individual variation in 
selected clinical biomarkers associated with cardiometa-
bolic risk, in response to the consumption of plant-based 
bioactives including flavanols, flavonols, anthocyanins, 
ellagitannins, and plant sterols. The aim of this review is to 
summarize the findings obtained regarding identification of 
potential factors involved in the inter-individual variability 
in response to (poly)phenols and phytosterols in the context 
of cardiometabolic disease risk.

Factors involved in the variability 
in cardiometabolic response

In each meta-analysis, analyses were first carried out at a 
total population level, and subsequently at subgroup level 
(e.g., sex, body mass index (BMI), age, disease, medication, 

Factors 
influencing 
response 

Gene�c 
variance 

Gut 
Microbiome 

Ethnicity 

Body Mass 
Index Age 

Sex 

Health 
Status 

Plant food bioac�ves  Variability in response 

Fig. 1  Factors influencing inter-individual variability in cardiometabolic response to plant food bioactive consumption
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ethnicity) to identify the main factors responsible for 
between-subject variation beyond bioavailability. The net-
work also performed a systematic analysis of nutrigenomic 
data available, to identify the cellular and molecular targets 
involved in the effects of plant food bioactives on cardiomet-
abolic outcomes. The present review summarizes the main 
findings resulting from this extensive body of work together 
with the needs and recommendations for future research.

Existing clinical data collected for cardiometabolic risk 
biomarkers such as blood lipids, blood pressure and BMI 
show large variations among randomized controlled trials 
(RCTs) carried out in different countries, from individuals 
with different lifestyles, ethnicity, age, sex, and physiologi-
cal/health status, etc. This is further complicated by the vari-
ability in the source/form of administration of these plant 
food bioactives, and duration of the exposure [23, 27]. In 
this framework, the COST Action FA1403 POSITIVe has 
delivered, for the first time, focused meta-analyses assessing 
inter-individual variation in physiological responses linked 
to selected cardiometabolic endpoints after consumption of 
plant food bioactives. A key focus of these meta-analyses 
was to identify (1) groups of the population (stratified by 
age, sex, ethnicity, BMI, health status, among other param-
eters) which better respond to (and, therefore, benefit from) 
the bioactive, and (2) which factors are driving this asso-
ciation beyond genetic polymorphisms and gut microbiota 
composition. Searches for published RCT were carried out 
following a registered protocol, stratifying for individual 
bioactives (registration number: CRD42016037074). This 
summary will focus on published meta-analyses, examining 
the effect of flavonols [28], flavanols [29], anthocyanin and 
ellagitannin-containing products [30] on selected biomarkers 
of cardiometabolic risk, including blood lipids, blood pres-
sure, endothelial function, glucose homeostasis and anthro-
pometric parameters.

The first meta-analysis examined the effects of various 
factors on the variability in the responses to their consump-
tion of flavanol-containing tea, cocoa and apple products, 
where data from 120 RCTs involving 5931 individuals 
was examined [29]. Selected biomarkers of cardiometa-
bolic risk including body mass index (BMI), waist cir-
cumference (WC), total cholesterol (TC), LDL-cholesterol 
(LDL-c), HDL-cholesterol (HDL-c), and triacylglycerides 
(TAGs) were considered. Overall, the effects on BMI, WC, 
total cholesterol and LDL-c appear to be statistically sig-
nificant in subgroups of people with overweight/obesity 
(BMI > 25 kg/m2). However, there was a lack of evidence 
to draw conclusions with respect to the influence of certain 
factors including smoking status, country where the trial 
was conducted and sex, where the results were inconclusive; 
with one exception regarding TC which was reduced only 
in women . [29]. Within this meta-analysis, a smaller selec-
tion of trials reported outcome variables linked to glucose 

homeostasis. Despite the broad range of doses and durations 
(88–4035 mg flavanols/day; 2–26 weeks), and types of inter-
vention, statistical heterogeneity remained low for these out-
comes. The analysis highlighted a consistent small effect on 
insulin (standardised mean difference) (SMD − 0.25, 95% 
CI − 0.33; − 0.16) and HOMA-IR ((SMD) − 0.26; 95% CI 
− 0.36, − 0.16). Subgroup analysis showed lack of effect 
in those with BMI < 25 or male subjects only, although this 
may be due to low power, since many of the included trials 
were unpowered and heterogenous in term of the populations 
included, with few focusing on very specific groups of the 
population (sex, or narrow age range) [31].

Similar to flavanol-containing products, the beneficial 
response to consumption of anthocyanin-rich (berries and 
red wine, 98 RCTs) and ellagitannin-rich (nuts and pome-
granate, 30 RCTs) products intake on TC, diastolic blood 
pressure (DBP) and systolic blood pressure (SBP) were 
consistently observed only in people with overweight/obe-
sity [30]. The effect of other factors analyzed such as sex, 
smoking status, health status or country where the study was 
conducted were inconsistent across the studies or were noted 
to require further investigation [30].

The work focusing on RCTs administering flavonols 
yielded a limited number of trials examining cardiometa-
bolic outcomes [28]. Overall the analysis highlighted 
the efficacy of flavonol-focused interventions, modestly 
decreasing TC (− 0.10 mmol/L; 95% CI − 0.20, − 0.01), 
LDL-c (−  0.14  mmol/L; 95% CI −  0.21, 0.07), TAG 
(− 0.10 mmol/L; 95% CI − 0.18, 0.03), fasting plasma 
glucose (− 0.18 mmol/L; 95% CI − 0.29, − 0.08), blood 
pressure (SBP −4.84 mmHg; 95% CI −5.64, −4.04; DBP 
−3.32  mmHg; 95% CI −  4.09, −  2.55) and increasing 
HDL-c (0.05 mmol/L; 95% CI 0.02, 0.07). Stratification by 
age, sex, country, and health status highlighted a consist-
ent lowering of TAG, TC and LDL-c in participants from 
Asian countries and decrease in LDL-c in participants with 
diagnosed disease or dyslipidemia, compared to healthy and 
normal baseline values. More consistent effect were seen 
with larger flavonol doses administered (> 200 mg per day), 
and with pure compounds instead of foods [28].

Finally, the work investigating the effects of phytoster-
ols/phytostanols supplementation on the change in apoli-
poproteins, including APOA1 and APOB and its ratio, as 
well as on markers of inflammation and endothelial dys-
function including oxidized LDL-c, flow-mediated dilata-
tion (FMD) and plasminogen activator inhibitor 1 (PAI-1) 
showed a significant reduction in apo B by 0.07 g/L (95% 
CI − 0.07, − 0.04). This effect was dependent on the food 
matrix, being higher for margarine and spreads compared to 
dairy and other types of food matrix. The highest reduction 
in apo B was observed among trials giving at least 3 g/day 
of plant sterols/stanols (− 0.13 g/L; 95% CI − 0.25, − 0.01). 
Plant stanols-enriched products showed a higher decrease in 
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apo B level (− 0.09 g/L; 95% CI − 0.12; − 0.06) than plant 
sterols (− 0.03 g/L; 95% CI − 0.04, − 0.02). No differential 
effects were observed by sex; however, a larger decrease by 
0.22 g/L in apo B was observed among studies with younger 
(< 40 years) population. The analyses exploring the effect of 
stanols and sterols intakes and apo B/apo A1 ratio showed a 
0.07 reduction among studies with fortified dairy products. 
In addition, a reduction in apo B/apo A1 ratio was observed 
with the amount of phytosterols/phytostanols between 2 
and 3 g/day. Significantly higher reduction in ox-LDL was 
observed among the studies with plant stanols supplemented 
margarine and spread comparing to dairy and other type of 
food matrix as well as among studies with participants of 
40–50 years of age (effect size − 3.52; I2 = 0.00%). No sig-
nificant effect of plant sterols/stanols enriched food on FMD 
and PAI-1 was observed (data unpublished).

Another important aspect to consider is the effect of the 
food matrix on response to interventions. The food matrix 
has been shown to influence response to nutrition interven-
tions in several foods including plant-based foods [32, 33]. 
When possible, the impact of the food matrix was consid-
ered within the reported meta-analyses, whereby provision 
of pure compounds versus whole food or response across 
differing food types was considered, if that data were avail-
able. For example, examination of the effect of plant phy-
tosterols was considered in different food matrices, where 
the authors found the effect was dependent on the food 
matrix, being higher for margarine and spreads compared 
to dairy and other types of food matrix (data unpublished) 
reported that more consistent effects were seen with larger 
flavonol doses administered (> 200 mg per day), and with 
pure compounds instead of foods. These findings indicate 
that a matrix effect is likely, which needs to be further inves-
tigated in future specifically designed studies and analyses. 
Furthermore, factors including dietary patterns, timings of 
supplementation/intake and study duration should also be 
considered as potential factors influencing the beneficial 
effect of plant food bioactives. Variability in the bioactives 
composition of foods tested among the studies can also be 
very large. Stricter dietary-controlled trials and standardiza-
tion of intervention conditions could help to reduce biais 
that could hamper the identification of factors contributing 
to inter-individual variability.

Overall, the meta-analyses conducted succeeded in high-
lighting the state-of-the art in terms of the effects of (poly)
phenols and phytosterols on cardiometabolic risk factors, 
and undertook the large task of reviewing and extracting 
reported factors which may drive the inter-individual varia-
bility in the response to the consumption of these bioactives. 
The beneficial effect ascribed to (poly)phenols is likely to 
be complemented by other bioactives and nutrients present 
in these foods (such as fiber, vitamins).

Influence of the gut microbiota 
on the variability in cardiometabolic 
response

Whilst the meta-analyses focused on demographic, clinical 
and physical factors influencing variability, a growing body 
of evidence points to the impact of an individual’s gut micro-
bial community, both in term of composition and function, 
on the high inter-individual variability in the response to 
plant food bioactives [21, 24]. The gut microbiota is known 
to show considerable variation, influenced by variability in 
enterotypes [34], gut microbiota diversity [35] and quantity 
of microorganisms [35, 36], and, therefore, the gut micro-
biota phytochemical metabolites can differ among indi-
viduals depending on their gut microbiota composition. For 
example, in the last decade, inter-individual variability in gut 
microbiota metabolism of (poly)phenols has been reported 
for different groups. For some (poly)phenols (hesperidin, 
isoxantohumol, lignans, and proanthocyanidins), a con-
tinuous variation among individuals in the excretion of gut 
microbiome-derived metabolites has been reported rather 
than a simple classification into a responder/non-responder 
group or a specific metabotype [37–40]. For other groups 
(e.g. isoflavones/equol and ellagic acid/urolithins), there is 
consistent evidence for the existence of clear metabotypes, 
defining the presence or absence of specific gut microbiome-
derived metabolites that allow the assignment of individu-
als to specific gut metabotypes [25, 37–41]. However, to 
date the number of clinical trials assessing cardiometabolic 
health effects of plant bioactives consumption, while con-
sidering inter-individual variability in the gut microbiota 
composition and functionality, is still very limited. Table 1 
shows the limited number of RCTs describing evidence 
of role of gut microbiota in inter-individual variability in 
response to plant food bioactives intake related to cardio-
metabolic outcomes, based on their gut microbiota-derived 
metabolites (metabotypes) such as equol/non-equol producer 
metabotypes [42, 43] or urolithin metabotypes [44, 45] or 
by their specific gut enterotypes (i.e. Bacteroides Prevotella 
enterotypes [46]. In general, the stratification in these studies 
has furthered the understanding of the differential response 
to dietary phenolic compounds and can explain some of the 
large inter-individual variability observed in the response of 
individuals to these plant food bioactives reported in previ-
ous trials or meta-analyses. Whether the effects are produced 
by the gut microbiome-derived metabolites or the specific 
gut microbial community considering the metabolites as bio-
markers, or perhaps by a synergistic or additive effect remain 
unexplored [21, 25].
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Influence of cell and molecular targets 
on variability in response: mechanisms 
of action

Whilst evidence exists of the variability in cardiometa-
bolic response to consumption of plant food bioactives, it is 
important to both understand the molecular mechanism of 
action and that of the variability in response. The beneficial 
health effects of the plant food bioactives have long been 
attributed solely to their antioxidant activity, however, it is 
now commonly accepted that their effects are in fact more 
dependent on their capacity to modulate the expression of 
genes and proteins or induce epigenetic modifications [47, 
48]. For example, anthocyanins prevent the development of 
atherosclerosis by modulating expression of genes in aorta in 
ApoE mice [47] and can also modulate expression of genes 
related to endothelial cell function [19]. Carotenoids have 
been also shown to be able to modulate the expression of 
inflammatory-related genes, such as tumor necrosis factor 
alpha (TNF-alpha), and interleukin 1 beta (IL-1beta) [49]. 
More recently it has been shown that flavanols can simul-
taneously modulate difference cell regulatory pathways by 
affecting not only expression of genes, but also that of pro-
teins and microRNAs, together with changing DNA meth-
ylation profiles [50].

To examine the existing evidence, a systematic analy-
sis of the reported genomic effects of specific plant food 
bioactive compounds was conducted, followed by global 
bioinformatic analyses of the extracted data to identify key 
genes underlying their suggested beneficial health proper-
ties. Focusing on flavanols, over 100 papers that reported 
modification in gene expression following exposure to fla-
vonoids from apple, tea, cocoa or grape seed were identified. 
For in vitro studies, attention was paid to select only publica-
tions that have used plant food bioactives at physiologically 
achievable concentrations, and exclude those using non-
physiologically relevant forms and concentrations. Using 
this approach, about 150 genes with reported expression 
modulated by flavanols in vitro and in vivo were identi-
fied. Among these, TNF-alpha, fatty acid synthase (FASN), 
monocyte chemoattractant protein-1 (CCL2), interleukin 
6 (IL6), peroxisome proliferator-activated receptor alpha 
(PPAR-alpha) and peroxisome proliferator-activated recep-
tor gamma (PPAR-gamma) were most commonly observed, 
suggesting that these genes play an important role in the 
cardiometabolic health properties of flavanols (unpublished 
data). Once identified, the genes modulated by flavanols 
were then analyzed for protein–protein interactions, with 
the aim to identify genes in the nodes of the interaction 
network. Using this approach, we identified several protein 
nodes including TNF-alpha, IL6, NDUFAB1, ACACA, 
TLR4 and P65, some of them having interactions with over 

50 proteins. Bioinformatic analyses allowed us further to 
identify cellular pathways in which differentially expressed 
genes are involved, which include PPAR-signaling pathway, 
TNF-signaling pathway, insulin-signaling pathway, leuko-
cyte transendothelial migration and NF-kappa B-signaling 
pathway (manuscript in preparation). Whilst these results are 
interesting and will further the understanding of this field, 
it should be mentioned that there are probably other genes 
and pathways underlying the health effects of flavanols that 
were not identified, as most of the studies have used tar-
geted approach and evaluated expression of a few specific 
genes, thus inducing bias in the interpretation of data. Bio-
informatic analyses also allowed us to identify transcription 
factors involved in the genomic modifications induced by 
flavanols. Among the most significant ones identified are 
SP1, PPARa, STAT3, NF-kB and c-myc. The activity of 
these transcription factors could be modulated by binding 
of plant food bioactives to them or to cell-signaling proteins 
and receptors involved in different cellular signaling path-
ways [19].

Analyses of genomic data by bioinformatic tools allowed 
us to identify key genes involved in health effects of plant 
food bioactives, including genes coding for cell-signaling 
proteins or transcription factors. Due to the key role in 
cardiometabolic health effects of these bioactives, it could 
be suggested that polymorphisms in these genes would 
affect gene-bioactive interaction and consequently biologi-
cal responsiveness to their intake. Taking TNF-alpha as 
an example, a search of SNP databases [Variation Viewer 
(https ://www.ncbi.nlm.nih.gov/varia tion/view/overv iew) 
or Ensembl genome database (https ://www.ensem bl.org/
index .html)] showed several hundreds of SNPs in this 
gene, some of which were insertion or deletion of bases 
in the DNA, missense mutations, mutations in 5′ UTR 
region which encompass the promoter region of the gene, 
frameshift or nonsense/stop gained, with 23 SNPs with a 
minor allele frequency of > 0.1 or nearly 60 with minor 
allele frequency > 0.05. Some of these SNPs were previously 
identified as associated with high or low blood pressure 
using genome-wide association studies, as identified from 
genome-wide association studies (GWAS) Catalog database 
(https ://www.ebi.ac.uk/gwas/). Furthermore, several SNPs 
were observed to be associated with known variability in the 
effects of certain drugs [as observed using Pharmacogenom-
ics Knowledgebase (https ://www.pharm gkb.org/)] and nutri-
ents [51, 52]. Taken together, this strategy of global analysis 
of genomic effects of plant food bioactives, followed by bio-
informatic analyses and search of SNPs databases, allows 
identification of key genes and polymorphisms potentially 
involved in inter-individual variability in biological respon-
siveness to intake of plant food bioactives, which needs to 
be verified in future nutrigenetic studies.

https://www.ncbi.nlm.nih.gov/variation/view/overview
https://www.ensembl.org/index.html
https://www.ensembl.org/index.html
https://www.ebi.ac.uk/gwas/
https://www.pharmgkb.org/
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Future work and study design

Whilst the work summarized in this review contributes 
greatly to the scientific evidence supporting the beneficial 
effect of plant-based bioactives on risk of CMD, it also raises 
several issues related to the reporting of existing work and 
future study designs. First in conducting the meta-analyses, 
we found large discrepancies in reporting quality between 
the studies considered, with no consensus for population 
description, or descriptive statistics used. As such there 
is scope for the nutrition community to adopt a consensus 
when describing trial participant characteristics, to enable 
full appraisal of the study findings, with respect to inter-indi-
vidual variability of response. Welch et al. (2011), as part of 
an ILSI taskforce, published guidelines for the design, con-
duct and reporting of human intervention studies to evaluate 
the health benefits of foods [53]. In this paper, the authors 
also underlined the importance to consider, and overcome by 
an adapted study design, the biological variability of the bio-
markers measured. This variability, which may have several 
origins (including among others, genetics, circadian or sea-
sonal variation, female menstrual cycle), can also introduce 
systematic biais into results [53]. Within the COST Action 
POSITIVe, this area has been further considered to develop 
recommendations specifically for the reporting of results 
which would allow future assessment of factors influencing 
variation. Addressing the requirement for reporting of results 
at the onset of a study design will also increase the ability 
of future studies to be pooled to examine variation in inter-
individual variation across and within various population 
groups, using statistical approaches to identify responders 
and non-responders [54–56]. The work within the COST 
Action POSITIVe also highlighted the need to conduct trials 
within well-defined study populations, in terms of age, sex, 
ethnicity or health status. Further RCTs, designed to pheno-
type individuals upon consumption of plant food bioactives 
are required to fully comprehend the factors affecting inter-
individual responses and thereby improve their efficacy in 
the prevention of cardiometabolic disorders. Conducting this 
work highlighted the fact that some subgroups of the popula-
tion receive relatively less research attention, translating to a 
weaker evidence-base regarding the effectiveness of dietary 
interventions for some groups compared to others, thus lim-
iting the scope of analyses and interpretation of findings.

Designing specific studies to examine effect both within 
and between specific groups from the outset will ensure that 
studies are adequately powered to examine effect of bioac-
tives across specific groups within a population. Such studies 
are challenging as they will require screening and/or targeted 
recruitment, for a specific phenotypic or genotypic charac-
teristic, but will add significantly to the evidence base that 
will allow idenfication of factors influencing inter-individual 

variability. This approach is time-consuming but allows the 
correct interpretation of factors influencing response. For 
example, work examining the nutrient–gene interaction of 
methylene tetra-hydrofolate reductase (MTHFR) and vita-
min B2 (riboflavin) consumption, using a targeted recruit-
ment approach, elucidated the fact that riboflavin supple-
mentation was successful in reducing BP in hypertensive 
individuals with the MTHFR 677TT genotype only (com-
pared to MTHFR 677CC, or CT genotypes), more effectively 
than pharmacological treatment indicating the potential for a 
personalized approach to the management of hypertension 
in this genetically at-risk group [57].

What do these findings mean for clinicians, 
nutritionists, and food industry?

The translational value of the work carried out by the COST 
Action POSITIVe has important implications for public 
health, clinical nutrition and the food industry. At present, 
the emerging evidence highlights the preventive, and some-
time therapeutic, potential of (poly)phenols intake—with 
effect size ranging from small to moderate on markers 
of CMD. Of particular interest, our findings confirm that 
major factors shape the inter-individual variability in the 
response to (poly)phenolics—these included sex, BMI and 
baseline cardiometabolic markers, among others. However, 
these findings need cautious interpretation. Such findings 
are based only on existing published data, where gaps were 
identified, for example the degree of characterisation of the 
gut microbiota, or even bioavailability. Furthermore, the 
findings were consistent in groups we would expect to ben-
efit, for example people with overweight/obesity and those 
clinically compromised. Although we see response in such 
groups, the contribution of these factors is not yet demon-
strated consistently across all (poly)phenols subclasses and 
cardiometabolic outcomes, partly due to the heterogeneity 
in trial designs, low granularity of data reporting, variety 
of food vectors (and food matrices) and target populations, 
and potentially through biological mediation of responses.

We anticipate that, as the field evolves and implements 
more stringent reporting practices, factors identified influ-
encing response could guide differential dietary advice in 
subgroups that would benefit most. Issues with respect to 
regulatory aspects, including labeling and health claims 
need to be addressed, however. There is also still a need for 
the development of a substantial evidence-base to develop 
health strategies, food products or lifestyle solutions that 
embrace this variability and will be accepted by consumers 
and health care professionals [58]. Nonetheless, this area 
could prove to be an important intersection between indus-
try and public health, since it has been demonstrated that 
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personalization results in better engagement than generic 
advice [59].

However, before the physiological and demographic fac-
tors identified in the COST Action’s meta-analyses can be 
applied in the further development of personalized nutri-
tional advice or targeted products in the market, there is 
a need to determine the extent in which these factors con-
tribute to inter-individual variation compared to behavioral 
and other contextual factors. In addition, there is a need for 
adequately powered studies (and/or individual data meta-
analyses) to confirm the differing impact of the consumption 
of plant food bioactives within specific population groups, 
identified in the Action’s meta-analyses on inter-individual 
variation in responses to bioactives.

Overall, the findings and approach taken within the work 
summarized here demonstrates that inter-individual vari-
ation does influence the response to consumption of food 
bioactive compounds. If properly understood this could be 
used for targeted or personalized recommendations and/or 
development of food products for specific population groups.
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