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The demand for rapid surveillance and early detection of local outbreaks has
been growing recently. The rapid surveillance can select timely and appro-
priate interventions toward controlling the spread of emerging infectious
diseases, such as the coronavirus disease 2019 (COVID-19). The Farrington
algorithm was originally proposed by Farrington et al (1996), extended by
Noufaily et al (2012), and is commonly used to estimate excess death. How-
ever, one of the major challenges in implementing this algorithm is the lack
of historical information required to train it, especially for emerging dis-
eases. Without sufficient training data the estimation/prediction accuracy of
this algorithm can suffer leading to poor outbreak detection. We propose a
new statistical algorithm—the geographically weighted generalized Farrington
(GWGF) algorithm—by incorporating both geographically varying and geo-
graphically invariant covariates, as well as geographical information to analyze
time series count data sampled from a spatially correlated process for esti-
mating excess death. The algorithm is a type of local quasi-likelihood-based
regression with geographical weights and is designed to achieve a stable
detection of outbreaks even when the number of time points is small. We
validate the outbreak detection performance by using extensive numerical
experiments and real-data analysis in Japan during COVID-19 pandemic.
We show that the GWGF algorithm succeeds in improving recall without
reducing the level of precision compared with the conventional Farrington
algorithm.

K E Y W O R D S

emerging infectious disease, geographically weighted quasi-Poisson regression, outbreak detection,
statistical surveillance

Abbreviations: CDC, Centers for Disease Control and Prevention; COVID-19, the coronavirus disease 2019; EuroMOMO, European mortality
monitoring activity; GWGF, geographically weighted generalized Farrington algorithm.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine. 2021;40:6277–6294. wileyonlinelibrary.com/journal/sim 6277

https://orcid.org/0000-0002-3525-5092
http://creativecommons.org/licenses/by-nc/4.0/


6278 YONEOKA et al.

1 INTRODUCTION

The demand for statistical surveillance systems has increased in recent decades. It was driven not only by globalization,
disasters, and terrorism but also by emerging infectious diseases, such as SARS, MERS, swine flu, and the coronavirus
disease 2019 (COVID-19), as well as the persistent public health issues related to infectious disease outbreaks. It is impor-
tant to rapidly survey and expeditiously detect local outbreaks. The rapid surveillance can select timely and appropriate
interventions toward controlling the spread of the disease. Numerous statistical methods have been proposed on this
topic, inspired by a wide range of conventional/recent statistical techniques: for example, autoregressive-based regression
for modeling time trend, scan statistics approach for hotspots detection, and point process-based models for breakpoints
detection on time series data. The detailed literature reviews of the development can be found elsewhere.1-5

To tackle an emerging infectious disease pandemic, it is common to estimate and monitor a rapid increase in mortality
that is greater than expected under normal circumstances (ie, under the counterfactual situation without the pandemic).
It assesses the mortality burden of the new pandemic, the so-called “excess death” approach.6,7 Regarding the COVID-19
pandemic, several methods for estimating excess death have been proposed to quantify the formal underestimation of the
COVID-19 mortality burden in many heavily affected countries.8-11 For example, there are two popular algorithms, that
is, FluMOMO and Farrington, that are frequently used in practice. European mortality monitoring activity (EuroMOMO),
which is supported by the European Center for Disease Prevention and Control and the World Health Organization,
adopted the FluMOMO algorithm by using official national mortality statistics provided weekly from the 27 European
countries in the EuroMOMO network.12 The algorithm is based on a simple, yet robust quasi-Poisson regression model
with several nonlinear terms for seasonality and influenza activity, and it has been widely used, especially in European
countries.13,14 The Farrington algorithm6,7 is commonly used to estimate excess death by the United States Centers for Dis-
ease Control and Prevention (CDC), which updates the estimates weekly and supports the decision-making process for the
control of COVID-19 in the United States.15 The algorithm is also based on a quasi-Poisson regression model, which will
be explained subsequently, and has been extensively used in many countries to estimate the country-specific excess death
related to COVID-19 in a timely manner.16-18 Noufaily et al7 extended the Farrington algorithm by incorporating robust
residuals and conducted extensive simulation experiments for improving the specificity, whose generalization is our inter-
est in this study. Reviews of other outbreak detection methods using time series data can be found in Buckeridge,19 Unkel
et al,2 and Noufaily et al.20

One of the major challenges currently facing large outbreak detection survey systems is that long-term data are
sometimes unavailable. Thus, the number of time points is insufficient and the estimation/prediction accuracy is poor,
resulting in a worse outbreak detection performance. To address this issue, we propose a new statistical algorithm—the
geographically weighted generalized Farrington (GWGF) algorithm—to analyze time series count data sampled from a
spatially correlated process for estimating excess death. In general, the use of the geographical neighborhood informa-
tion enables the stabilization of the estimation by improving the estimation efficiency at the expense of bias.21-24 Using
this property, our method is designed to achieve a stable detection of outbreaks even when the number of time points is
small. This technique is especially useful in surveying emerging diseases for which minimal data have been accumulated.
It is also beneficial in areas where a surveillance system is under development such that historical data have not been
accumulated. In this study, as with Nakaya et al25 who proposed the geographically weighted Poisson regression, we pro-
pose an algorithm that utilizes geographically weighted regression techniques with spatial kernels and a quasi-likelihood
approach, including the quasi-Poisson regression model. By assigning geographical weights, which correspond to the
distance among the observation’s locations, to each observation, the local quasi-likelihood model is constructed.

In this article, we revisit the current Farrington algorithm and its extension by Noufaily et al7 with a view to improve
its detection performance under the insufficient time series data scenario. Furthermore, we propose our approach, the
GWGF algorithm, by using a local quasi-likelihood regression model with geographically induced weights. The detection
performance of outbreaks is extensively examined in the simulation experiments and real-world data in Sections 3 and 4.
Lastly, we discuss the implications of our findings and limitations in Section 5.

2 METHOD

In this section, we first explain a popular algorithm for estimating the degree of excess death, that is, the Farring-
ton algorithm,6,7 and then extend the algorithm to a more flexible form by incorporating covariates and geographical
information in a similar manner as proposed by Zhang et al,26 Brunsdon et al,27 and Fotheringham et al.21
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2.1 Current algorithm: Farrington algorithm

We first review the current Farrington algorithm proposed by Farrington et al6 and extended by Noufaily et al.7 Full details
can be found in Noufaily et al.7 Here, we explain the aspects of the algorithm to be possibly improved in the following
sections.

Assume that we have T time points data (t = 1, … ,T) and each t indicates time such as a week, month, or year. Let
{yt}T

t=1 be a univariate time series of counts (ie, the number of death in the context of excess death analysis). At any week
tc ≥ 1, the available information is the historical count Htc = {yt; t ≤ tc}. Excess death at a certain week tc is defined as

Ntc = max{ytc − U, 0} (1)

based on the known threshold value U with a resulting alarm defined as:

Atc =

{
1 (if ytc > U),
0 (otherwise).

(2)

In the context of the excess death analysis context, as described in the following section, U is frequently set to be the
100(1 − 𝛼)-percentile upper bound of the prediction distribution at time tc.

In the first step, a quasi-Poisson model with a log link function is fitted to the baseline data Ht, where yt is assumed
to be distributed with mean 𝜇t and variance 𝜙𝜇t (𝜙 is called a dispersion parameter). Thus, it is modeled as

E[yt] = 𝜇t = exp(𝛼 + 𝛽t), (3)

and Var(yt) = 𝜙𝜇t, where 𝜙 ≥ 1 and 𝛼 and 𝛽 are regression parameters that are frequently estimated by the
quasi-likelihood method.

In the original Farrington paper,6 the subset of the baseline data Ht is further specified by two parameters, b and
w: b is the number of previous years to be considered and w is the (half) window size. The baseline data are extracted
during t − w and t + w weeks of years h − b to h − 1, where h is the year of t, giving a total of n = b(2w + 1) baseline weeks
in the baseline data at time t. Note that in Noufaily et al,7 the linear trend term 𝛽t can be dropped if it is nonsignificant at
the 5% level or if �̂�t > max{Ht}, where �̂�t = exp(�̂� + 𝛽t); however, our method does not employ this rule. Given �̂�t where
the estimated parameters �̂� and 𝛽 are plugged into (3), the dispersion parameter 𝜙 is estimated by

�̂� = max

{
1

n − p

n∑
t=1

vt(yt − �̂�t)2

�̂�t
, 1

}
,

where p is the number of covariates in the model (ie, p = 2), vt is down weight that alleviates the bad effect of
the past weeks with outlying counts to the baseline estimation and is estimated by Anscombe residuals,7,28 and∑n

i=tvt = 1.
Next step is to define the threshold U. Noufaily et al7 use the following threshold value, which is approxi-

mated by the normal distribution after the 2∕3 power transformation for the correction in skewness of the Poisson
distribution;29

U = �̂�tc

{
1 + 2

3
z1−𝛼�̂�

−1
tc
(�̂��̂�tc

+ Var(�̂�tc
)1∕2)

}3∕2
,

where z1−𝛼 is the 100(1 − 𝛼)-percentile of the normal distribution.
This algorithm is easily implemented by using the R package surveillance30 with an overview at (http://surveillance.r-

forge.r-project.org/). This algorithm has been successful in many areas, including the CDC in the United States to capture
the excess death situation in a timely manner. However, the original algorithm does not allow us to include any covariates,
and more importantly, the detection accuracy (such as the sensitivity and specificity of detecting outbreaks) is unstable,
especially when the long-term data are unavailable. This can happen frequently in the surveillance of emerging infectious
diseases. To address them, we generalize the Farrington algorithm by extending model (3) to a more flexible form with
other covariates, such as weekly temperature or the number of influenza cases per week. Moreover, we incorporate the

http://surveillance.r-forge.r-project.org/
http://surveillance.r-forge.r-project.org/
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spatial dependency between the locations within the area of interest to improve the estimation by borrowing the strength
from the neighborhood locations, thereby resulting in stable outbreak detection.

2.2 Geographically weighted generalized Farrington algorithm

In this subsection, we generalize the original nonspatial Farrington algorithm to incorporate additional covariates and
geographical dependency, which we refer to as the GWGF algorithm. Let uj = (u1j,u2j) ∈ R2 be a two-dimensional vector
describing the geographical location (coordinates) of a location j (j = 1, … , J) and ytj be the count (ie, the weekly number
of deaths) in week t at location j. The extended semi-varying quasi-Poisson model for the jth location is then defined as:

E[ytj] = 𝜇tj = exp(𝛼j + 𝛽jt + Xtj𝜸j + Zt𝜻 + 𝛿jt), (4)

where Xtj ∈ Rq1 and 𝜸j ∈ Rq1 are a geographically varying covariate vector at time t and a geographically vary-
ing coefficient vector at the jth location, respectively; Zt ∈ Rq2 and 𝜻 ∈ Rq2 are a geographically invariant covari-
ate vector at time t and a geographically invariant coefficient vector, respectively; and 𝛿jt is a seasonal dummy
variable corresponding to week t in the jth location, with jt = 0 and 𝛿0j = 0, which means that the current
week is always within the reference season. The dummy variable 𝛿jt is introduced by Noufaily et al7 (cf. they
called it the zeroth-order spline) to account for the seasonality and they recommend the inclusion of 10-levels
factors with one 7-week reference period (corresponding to week tc ± 3 weeks) and nine 5-week periods each
year.

As 𝜻 is a constant vector, Equation (4) cannot be treated statistically as a special case of varying coefficient models
such as Hastie and Tibshirani.31 Zhang et al26 studied the semi-varying coefficient model (4) and propose a two-step
estimation procedure. We briefly explain the steps, which are tailored to our case: the first step is to treat 𝜻 as 𝜻 j)
and estimate it by using the following local quasi-likelihood approach. Thereafter, we average 𝜻 j over j = 1, … , J to
get the final estimator of 𝜻 . Once 𝜻 is estimated, the model (4) is reduced to a standard varying coefficient model: see
Hastie and Tibshirani.31 For simplicity, we assume 𝜻 = 0 (thus drop the term Zt𝜻 from Equation 4) in the following
discussion.

To estimate the set of parameters 𝜽j = (𝛼j, 𝛽j, 𝜸
T
j )

T in Equation (4), we employ the idea of local likelihood principal23

or equivalently, the geographically weighted likelihood principal.25 Based on the principal, to obtain the estimates of 𝜽j,
we extend the quasi-likelihood estimating equation proposed by Wu (1996)22 as:

L(𝜽j) =
n∑

t=1

∑
1≤j′≠j≤J

wjj′
ytj − 𝜇tj

𝜙j𝜇tj

𝜕𝜇tj

𝜕𝜽j
= 0, (5)

where wjj′ is a geographical weight at the location of j. It is a decreasing function of the distance between location uj and
uj′ . One classical choice of the spatial weighting function is a Gaussian kernel class defined as

wjj′ = exp

(
−||uj − uj′ ||2

𝜎2
j

)
,

where 𝜎j, which is referred to as a bandwidth, controls the kernel size. wjj′ puts more weights on the locations in closer
proximity and less weights on the location in remote proximity to the estimation for the location of j. Alternatively, it
is also possible to use the adaptive approach that allows the inclusion of the same number of data points. The popular
adaptive kernel is the bi-square kernel, which is defined by

wjj′ =

{
{1 − (||uj − uj′ ||∕𝜎2

j )
2}2 if ||uj − uj′ || < 𝜎2

j ,

0 otherwise,

where 𝜎j controls the kernel size, which includes the Mth nearest locations from the location j. The number of locations M
should be exogenously given by users. More detailed discussions on the choice of the geographical kernels can be found
in Fotheringham et al.21 By solving the estimating equation (5), we obtain the estimates �̂�j = (�̂�j, 𝛽 j, �̂�

T
j )T . According to
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the result of McCullagh,32 the value of �̂� is not (asymptotically) affected by 𝜙j, regardless of whether 𝜙j is known or not.
Thus, Equation (5) can be regarded as a simple function of 𝜽.

The estimation of 𝜽j is performed iteratively: beginning with an arbitrary value 𝜽′ that is sufficiently close to �̂�j, the
Newton-Raphson iterative method with Fisher scoring to estimate 𝜽 is defined at the (k + 1)th iteration by

�̂�j,(k+1) = �̂�j,(k) + (D̂T
(k)V̂

−1
(k)D̂(k))−1D̂T

(k)V̂
−1
(k){Yj − exp(X̃j�̂�j,(k))},

where D̂ ∈ Rn×(q1+2) is a matrix with the [k, l]th component as Dkl = 𝜕𝜇kj∕𝜕𝜃j,l|𝜽j=�̂�j,(k)
, 𝜃jl is the lth element of 𝜽j,

Yj = (y1j, … , ynj)T , X̃j = (1, t,Xj), 1 = (1, … , 1)T ∈ Rn, t = (1, … ,n)T ∈ Rn, Xj = (XT
1j, … ,XT

nj)
T ∈ Rn×q, and V̂(k) =

Var[exp(X̃j�̂�j,(k))] ∈ Rn×n is also a matrix. The quasi-likelihood estimate �̂� can be obtained by iterating the above-stated
equation until convergence.

Once �̂�j is estimated, a natural estimator of the dispersion parameter for the location of j can be obtained in the form
of the following kernel estimator, similar to:33

�̂�j = max

{∑n
t=1

∑J
j′=1,j′≠jwjj′ (ytj−�̂�tj)2

�̂�jn
∑J

j′=1,j′≠jwjj′
, 1

}
,

where

�̂�j =
∑n

t=1
∑J

j′=1,j′≠jwjj′ �̂�tj∑J
j′=1,j′≠jwjj′

,

or another simple estimator without the weights is �̂�j = max

{
Var(Yj)

n−1∑n
t=1�̂�tj

, 1

}
, as with the conventional quasi-likelihood

approach.32

To complete the fitting of the model, we need to estimate the bandwidth of the chosen kernel function 𝜎j, which
leads to the determination of wjj′ in Equation (4). One possibility could be to select the bandwidth that minimizes the
quasi-Akaike information criterion (qAIC) or its corrected version (qAICc) for small sample size, which are defined for
the jth location as:34

qAICj =
−2L(�̂�j)

�̂�j
+ 2(q1 + 2),

qAICcj =
−2L(�̂�j)

�̂�j
+

2n(q1 + 2)
n − q1 − 3

,

where L(�̂�j) is the quasi-likelihood defined in (5). In the cases of geographical regression models, since the degrees of
freedom tends to be small, the correction for small sample bias (ie, the second order approximation in the Taylor expan-
sion) is highly recommended and thus we recommend the use of qAICs, which depend on the sample size. Lastly, as
explained in Sections 3 and 4, we recommend that the search range of 𝜎j should be decided based on the minimum and
maximum values of ||uj − uj′ ||: that is, the candidate values of 𝜎j are uniformly located with same intervals in the search
space ranging from minj,j′ ||uj − uj′ ||∕n to maxj,j′ ||uj − uj′ ||∕n.

Finally, we construct the prediction interval and its associated threshold value U to consider the excess death defined
in Equation (1). We follow the approach of Noufaily et al.7 Assume that ytc is generated from the following negative
binomial distribution with two parameters of the number of failures and the success probability: ytcj ∼ NB

(
�̂�tc j

�̂�j−1
, 1 − 1

�̂�j

)
.

The negative binomial distribution for ytcj is assumed to approximate the quasi-Poisson distribution in Noufaily et al.7
In the case of �̂� ≤ 1, the negative binomial distribution is replaced with the Poisson distribution.7 Lastly, to construct

U as the upper bound of the prediction interval, the 100(1 − 𝛼) percentile of the negative binomial distribution is used.
A more statistically correct method is proposed in Maëlle et al,35 which is called “muan” (mu for 𝜇 and an for asymptotic
normal). The method that uses the negative binomial distribution disregards the estimation uncertainty in 𝜇tj. To address
it, muan tries to solve the problem by utilizing the asymptotic normality of the quasi-likelihood estimator (�̂�j, 𝛽 j, �̂�j, 𝛿jt) to
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derive the upper 100(1 − 𝛼)-percentile of the asymptotic normal distribution of �̂�tcj = �̂�j + 𝛽tc + Xtcj�̂�j + 𝛿jtc . Salmon et al
(2016) discussed that the method of the negative binomial distribution is easier to interpret by epidemiologists, although
muan is more statistically correct. We will use muan in the subsequent sections.

Note that the R code and R package “geoFarrington” for the proposed method are provided in a GitHub repos-
itory (https://github.com/kingqwert/R/blob/master/geoFarrington/geo_farrington_withCovs.R) and will be hosted on
the CRAN repository (https://www.r-project.org/) in the near future, thereby facilitating the application of our method
by others. Additionally, they are also available on request from the corresponding author (daisuke.yoneoka@slcn.ac.jp).

3 NUMERICAL EXPERIMENTS

3.1 Baseline data preparation

We simulate the data by following the setting used in Noufaily et al.7 A negative binomial model with mean 𝜇 and vari-
ance 𝜙𝜇, where 𝜙 ≥ 1 is a dispersion parameter, is used to generate a univariate time series of counts (ie, the number of
death per week). Figure 1 illustrates the whole procedure to generate the simulation datasets. First, each two-dimensional
coordinate of 50 locations (j = 1, … , 50) is randomly sampled from U(0,100) × U(0,100). Based on the 50 coordinates, the
(Euclid) distance matrix D ∈ R50×50 is constructed, and then, we randomly select one location and its ten closest locations
using D, which are referred to the “outbreak area” (ie, the 11 locations in the black circle in Figure 1). For each location,
the mean parameter 𝜇j(t) is modeled with linear trend, a covariate term and Fourier terms for seasonality as follows:

𝜇j(t) = exp

[
𝛼j + 𝛽jt + 0.1 × Temperaturej,t +

m∑
k=1

{
𝛾j,1 cos

(
2𝜋kt
52

)
+ 𝛾j,2 sin

(
2𝜋kt
52

)}]
,

where the value m = 1 or 2 correspond to annual and biannual seasonality, respectively and if m = 0, it corresponds that
the seasonality term is dropped. In this experiments, we fix it at m = 1. To allow the values {𝛼j, 𝛽j, 𝛾1,j, 𝛾2,j}50

j=1 be geo-
graphically heterogeneous but similar on D, we follow the method proposed in +++Dormann et al (2007): the Cholesky

F I G U R E 1 Numerical experiments blueprint: 260 weeks for each of 50 locations (outbreak area colored in orange and the outside of
the area colored in blue) [Colour figure can be viewed at wileyonlinelibrary.com]

https://github.com/kingqwert/R/blob/master/geoFarrington/geo_farrington_withCovs.R
https://www.r-project.org/
http://wileyonlinelibrary.com
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decomposition of W = exp(−D∕50) matrix, say L, where W = LLT , is used as follows:

(𝛼1, … , 𝛼50)T = LTv𝜶 , v𝜶 ∼ N(2 ⊗ 1, I50),
(𝛽1, … , 𝛽50)T = LTv𝜷 , v𝜷 ∼ N(0, 0.005 ⊗ I50),

(𝛾1,1, … , 𝛾1,50)T = LTv𝜸1 and (𝛾2,1, … , 𝛾2,50)T = LTv𝜸2 , v𝜸1 , v𝜸2 ∼ N(0, 0.1 ⊗ I50),

where ⊗ is a kronecker product, 1 and 0 are vectors with all elements being 1 or 0, respectively, and Ip is p × p identify
matrix. Additionally, the covariate Temperaturej,t is simulated as follows:

𝜇temp,j = LTv𝝁temp and 𝜎temp,j = LTv𝝈temp ,

v𝝁temp , v𝝈temp ∼ N(10 ⊗ 1, 5 ⊗ I50),

Temperaturej,t ∼ N
(

sin
(2𝜋t

52

)
× 𝜎temp,j + 𝜇temp,j, 5

)
.

Based on these settings, each location is assumed to have data over 260 weeks (long scenario, Table 1) or 104 weeks
(short scenario, Table 2). This procedure is applied to all 50 locations to generate baseline data. We use the last 52 weeks
(209-260 weeks) for the long scenario, 24 weeks (81-104 weeks) for the short scenario as “current” weeks, respectively, and
the remaining weeks as “training” weeks, as with Noufaily et al.7 As we discuss later, the detection ability of outbreaks
during the current weeks is our interest.

3.2 Additional outbreak preparation

Again, we follow Noufaily et al’s7 simulation method. We simulate several outbreaks of arbitrary time-length, especially
for the 11 locations in outbreak area as follows:

Step 1 Randomly choose two starting weeks among the training weeks and the current weeks, respectively (ie, there are
4 outbreaks in each location in the outbreak area during the study span). Thereafter, the length of each outbreak
is randomly sampled from Poisson distribution with mean 𝜆. We record the start and end week of the outbreaks.

Step 2 Randomly generate the size of each outbreak (ie, the total number of additional death during the outbreak in
addition to the baseline data) from Poisson distribution with the mean 𝜏 × SDt, where SDt is the standard deviation
of the baseline counts until week t and 𝜏 controls how the outbreak size is larger than the previous situation.
Thereafter, these outbreak cases are randomly distributed on the outbreak period defined in Step 1 based on the
beta distribution, with the shape parameters being 2 and 3.

Step 3 Each week is flagged with 1 if the week is in the outbreak period or 0 otherwise (ie, true outbreak flags) based on
Equation (2).

Based on these settings, we obtain final individual time series dataset for each location.

3.3 Scenarios, models, and performance measures

To account for a wide range of situations that might be observed in practice, we generate 11 scenarios with the different
parameter combinations of (𝜙, 𝜆, 𝜏). Additionally, the scenarios wherein the number of outbreaks is assumed to be 2 are
also considered, that is, replace Step 1 with “randomly choose one starting weeks among the training weeks and the
current weeks, respectively.” Furthermore, the threshold value U, which controls the upper bound of the prediction band,
is varied based on 0.95 and 0.975 percentiles. Tables 1 and 2 show the combinations of the parameter values. Based on
these simulation settings, 100 iterations for each scenario are implemented.

The performance of our algorithm (denoted as GWGF) is compared with that of the algorithm by Noufaily et al7

(denoted as Noufaily) and with FluMOMO. We set the 3 years baseline value b = 3 and half-windows of 3 weeks w = 3
for the long scenario and b = 1 and w = 3 for the short scenario. The spatial kernel is a Gaussian type and the optimal
bandwidth is selected based on the qAICc within the search space equipped with equal intervals of 𝜎j. The R package
surveillance30 is used for Noufaily, and the remaining parameters are set to the default values of the package.
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Lastly, we use different measures to evaluate the detection performance in the absence and presence of outbreaks
during the current weeks. If the Noufaily, FluMOMO or GWGF algorithms predicts a certain outbreak week, that week
is flagged with 1, and 0 otherwise (ie, the detected outbreak flags). Based on the true and detected flags, the three per-
formance measures are evaluated: precision (also called positive predictive value), recall (also known as sensitivity), F1
score, and specificity (only for the locations outside the outbreak area), which are all defined for the jth location as:

Precision(alg)
j =

# of {true outbreak week} ∩ {detected outbreak week by (alg)}
# of {detected outbreak week by (alg)}

Recall(alg)
j =

# of {true outbreak week} ∩ {detected outbreak week by (alg)}
# of {true outbreak week}

F1(alg)
j =

2Precision(alg)
j × Recall(alg)

j

Precision(alg)
j + Recall(alg)

j

Specificity(alg)
j =

# of {true non-outbreak week} ∩ {detected non-outbreak week by (alg)}
# of {true non-outbreak week}

,

where (alg) = {Noufaily,FluMOMO,GWGF}. Thereafter, these measures are summarized into the average preci-
sion/recall/F1/specificity for the whole area (ie, the 50 locations) or the outbreak area (ie, the 11 locations). Note that, for
the outside of the outbreak area, it is impossible to calculate the measures because precision and recall are always 0 (or
0∕0, which is undefined).

3.4 Results of numerical experiments

Tables 1 and 2 show the results of the numerical experiments. In general, our method, the GWGF algorithm, performs bet-
ter than the Noufaily’s algorithm, which does not allow any covariates and does not utilize the geographical information,
and the FluMOMO algorithm. In the long scenario (Table 1), the GWGF algorithm improves recall by 0.427 in the out-
break area (max and min improvement: 0.470 and 0.341) and 0.427 in the whole area (max and min improvement: 0.470
and 0.338), and it also improves the F1 score by 0.164 in the outbreak area (max and min improvement: 0.267 and −0.004)
and 0.163 in the whole area (max and min improvement: 0.267 and −0.004) on average across all settings, while preci-
sion maintains a similar level (0.094 in the outbreak area [max and min improvement: 0.216 and −0.006] and 0.020 in the
whole area [max and min improvement: 0.047 and−0.001]). A similar trend is observed in the short scenario (Table 2): the
GWGF algorithm improves recall by 0.343 in the outbreak area (max and min improvement: 0.400 and 0.292) and 0.343
in the whole area (max and min improvement: 0.400 and 0.292), and it also improves the F1 score by 0.140 in the outbreak
area (max and min improvement: 0.286 and −0.015) and 0.140 in the whole area (max and min improvement: 0.286 and
−0.015) on average across all settings. In contrast to that in the long scenario, the precision of the GWGF algorithm is
improved by 0.218 in the outbreak area (max and min improvement: 0.369 and 0.016) and 0.049 in the whole area (max
and min improvement: 0.082 and 0.003). Comparison between the long and short scenarios illustrates that the improve-
ment tends to be higher when there was only a short period of data, especially in terms of precision. However, we should
note that, in both scenarios, the specificity among the locations outside the outbreak area is degraded by 25.8% on average.

When the threshold value is set to 97.5%, we observe clear-cut differences in the results between the Noufaily and
the GWGF algorithms. The F1 scores are similar across the scenarios with two or four outbreaks (ie, Scenarios 8, 10, 12
vs other scenarios), but it is notable that the recall of the GWGF algorithm is still better than that of Noufaily, thereby
implying that the Noufaily algorithm tries to provide a more conservative prediction band of the outbreaks, and thus, the
number of false positives become less than that of the GWGF algorithm in such scenarios.

4 APPLICATION: EXCESS DEATH DURING COVID-19 PANDEMIC IN
JAPAN

In this section, we apply the proposed method to the time series data on all-cause death at the prefectural level in Japan.
The data have been frequently used to estimate excess death during the COVID-19 pandemic, and the result of the analysis
is published monthly on the website of the National Institute of Infectious Diseases in Japan.36 The mortality data by
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each prefecture are routinely collected by the Ministry of Health, Labor, and Welfare. Data of the weekly number of death
from the top of January 2015 to the end of September 2020 are used in this analysis. In Japan, there are 47 prefectures
(j = 1, … , 47) and the coordinate of the center of each prefecture is extracted from map data and used to calculate the
geographical weight w in Equation (4). Each prefecture has 300 weeks data. We use the last 39 weeks, that is, from the first
week of January 2020 to the last week of September 2020, as “current” weeks and the remaining 261 weeks as “training”
weeks. As with Kawashima et al,18 the target population refers to all people who have resident cards and have died in
Japan during the study span, regardless of nationality. We excluded those who died abroad, those who were staying in
Japan for a short period of time (a person without a resident card), and those whose locations of residence or dates of
birth were unknown.

To ensure the comparability between the results in this application section and the prior results reported in Japan
and worldwide,15,18,36 we use the (quasi-)Poisson model. We set the 3 years baseline value b = 3 and half-windows of 3
weeks w = 3 as with the numerical experiments. The threshold value U is fixed to 0.95 percentile. The spatial kernel is a
Gaussian type and the optimal bandwidth is selected based on the qAICc within the search space with the equally spaced
candidate values of 𝜎j. In addition, to ensure consistency with the numerical experiments, we use the average weekly
temperature as a geographically invariant covariate in the model.

Figure 2A-C show the total number of death and one evident result of the 22nd prefecture, Shizuoka, which has a
medium-sized population and is sandwiched between the metropolitan areas of Tokyo and Nagoya. Compared with the
Noufaily algorithm, our method detects more outbreaks in this prefecture: the Noufaily and GWGF algorithms find two
(weeks start from August 9 and 16, 2020) and four outbreaks (weeks start from January 12, April 26, and August 9 and
16, 2020), respectively, and two of those are overlapping across the methods. Furthermore, in the prefecture, the GWGF
algorithm provides an estimate of the excess death during the study period that is approximately 1.5 times larger than the
estimate by Noufaily: the numbers of excess death are 77 and 121 by the Noufaily and GWGF algorithms, respectively.
Table 3 provides the detailed values of the excess death by the prefectures (the figures are shown in the supplementary
file). In general, the number of detected outbreaks is similar across the two methods (ie, the average numbers of detected
outbreaks are 1.28 and 1.15 for the Noufaily and GWGF algorithms, respectively), while the degrees of excess death are
rather different (1.28 times higher in GWGF). This indicates that the GWGF algorithm provides a tighter prediction band
and the associated 95% upper bound. Lastly, the results for all prefectures are shown in the supplementary files.

5 DISCUSSION

Along with the increasing attention being paid to the rapid surveillance system for emerging infectious diseases, such
as COVID-19, there is a higher demand for predictive approaches with rapid and higher accuracy of outbreak detec-
tion. Notably, when the number of time points in the available dataset is not so high, that is, when the data has not
been accumulated for a long time period, the detection accuracy might be limited because of the large standard error in
the regression parameter estimates. This study demonstrates a novel method, the GWGF algorithm, to incorporate geo-
graphical information with quasi-Poisson regression to detect outbreaks in timely manner, which can be considered as
a natural generalization of Farrington et al6 and Noufaily et al.7 The novel feature of the new method entails that, as
with,21-24 it makes use of geographical information as the weights in the quasi-likelihood for improving the estimation.
The weights control the spatial dependency between two locations with a bandwidth parameter, which is optimized based
on the qAICc in this study. The preferable detection performance is examined in the extensive numerical experiments and
real-data analysis in Japan during the COVID-19 pandemic. We show that the GWGF algorithm succeeds in improving
recall (or sensitivity) without reducing the level of precision, which means that it can detect true outbreaks (ie, true pos-
itive) while maintaining a low number of false positives.37 This improvement is more evident when using a short period
of data, especially in terms of precision. However, the specificity for the non-outbreak detection is relatively low. There-
fore, the use of the different algorithms depending on the situation. In other words, if the detection of an outbreak is the
aim, the GWGF algorithm should be used from the perspective of recall and precision; otherwise, we would be requested
to also check the results of the conventional Farrington algorithm at the same time. In addition, we note that the applica-
tion results depend on the choice of the distance metrics, the associated kernel, and the prespecified parameter set (b,w).
We (partially) show the results of the sensitivity analysis in terms of the choice of (b,w) in the previous studies,18,36 and
we welcome the re-evaluation of our method in other settings.

In a rapid surveillance system, this novel algorithm can be used as a new tool for detecting outbreaks and fur-
ther exploitative spatial analysis to identify the regional heterogeneity of excess death. It works especially when only
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F I G U R E 2 Excess death during January to September 2020, under COVID-19 pandemic in Japan, A, B, and the time-series death
count and the detected outbreak in the 22th prefecture, C: Green is Noufaily method, red is GWGF method, dagger (“+”) is outbreak week,
solid line is expected number of deaths, and dashed line is 95% upper bound of prediction interval [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 3 Number of detected outbreaks and estimated number of excess death during January to September, 2020 under the
COVID-19 pandemic in Japan

Number of estimated deaths Number of detected outbreaks Number of excess deaths

Prefecture Number of deaths Noufaily GWGF Noufaily GWGF Noufaily GWGF

Total 1 006 064 1 033 708 1 039 153 60 54 1727 2202

1 47 363 49 303 49 595 0 0 0 0

2 13 055 13 941 13 979 1 0 1 0

3 12 556 13 381 13 464 0 0 0 0

4 17 886 18 889 19 054 0 0 0 0

5 11 268 11 790 11 793 1 0 8 0

6 11 106 11 677 11 695 1 0 4 0

7 17 848 18 415 18 485 0 0 0 0

8 24 140 25 092 25 336 1 1 3 2

9 15 924 16 400 16 522 3 2 31 31

10 17 059 17 545 17 619 2 2 45 44

11 51 492 52 171 52 592 3 3 105 166

12 45 468 46 603 46 929 2 3 116 104

13 88 932 90 754 91 514 3 3 379 477

14 61 837 63 434 63 764 1 1 120 154

15 21 440 22 745 22 837 0 0 0 0

16 9461 9670 9746 2 1 37 16

17 9321 9578 9602 0 0 0 0

18 6798 7065 7115 0 0 0 0

19 7184 7452 7492 1 1 6 5

20 18 558 19 109 19 179 0 0 0 0

21 16 589 17 364 17 445 1 1 8 12

22 31 036 31 911 32 014 2 4 77 121

23 51 904 52 800 53 098 4 5 154 299

24 15 297 15 548 15 655 3 2 45 48

25 9534 9805 9869 2 1 34 24

26 19 938 20 302 20 386 0 1 0 3

27 67 992 69 196 69 435 3 5 286 418

28 43 200 43 630 43 820 2 5 75 150

29 10 844 11 003 11 041 3 1 25 12

30 9256 9593 9643 1 1 12 8

31 5171 5611 5660 0 0 0 0

32 7061 7132 7149 2 0 2 0

33 15 921 16 496 16 529 1 1 13 14

34 22 297 23 331 23 378 0 0 0 0

35 13 697 14 107 14 160 1 1 18 20

36 7251 7452 7471 1 0 7 0

(Continues)
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T A B L E 3 (Continued)

Number of estimated deaths Number of detected outbreaks Number of excess deaths

Prefecture Number of deaths Noufaily GWGF Noufaily GWGF Noufaily GWGF

37 8924 8991 9007 3 2 19 11

38 13 199 13 456 13 483 1 1 5 9

39 7347 7576 7610 0 0 0 0

40 39 363 40 489 40 730 0 1 0 3

41 7337 7388 7442 2 1 12 7

42 12 942 13 022 13 043 0 0 0 0

43 15 545 15 893 16 011 0 0 0 0

44 10 472 10 705 10 779 1 0 6 0

45 10 342 10 131 10 184 6 4 74 44

46 15 663 16 222 16 253 0 0 0 0

47 9246 9540 9546 0 0 0 0

short-term data are available because it incorporates the neighborhood data to stabilize the estimation. Furthermore,
this article provides a general framework of the geographically weighted version of the quasi-likelihood approach,
including the procedures for estimating the dispersion parameter with local weights and for selecting the optimal
bandwidth in the spatial kernel. It implies that it is possible to extend it to other quasi-likelihood-based models with
geographical weights, such as those discussed in References 38 and 39. In addition, we can incorporate the variable
selection approach by using qAIC or a sparse penalty, which has been extensively studied by Yoneoka et al24 and
Wheeler.40,41

Regarding the estimation of the regression coefficient for geographically invariant covariates, 𝜻 , we propose the
two-step procedure: estimate 𝜻 j for each location, and then average them to estimate 𝜻 . Although the procedure yields a
consistent estimator of 𝜻 , it may reduce the estimation efficiency. A possible improvement could be the use of a profile
quasi-likelihood approach or a three-step procedure. The first step should be to use a relatively large bandwidth to induce
undersmoothing estimates of the geographically varying coefficients. Then, these undersmoothing estimates should be
fixed to determine 𝜻 . The last step should fix the estimated 𝜻 with a correctly sized bandwidth. Undersmoothing improves
the efficiency of the estimation of 𝜻 . The theoretical guarantee, including the inference of 𝜻 and other regression param-
eters, is our ongoing study. However, because it is good for the users of our algorithm to be able to choose the estimation
methods, we will introduce these methods in the R package “geoFarrington” and to the GitHub repository in the near
future.

We should mention that the idea to combine the geographical weights with spatial kernel and quasi-likelihood-based
regression models is not new in the field of spatial analysis;22,23,39 however, one of their main focus is to
improve the (asymptotic) efficiency of the estimates in the regression model by incorporating the geographi-
cal information. Conversely, this study aims to examine and improve the detection performance on how the
observed number exceeds the upper prediction band of the model in the context of excess death, which
highly depends on several settings, such as the threshold value U, and how to construct the prediction
band.
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