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Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) is the causative agent of current coronavirus disease 2019 
(COVID-19) pandemic. Electrolyte disorders particularly potassium abnormalities have been repeatedly reported as common 
clinical manifestations of COVID-19. Here, we discuss how SARS-CoV-2 may affect potassium balance by impairing the 
activity of epithelial sodium channels (ENaC). The first hypothesis could justify the incidence of hypokalemia. SARS-CoV-2 
cell entry through angiotensin-converting enzyme 2 (ACE2) may enhance the activity of renin–angiotensin–aldosterone 
system (RAAS) classical axis and further leading to over production of aldosterone. Aldosterone is capable of enhancing 
the activity of ENaC and resulting in potassium loss from epithelial cells. However, type II transmembrane serine protease 
(TMPRSS2) is able to inhibit the ENaC, but it is utilized in the case of SARS-CoV-2 cell entry, therefore the ENaC remains 
activated. The second hypothesis describe the incidence of hyperkalemia based on the key role of furin. Furin is necessary 
for cleaving both SARS-CoV-2 spike protein and ENaC subunits. While the furin is hijacked by the virus, the decreased 
activity of ENaC would be expected, which causes retention of potassium ions and hyperkalemia. Given that the occur-
rence of hypokalemia is higher than hyperkalemia in COVID-19 patients, the first hypothesis may have greater impact on 
potassium levels. Further investigations are warranted to determine the exact role of ENaC in SARS-CoV-2 pathogenesis.
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Introduction

The current pandemic of coronavirus disease 2019 
(COVID-19) caused by severe acute respiratory syndrome 
coronaviruses 2 (SARS-CoV-2) have affected more than 
191 million people worldwide with a total mortality of 4.1 
million as of 23 July 2021 [1].

Electrolyte abnormalities are common manifestations of 
the disease and are substantially attributed to poor prog-
nosis [2, 3]. Recently, the prevalence of mild hypokalemia 
(serum potassium < 3.5, > 3 mmol/L) and severe hypoka-
lemia (serum potassium < 3 mmol/L) were estimated to 
be 37% and 18%, respectively, in patients with COVID-19 
[4] and it was significantly associated with intensive care 
units admission and requirement of invasive mechani-
cal ventilation [5]. On the other hand, hyperkalemia was 
determined to occur in 10.3% of patients and it was associ-
ated with increased risk of 30-day mortality [6]. Therefore, 
the high prevalence of potassium disorders may have a 
potential relationship with the natural history of SARS-
CoV-2. Understanding and investigating the clinical mani-
festations of COVID-19 could provide insights into the 
pathophysiological features of this emerging virus. As a 
result, we will review the current literature on the roles of 
renin–angiotensin–aldosterone system (RAAS) and epi-
thelial Na+ channels (ENaC) on serum potassium levels 
affected by SARS-CoV-2 infection.

SARS‑CoV‑2 and RAAS

The coronavirus spike protein plays a fundamental role in 
the early stages of the SARS-CoV-2 infection, which con-
tains a S1 domain responsible for receptor binding and a S2 
domain mediating membrane fusion [7]. The S1-spike pro-
tein interacts with angiotensin-converting enzyme 2 (ACE2), 
a part of the RAAS, which is known as a multi-hormonal 
system, having a profound impact on the maintenance of 
electrolyte balance and blood pressure regulation [8, 9]. The 
RAAS is defined as a two-arm, counter-regulatory system 
and is divided into classical and alternative axes [10].

In the classical axis, Angiotensin I (Ang I) is generated by 
the cleavage of a precursor peptide called angiotensinogen, 
and then is converted to Angiotensin II (Ang II) by ACE 
[10]. Ang II attaches to Ang II type 1 receptors (AT1R) and 
as a result, the ACE/Ang II/AT1R axis induces acute lung 
failure and also triggers aldosterone release from the adrenal 
gland [11, 12]. Along this pathway, Ang II activates Ang II 
type 2 receptors (AT2R), which have the opposite effects to 
Ang II/AT1R and acts to resolve inflammation, but AT2R 
expression is significantly lower during the human lifespan, 
except at the neonatal stage [10, 13].

In the alternative axis, RAAS is balanced by ACE2, 
which is a homologue of ACE [14]. ACE2 can transform 
Ang II to Angiotensin 1–7 (Ang 1–7) and convert Ang I to 
Angiotensin 1–9, which can be further converted to Ang 
1–7 [10]. Ang 1–7 is a specific Mas receptor (MasR) ago-
nist and plays a central role in the alternative axis of the 
RAAS, ACE2/Ang 1–7/MasR [10]. Binding Ang 1–7 to 
MasR exerts several protective effects, such as antioxida-
tive, antiinflammatory, and antifibrotic effects, in addition 
to decreasing aldosterone secretion [15, 16]. As a con-
sequence, potential tissue injury depends on the balance 
between these two opposing pathways [10].

As abovementioned, SARS-CoV-2 enters human cells 
via ACE2 [8]. It has been shown that the expression of 
ACE2 would be reduced upon coronavirus infection [12]. 
Since RAAS is based upon a dynamic equilibrium between 
two opposite axes, the down-regulation of ACE2 leads to 
enhanced activity of the RAAS classical axis, which further 
promotes the internalization of ACE2 and results in a vicious 
circle of imbalance (Fig. 1) [10, 17]. We continue to discuss 
two hypotheses that explain how COVID-19 might affect 
serum potassium levels via ENaC.

Depleted potassium levels and ENaC hyperactivity

The over-activation of the ENaC plays a crucial role in uri-
nary potassium loss and subsequently reduced serum potas-
sium levels [18]. Interestingly, ENaC and ACE2 expression 
share similar distributions in the tissues, including renal 
tubules, urinary bladder, colon epithelium, lung airway, 
and alveoli [19, 20]. This channel modulates salt reabsorp-
tion and balances electrolyte homeostasis. ENaC activity 
is facilitated via a variety of factors, particularly aldoster-
one levels [20]. The over stimulation of the ACE/Ang II/
AT1R axis, during the SARS-CoV-2 infection, may result 
in ENaC hyperactivity. Indeed, aldosterone, whose secretion 
is promoted by Ang II, binds to mineralocorticoid recep-
tors and leads to the upregulation and enhanced activity 
of the ENaC [21]. Furthermore, Ang II has been shown to 
significantly improved ENaC activity via binding to AT1R 
[22]. ENaC function leads to increase in sodium reabsorp-
tion from luminal fluid, resulting in an accumulation of an 
intracellular positive charge [20]. Subsequently, the Na+/K+ 
ATPase pump on the basolateral border pumps intracellular 
sodium into the interstitium, in exchange for potassium. In 
turn, potassium exits the apical membrane through trans-
port pathways, such as the renal outer medullary potassium 
(ROMK) channels and the Ca2+-activated K+ (BK) channels, 
causing kaluresis in the context of ENaC hyperactivity in the 
distal convoluted tubules [23].

Moreover, after the SARS-CoV-2 binds to the ACE2 
receptor, the S protein is cleaved by host cell surface 
proteins, called type II transmembrane serine protease 
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(TMPRSS2), which facilitates viral fusion and cell entry 
[24]. TMPRSS2 expression is modulated by a guanine rich 
sequence which is capable of forming G-quadruplex struc-
ture in the promoter region of this gene [25]. Intracellular 
potassium ions can stabilize the G-quadruplex structure, 
hence down-regulating TMPRSS2 expression and impair-
ing viral cell entry [25]. ENaC hyperactivity, due to ACE/
Ang II/AT1R over stimulation results in intracellular loss 
of potassium, so leads to high expression of TMPRSS2 
[18]. In an inhibitory feedback loop, TMPRSS2 can reduce 
ENaC activity, whereas in the case of COVID-19, ENaC 
remains activated without inhibition by TMPRSS2, because 
TMPRSS2 is utilized for viral cell entry mechanisms (Fig. 2, 
right panel) [18, 26].

To further support the importance of the previous hypoth-
esis on the severity of COVID-19 infection, we discuss the 
role of the NLR family pyrin domain containing 3 (NLRP3) 
inflammasome, which is one of the main intracellular 
inflammatory pathways of the innate immune system [27]. 
An unrestricted immune reaction in SARS-CoV-2 pathogen-
esis, known as the “cytokine storm”, leads to extensive tis-
sue damage [28]. Interleukin (IL)-1β and IL-18 are two types 
of cytokines that are activated by NLRP3 [27]. In 2007, 
Pe´trilli et al. revealed that potassium efflux is the common 

and specific trigger of NLRP3 activation [29]. Therefore, 
potassium excretion, in the context of ENaC hyperactivity, 
may induce NLRP3 over activation, resulting in exacerba-
tion of inflammatory responses and poor clinical outcomes 
[30–34]. Ultimately, according to this hypothesis, ENaC 
over stimulation, due to viral-mediated ACE2 downregu-
lation, induces the loss of potassium from epithelial cells, 
which may cause low serum potassium concentration.

Elevated potassium levels and ENaC hypoactivity

The second hypothesis describes the role of furin, a type of 
proprotein protease, which is an important reason for the 
higher infectivity of SARS-CoV-2, compared with other 
coronaviruses [35, 36]. Furin facilitates the binding of the 
virus to ACE2 by cleaving its Spike protein [37]. In addi-
tion, furin is necessary for activating the ENaC by cleaving 
its α-subunit at two cleavage sites [38]. Recent research has 
shown that the furin cleavage site of the SARS-CoV-2 spike 
protein is identical to the furin-cleavable peptide sequence 
on the ENaC α-subunit [39]. Indeed, furin is essential to 
the activity and expression of ENaC, but in this instance, 
it is hijacked by SARS-CoV-2, creating competition for 
furin use following infection with the virus [40]. Without 

Fig. 1   Schematic of the possible role of RAAS in SARS-CoV-2 
pathogenesis. Angiotensin I is generated through the action of renin 
on a precursor protein, Angiotensinogen. In the RAAS classical axis, 
ACE converts Angiotensin I to angiotensin II, leading to inflamma-
tion, thrombosis, fibrosis, vasoconstriction, and lung injury. Con-
versely, in the RAAS alternative axis, ACE2 inactivates Angiotensin 
II by producing Angiotensin (1–7), which induces biological activity 
distinct from Angiotensin II through binding with MasR. In the con-

text of SARS-CoV-2 infection, the ACE-2 would be downregulated, 
thus mediating over activation of the RAAS classical axis. RAAS 
Renin angiotensin aldosterone system, ACE angiotensin-converting 
enzyme, ACE2 angiotensin-converting enzyme 2, MasR mas recep-
tor, AT1R angiotensin II type 1 receptor, AT2R angiotensin II type 2 
receptor, SARS-CoV-2 severe acute respiratory syndrome coronavirus 
2
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furin-mediated cleavage, a decreased in the efficacy of ENaC 
is likely (Fig. 2, left panel). This may have a negative effect 
on epithelial cells and disturb the water or electrolyte home-
ostasis, leading to elevated serum potassium levels. ENaC 
dysfunction may be better understood by studying its genetic 
disorders. Pseudohypoaldosteronism is a condition in which 
ENaC subunits undergo a loss of function mutation, typi-
cally manifested by hyperkalemia, metabolic acidosis, and 
hypertension [41]. Furthermore, ENaC plays a critical role 
in lung fluid clearance, meaning that reduced ENaC activity 
may explain why patients with COVID-19 sometimes die of 
severe pulmonary edema [40, 42].

Interaction between emerging SARS‑CoV‑2 
therapeutic agents and ENaC activity

In recent months, several promising therapeutic approaches 
have been developed [43]. While membrane-bound ACE2 
facilitates SARS-CoV-2 cell entry, a modified form of 
soluble ACE2, called human recombinant soluble ACE2 
(hrsACE2), could competitively bind to the virus, which 
should theoretically be beneficial in the treatment of 

COVID-19 [44]. Indeed, binding hrsACE2 to the spike pro-
tein may mediate SARS-CoV-2 neutralization and rescue 
cellular ACE2 activity, which have been linked to protect-
ing multiple organs from injury by reducing Ang II levels 
[45]. As the RAAS equilibrium shifts to the alternative 
axis, normalization of ENaC activity would be feasible. In 
addition to hrsACE2, protease inhibitors capable of reduc-
ing TMPRSS2 activity are among the novel therapeutics 
under development [46]. Camostat mesilate, a TMPRSS2 
blocker, has been shown to inhibit SARS-CoV-2 infection 
[47]. In addition to its antiviral activity, Camostat mesilate 
is well-known for its anti-hypertensive properties and reno-
protective effects, since it reduces the activity of plasmin 
which cooperates with furin in cleaving and subsequently 
activating the ENaC [48–50]. Considering the inhibitory 
impact of TMPRSS2 on ENaC, camostat mesilate would be 
able to enhance ENaC activity by blocking TMPRSS2, but 
blocking of plasmin activity may impair the ENaC activity. 
Therefore, this paradoxical issue will be resolved through 
further investigations measuring the net effect of camostat 
mesilate on ENaC activity in the context of SARS-CoV-2 
infection. Bromhexine, a potential therapeutic option, is 
another blocker of TMPRSS2 enzyme with ENaC blocking 

Fig. 2   Schematic of the hypothetical impact of SARS-CoV-2 infec-
tion on ENaC. Over activation of the RAAS classical axis leads to 
the stimulation of aldosterone secretion. Aldosterone enhances the 
activity of ENaC in the apical cell membrane, which results in the 
excretion of potassium out of the cell and into the luminal space. 
Decreased intracellular potassium induces the TMPRSS2 gene to be 
over expressed. TMPRSS2 is capable of inhibiting ENaC activity, 
which would be utilized by SARS-CoV-2 and so ENaC remains acti-

vated (right panel). SARS-CoV-2 spike protein harbors a furin cleav-
age site which is similar to the ENaC furin-cleavable peptide. Furin 
is hijacked by SARS-CoV-2, meaning the ENaC cannot be assem-
bled and become hypoactivated (left panel). RAAS Renin angiotensin 
aldosterone system, ENaC epithelial sodium channel, ACE2 angio-
tensin-converting enzyme 2, TMPRSS2 type II transmembrane serine 
protease, SARS-CoV-2 severe acute respiratory syndrome coronavirus 
2
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effects [51]. Finally, furin is a potential therapeutic target for 
COVID-19 and furin inhibitors are assumed to reduce ENaC 
assembly and impair electrolyte balance [52, 53]. In sum-
mary, whatever new therapy emerges for treating COVID-
19, dealing with the disruption to the patients’ electrolyte 
homeostasis is vital.

Conclusion

SARS-CoV-2 can lead to both decreases and increases in 
serum potassium levels. As previously mentioned, the preva-
lence of hypokalemia is higher in patients with COVID-19, 
so it seems that the first hypothesis has a stronger impact on 
potassium abnormalities, and since most patients show mild 
degrees of potassium depletion, the second hypothesis might 
act as a mitigator of the first. Further molecular investiga-
tions are warranted in order to clarify the exact role of ENaC 
in SARS-CoV-2 pathogenesis.
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