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Abstract

Obesity imposes serious health risks and involves alterations in resting-state func-

tional connectivity of brain networks involved in eating behavior. Bariatric surgery is

an effective treatment, but its effects on functional connectivity are still under

debate. In this pre-registered study, we aimed to determine the effects of bariatric

surgery on major resting-state brain networks (reward and default mode network) in

a longitudinal controlled design. Thirty-three bariatric surgery patients and 15 obese

waiting-list control patients underwent magnetic resonance imaging at baseline, after

6 and 12 months. We conducted a pre-registered whole-brain time-by-group interac-

tion analysis, and a time-by-group interaction analysis on within-network connectiv-

ity. In exploratory analyses, we investigated the effects of weight loss and head

motion. Bariatric surgery compared to waiting did not significantly affect functional

connectivity of the reward network and the default mode network (FWE-corrected

p > .05), neither whole-brain nor within-network. In exploratory analyses, surgery-

related BMI decrease (FWE-corrected p = .041) and higher average head motion

(FWE-corrected p = .021) resulted in significantly stronger connectivity of the

reward network with medial posterior frontal regions. This pre-registered well-

controlled study did not support a strong effect of bariatric surgery, compared to

waiting, on major resting-state brain networks after 6 months. Exploratory analyses

indicated that head motion might have confounded the effects. Data pooling and

more rigorous control of within-scanner head motion during data acquisition are

needed to substantiate effects of bariatric surgery on brain organization.
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1 | INTRODUCTION

Obesity is a worldwide health issue, entailing huge personal and

societal costs. Excess amount of body fat not only affects cardiovas-

cular and metabolic health, but also increases the risk for cognitive

decline and dementia later in life (Albanese et al., 2017). Conserva-

tive treatment options including behavioral therapy often do not

yield the desired weight loss, especially in patients with very high

BMI (>35 kg/m2). Here, bariatric surgery, also known as weight loss

surgery, is a viable option to rapidly induce weight loss and improve

glycemic status. Common techniques like vertical sleeve gastrec-

tomy (VSG) and gastric banding (GB) result in a reduction of stom-

ach volume by removing parts of the stomach along the curvature

or inserting an inflatable band around the stomach, respectively,

while preserving the small intestine and digestive flow. Roux-en-Y

gastric bypass (RYGB) is a more invasive surgical procedure, where a

small pouch is formed from the proximal stomach and connected to

the jejunum. Thereby, the ingested food bypasses a large portion of

the stomach and proximal small bowel, resulting in complementary

malabsorption of nutrients. Meanwhile, the disconnected

biliopancreatic tract is re-anastomosed at a more distal part of the

jejunum. Apart from reduced digestion efficiency and malabsorption

of nutrients, altered food perception, appetite, and central regula-

tion of food intake may also be responsible for surgery-induced

weight loss (Brutman, Sirohi, & Davis, 2019; Mulla, Middelbeek, &

Patti, 2017).

Precise mechanisms how bariatric surgery leads to altered appeti-

tive signaling are yet to be elucidated. One option to address these

questions on brain-behavior relationships is to use resting-state func-

tional magnetic resonance imaging (rsfMRI), a technique capturing the

dynamic organization of the brain. Functional connectivity networks,

that is, brain regions with correlated neural activity over time, are in

anatomical correspondence with specific brain networks involved

in cognitive processes, including attention and executive control

(Smith et al., 2009). The reward network, processing hedonic value

and internal motivation, and the default mode network (DMN), a

higher-order network, involved in interoception and governing shifts

between external-internal processes, are promising candidates to

mediate altered central regulation of food intake after bariatric

surgery.

The reward network comprises the ventromedial prefrontal cor-

tex (vmPFC), the nucleus accumbens (NAcc), the putamen, the amyg-

dala, and the anterior insula (Liu, Hairston, Schrier, & Fan, 2011;

O'Doherty, 2004). These brain regions have been suggested to guide

food valuation processes and decision-making in humans (Bartra,

McGuire, & Kable, 2013; Hare, Malmaud, & Rangel, 2011;

Hutcherson, Plassmann, Gross, & Rangel, 2012; Schmidt

et al., 2018). Frequently, obesity has been associated with hyper-

activation of reward network regions during anticipation of (high-

caloric) food cues, and in contrast, reduced activation to actual taste

of these foods (Devoto et al., 2018; García-García et al., 2014; Meng,

Huang, Ao, Wang, & Gao, 2020; Stoeckel et al., 2009), though this

has recently been critically discussed (see Morys, García-García, &

Dagher, 2020). RsfMRI studies also showed increased local func-

tional connectivity of reward network regions, that is, NAcc, vmPFC,

putamen, insula (Contreras-Rodríguez, Martín-Pérez, Vilar-L�opez, &

Verdejo-Garcia, 2017; Coveleskie et al., 2015; Hogenkamp

et al., 2016), and altered connectivity with salience, homeostatic,

and sensorimotor networks (Lips et al., 2014; Wijngaarden

et al., 2015). In bariatric surgery patients, connectivity within the

reward network (e.g., putamen and OFC) might be normalized by the

surgery, however, the evidence is limited due to a lack of longitudinal

obese control groups (Duan et al., 2020; Schmidt et al., 2021;

Wiemerslage et al., 2016). Possibly, a reconfiguration of the fronto-

striatal brain networks could emerge from altered gut signaling, for

example, changes in ghrelin levels, via hypothalamic-striatal projec-

tions (Karra et al., 2013; Li et al., 2019) though hormonal mediators

have been disputed by Zoon et al. (2018).

The DMN includes the posterior cingulate cortex (PCC)/

precuneus, the medial prefrontal cortex (mPFC), and the inferior and

lateral parietal cortex (Raichle, 2015) and is implicated in various func-

tions, such as interpersonal cognition, episodic memory, prospective

thought, and interoception (Buckner, Andrews-Hanna, &

Schacter, 2008; Marsland et al., 2017). Higher cognitive function

often depends on successful modulation of the DMN and communica-

tion across networks. Meanwhile, patterns of DMN dysfunction, on

the other hand, have been demonstrated for various physiological and

neuropsychiatric disorders (e.g., ADHD, type-2 diabetes, and mood

disorders). Alterations in the DMN and its connectivity could conse-

quently be a biomarker for pathophysiological mechanisms that pre-

disposes individuals to the development or exacerbation of

neuropsychiatric problems. Possibly, poor metabolic health common

in obese individuals may act as a catalyst in that insulin resistance and

altered cerebral glucose metabolism within the DMN augments a cas-

cade that ultimately leads to the formation of pathology linked to cog-

nitive impairments and even Alzheimer's disease (Buckner et al., 2008;

Kenna et al., 2013). Higher BMI and obesity have been associated

with a pattern of decreased functional connectivity within the DMN

and increased functional connectivity of DMN regions to other net-

works, that is, salience and sensory networks in several resting-state

and task-based rsfMRI studies (Beyer et al., 2017; Borowitz, Yokum,

Duval, & Gearhardt, 2020; Chao et al., 2018; Ding et al., 2020;

Doucet, Rasgon, McEwen, Micali, & Frangou, 2017; Kullmann

et al., 2011; Sadler, Shearrer, & Burger, 2018; Wijngaarden

et al., 2015). After bariatric surgery, a normalization of the connectiv-

ity between DMN and cognitive control and salience brain regions

might occur, yet no study has included a longitudinal control group

(Frank et al., 2013; Li et al., 2018; Olivo et al., 2017). In sum, while

there is some evidence hinting to a role for DMN and reward network

functional connectivity in altered regulation of food intake after bar-

iatric surgery, the existing evidence is inconclusive. Most studies have

investigated small cohorts of patients, without adequate obese con-

trol groups, and did not rigorously separate confirmatory from explor-

atory analyses (George et al., 2016).

Further, while higher BMI has been consistently associated with

more head motion during rsfMRI (Beyer et al., 2017; Hodgson
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et al., 2016), previous studies in bariatric surgery patients have not

taken this important confounder of functional connectivity into

account. In the present sample, we previously reported a group-by-

time interaction on head motion (Beyer et al., 2020). Thus, we aimed

to rigorously control for motion-related variance in our analyses. We

had the following confirmatory hypotheses:

Hypothesis 1. Whole-brain functional connectivity of the

reward network and DMN changes differently from base-

line to follow-up in the bariatric surgery compared to a

waiting-list control group.

Hypothesis 2. Within-network functional connectivity of

the reward network and DMN changes differently from

baseline to follow-up in the bariatric surgery compared to

a waiting-list control group.

We tested Hypothesis 1 by investigating the interaction of bariat-

ric surgery and time on reward network and DMN whole-brain func-

tional connectivity. We pre-registered two denoising pipelines, and

three covariate schemes. For Hypothesis 2, we performed a confirma-

tory analysis of the group-by-time interaction on aggregated, within-

network functional connectivity, for two time points and the same

covariate schemes. In exploratory analyses, we examined the whole-

brain interaction effect for three time points, the effects of head

motion on functional connectivity and whether weight loss, a proxy of

treatment success, predicted changes in functional connectivity.

2 | METHODS

2.1 | Sample and study design

The ADIPOSITAS-study investigated the effects of bariatric surgery

on brain structure and function in a prospective design at the Charité

University Medicine Berlin, Germany. For more details, see Prehn

et al. (2020). We used all data acquired until April 2019. The study

design and primary outcomes (cognitive function and blood parame-

ters) were registered at clinicaltrials.gov as NCT01554228. The study

protocol was in accordance with the Helsinki Declaration and

approved by the Ethics Committee of the Charité University Medicine

Berlin (EA1/074/11). As neuroimaging was not covered in the

clinicaltrials.gov registration, we pre-registered the present resting-

state fMRI analyses on the Open Science Framework (OSF; https://

osf.io/yp42s). We made additional changes (see https://osf.io/59bh7/

) to the pre-registration after preprocessing the rsfMRI data, as we

realized some aspects of the analysis were inadequately described in

the initial pre-registration. For a comparison of the pre-registration

and the manuscript, please visit https://osf.io/45n9f/. Participants

were recruited from the Center for Bariatric and Metabolic Surgery at

the Charité University Medicine Berlin. Inclusion criteria were, in

accordance with German guidelines for bariatric surgery, a failure of

conservative obesity treatment and either (a) a BMI > 40 km/m2 or

(b) a BMI > 35 kg/m2 and at least one typical co-morbidity

(e.g., type-2 diabetes, hypertension and nonalcoholic fatty liver dis-

ease; Mechanick et al., 2013). Participants were aged between 18 and

70 years and had no history of cancer, chronic inflammatory disease

and addiction, other severe untreated diseases, brain pathologies

identified in the MRI scan or cognitive impairments (defined as MMSE

score < 24). In total, 51 participants out of the originally enrolled

69 subjects received MRI. Five data points of three subjects had to be

excluded due to bad anatomical image quality (see below), which led

to a final data set with 101 rsfMRI sessions. The final sample entailed

48 morbidly obese individuals (37 females; aged 44.2 ± 11.9 SD years,

range 21–68). Participants of 60.4% had clinically diagnosed hyper-

tension, 4.2% had type-2 or type-1 diabetes, and 6.2% reported to

smoke.

Participants either underwent surgery (n = 33, 26 females) or

were waiting list controls (n = 15, 11 females), who waited for their

health insurance's approval to undergo surgery. Groupwise baseline

characteristics are shown in Table 1. Measures were taken at

baseline (BL), 6 (FU1) and 12 (FU2) months postsurgery/baseline

appointment to capture both phases of rapid weight loss and mainte-

nance (Maciejewski et al., 2016). Analyses were performed on all

participants who provided at least one data point of rsfMRI data.

Nineteen participants had complete data, 15 provided data for two

time points, and 14 for one time point (for more details see

Figure S1). The pre-registered analysis of changes from baseline to

follow-up included 24 participants with both time points, in total

72 data points.

Fifteen patients underwent RYGB, 12 underwent VSG and 1 GB,

for five patients in the intervention group, this information was not

available. Participants arrived in the morning (between 07:00 and

12:00 a.m.) after an overnight fast. They underwent medical assess-

ments including an interview, blood draw, and anthropometric mea-

surements before having a 1 hr break for breakfast. MRI scanning was

done after performing a psychological test battery (for details, see

Prehn et al., 2020).

TABLE 1 Baseline characteristics of total sample

BARS NBARS

N 33 15

Age (years) 42.67 (11.78) 47.40 (11.76)

Sex (% female) 26 11

BMI (kg/m2) 46.43 (5.78) 44.12 (5.12)

Mean mFD (mm) 0.27 (0.17) 0.29 (0.14)

Maximal mFD (mm) 0.75 (0.34) 0.98 (0.81)

Hypertension (%) 54.55 73.33

Type-1 diabetes (%) 3.03 0

Type-2 diabetes (%) 3.03 0

Smoking (%) 9.09 0

Note: Counts, percentages, or means listed. SD is shown in brackets.

Sample size for different measures varies, for example, age is available for

all participants while not all participants provide MRI data and, hence,

mean framewise displacement (mFD) values at baseline.
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2.2 | MRI acquisition

MRIwas performedwith a 12-channel head coil on a 3 Tesla Trio, Siemens

(Erlangen) with the syngo B17 software. T1-weighted anatomical images

were acquired as described in Prehn et al. (2020) (with MPRAGE, repeti-

tion time (TR)= 1900 ms, echo time (TE)= 2.52 ms, flip angle= 9�, voxel

size = 1 � 1 � 1 mm3, 192 sagittal slices). Resting-state echo-planar

imaging was acquired with a TR of 2.3 s and TE of 30 ms. The image

matrix was 64 � 64 with an in-plane resolution of 3 mm � 3 mm and

34 slices with a slice thickness of 4 mm. One hundred and fifty volumes

were acquired, resulting in a total acquisition time of 5:45 min. Addition-

ally, a gradient echo field map with a TE difference of 2.46 ms was

acquired to correct for field in homogeneities. Participantswere instructed

to close their eyes but to remain awake during scanning.

2.3 | Preprocessing

2.3.1 | Minimal preprocessing

Imaging data analysis was conducted using AFNI 19.1.05, ANTS 2.3.1,

FSL 6.0.1 and FreeSurfer 6.0.0p1, wrapped in a nipype workflow (ver-

sion 1.2.0) in Python 2.7.15 which can be found on https://github.com/

fBeyer89/ADI_preproc/. T1-weighted images were first processed by

FreeSurfer's cross-sectional pipeline (Fischl, 2012). Then, Freesurfer's

longitudinal stream was applied to all cross-sectional runs (Reuter &

Fischl, 2011). Here, white matter and cerebral spinal fluid masks were

derived based on FreeSurfer's segmentation file for quality control of

rsfMRI preprocessing. The skull-stripped brain was then coregistered

to the MNI152 2 � 2 � 2 mm template using ANTS (Avants, Tustison,

Song, & Gee, 2009). Minimal functional preprocessing included the

removal of first four volumes, motion correction (FSL's MCFLIRT),

fieldmap distortion correction (FSL's fsl_prepare_fieldmap and FUGUE)

and coregistration to the subject's individual longitudinal anatomical

space (FreeSurfer's bbregister). In more detail, the transformations

derived from the latter three steps were combined into one and applied

in a single step. For further analysis and ICA-AROMA processing, the

minimally preprocessed data were intensity normalized and smoothed

with a 6 mmGaussian kernel (fslmaths–kernel gauss 2.548).

2.3.2 | Denoising pipelines

In the pre-registration, we specified two denoising pipelines, ICA-AROMA

and CompCor (AROMA + CC) and ICA-AROMA, CompCor and global

signal regression (AROMA + CC + GSR), for details, see Supporting Infor-

mation (Ciric et al., 2017; Parkes, Fulcher, Yücel, & Fornito, 2018).

2.3.3 | Quality assessment

The quality of anatomical images and rsfMRI was assessed separately.

To control the quality of the anatomical imaged, FreeSurfer cross-

sectional and longitudinal segmentations were visually checked

according to Klapwijk, et al. (2019). We excluded five datasets from

three participants because of excessive head motion leading to failed

pial reconstruction and anatomical–functional coregistration. RsfMRI

quality control was performed according to the protocol by Ciric

et al. (2018) (see Supporting Information for more details). Head

motion was quantified using mean framewise displacement (mFD)

according to Power, et al. (2012) and log-transformed for further anal-

ysis (logmFD). As pre-registered, we did not exclude anybody based

on high average head motion (Beyer et al., 2020).

2.4 | Functional connectivity

2.4.1 | Whole brain functional connectivity

To derive reward network and DMN functional connectivity maps, we

used NAcc and PCC/precuneus as seed regions of interest (ROI),

respectively. We did not select vmPFC for the reward network due to

low SNR. Based on FreeSurfer's segmentation files and Desikan–

Killiany parcellation, we created seed masks using mri_binarize

(thresholded for NAcc at 26, 58; precuneus at 1025, 2025) and

averaged them over hemispheres. Then, we used NiftiLabelsMasker

and NiftiMasker to extract the standardized time series from the

seed regions and the whole brain. We calculated the Pearson's

correlation between them with numpy.dot, performed r-to-z Fisher-

transformation and saved the resulting correlation maps for each

preprocessing pipeline (minimally preprocessed, AROMA, AROMA

+ CC, AROMA + CC + GSR). Finally, the connectivity maps were

transformed into MNI space using the affine transformation and

nonlinear warp derived with ANTS during anatomical preprocessing.

2.4.2 | Aggregated within-network functional
connectivity

To extract aggregated within-network functional connectivity, we first

calculated the mean DMN and reward network over all participants

and time points, adjusted for age and sex. We used GSR-denoised

data as input and clusterwise bootstrapping with N = 1000. Network

masks were formed from all voxels within clusters which survived a

clusterwise multiple comparison correction of FWE-corrected p < .05.

We extracted the average GSR-denoised functional connectivity from

these masks.

2.5 | Statistical analysis

Statistical analyses were performed in MATLAB version

9.7.0.1190202 (R2019b MATLAB, 2018) using the SwE toolbox ver-

sion 2.2.2 (Guillaume, Hua, Thompson, Waldorp, & Nichols, 2014) as

implemented in the Statistical Parametric Mapping software

(SPM12.7770; Ashburner et al., 2014). The marginal model
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implemented in the SwE toolbox implicitly accounts for random

effects without the need to specify them through the error term. We

used a modified SwE assuming different covariance structures for the

intervention and the control group because of their unbalanced sam-

ple size. We used an explicit brain mask, derived from the MNI ICBM

“152 nonlinear 6th generation” atlas (re-sampled to 3 � 3 � 3 mm3

and thresholded at 0.5 GM probability) for all analyses. Statistical ana-

lyses on the aggregated functional connectivity and imputation of

missing data were performed in R version 3.6.1 (Team, 2013).

2.5.1 | Confirmatory analysis (pre-registered)

We tested the pre-registered hypothesis of a time-by-group interac-

tion for two time points.

Whole-brain analysis

As pre-registered, we performed the analysis for baseline and follow-

up time points only, for AROMA + CC and AROMA + CC + GSR

denoising pipelines and adjusting for no confounders (model CA1),

age, sex, and average logmFD of both time points (model CA2) and

age, sex, average logmFD, and baseline BMI (model CA3). Because the

information about the BMI at baseline of one participant in the inter-

vention group was missing, we employed multivariate imputation to

replace this value, for details see Supporting Information.

Aggregated functional connectivity analysis

We analyzed the aggregate functional connectivity (aggFC) using lin-

ear mixed models in the R package lme4 (Bates, Sarkar, Bates, &

Matrix, 2007). We deviated from the pre-registration by only investi-

gating data from the AROMA + CC + GSR denoising pipeline. First,

we investigated the time-by-group interaction for baseline and

follow-up time points only. We adjusted for no confounders (model

CA1), either for baseline age, sex, average of logmFD of both time

points (model CA2) or additionally for baseline BMI (model CA3). We

performed model comparison between R1 and R0 models, where

R1 = lmer(aggFC � timepoint*group + age + sex + [1jsubj]), and

R0 = lmer(aggFC � timepoint + group + age + sex + [1jsubj]). As

specified in the pre-registration, we repeated the above-mentioned

interaction analysis for all three time points.

2.5.2 | Exploratory analysis

Whole-brain analysis

As described in the pre-registration, we calculated the between- and

within-subject centered values of BMI (Guillaume et al., 2014). This

model, containing average BMI and BMI change, allowed us to disen-

tangle the differential effects of these variables on functional connec-

tivity. We first estimated their effects in a model adjusting for

baseline age and sex (Model EA1) and then additionally controlling

for logmFD (Model EA2). As we previously reported correlated change

in BMI and head motion in this sample (Beyer et al., 2019), we

explored a refined model including average BMI and logmFD and

change in both measures, along with baseline age and sex (Model

EA3). Here, we aimed to see whether any effect of change in BMI

would be detectable when adjusting for the change in head motion. In

addition to these pre-registered exploratory analyses, we explored

our whole-brain group-by-time point interaction models for the data

of all three time points on whole-brain level and for aggregated

values. In this model, time was represented as factor taking into

account possible nonlinear time courses in the increase and decrease

of functional connectivity over the course of 1 year, which may occur

depending on the phase of weight management (Olivo et al., 2017).

The resulting factorial design contained one regressor for each time

point per group (see Supporting Information for depiction of design

matrix). This analysis had not been pre-registered. Here, we used indi-

vidual logmFD values (not averaged) as covariate to capture variance

in logmFD change over time points. We investigated two models

adjusting for age and sex (Model EA4) and age, sex, and logmFD

(Model EA5). For a better understanding of the unique contribution of

average and longitudinal change in logmFD measures, we tested the

association of head motion and functional connectivity (FC) in the

additional exploratory Model EA6: FC = between-subject logmFD

+ within-subject logmFD with age and sex as nuisance covariates.

Aggregated functional connectivity analysis

Further, we performed the pre-registered exploratory analysis with aver-

age BMI and change in BMI as predictors of the aggregated functional

connectivity from AROMA + CC + GSR denoised data of both net-

works. We calculated three models with average and change in BMI as

predictors of interest and adjusted for baseline age and sex (Model EA1),

logmFD (Model EA2), and average and change in logmFD (Model EA3).

2.5.3 | Statistical inference

Whole-brain analysis

To ensure robustness of our results, we used nonparametric inference

testing based on wild bootstrap with an unrestricted SwE on all con-

trasts of interest for clusterwise inference. Deviating from the pre-

registration, we used Type C2 instead of Type C3 for small sample

bias adjustment, as this was recommended for wild bootstraps in the

SwE manual. Deviating from the pre-registration but prior to the anal-

ysis, we fixed a cluster forming threshold of p < .001 for more rigor-

ous multiple comparison adjustment (instead of p < .01), and 1,000

bootstraps due to required computation time (instead of 5,000). Sig-

nificant clusters are defined as family-wise error (FWE) corrected

p < .05. The anatomical localization of significant clusters was investi-

gated with the SPM Anatomy toolbox, version 2.2c (Eickhoff

et al., 2005) and the Harvard-Oxford Atlas in FSL version 5.0.11.

Aggregated functional connectivity analysis

The interaction effect of group and time point in the models of aggre-

gated functional connectivity was considered significant if the model

comparison between R1 and R0 models using the anova command

showed p < .05. In all exploratory models, we considered all coeffi-

cients with p < .05 as significant.
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2.5.4 | Functional decoding

In an exploratory analysis, we compared the resulting contrast maps

with whole-brain activation maps from the NeuroSynth (https://

www.neurosynth.org/) database (Yarkoni, Poldrack, Nichols, Essen, &

Wager, 2011). We uploaded the contrast images for change BMI and

average logmFD on NeuroVault, and applied the decoding classifier.

This classifier estimates the similarity of meta-analytic activation maps

of +500 search terms with our contrast maps. We reported the three

top terms for both contrasts.

3 | RESULTS

Histograms on baseline characteristics revealed that patients in the

control group did not differ notably from the intervention group regard-

ing BMI and mFD. There were slight differences in the distribution of

sex and age, the control group had a higher number of male participants

(n = 4 vs. n = 10) and a higher mean age (47.14 vs. 39.33). Change in

BMI of the MRI sample throughout the study is depicted in Figure 1

(comprehensive table on available BMI data in Supporting Information).

3.1 | Confirmatory analysis (pre-registered)

3.1.1 | Whole-brain analysis

Against our initial hypothesis, there was no interaction effect of group

and time point on neither reward network nor DMN functional con-

nectivity in model CA1 (no adjustments). There also was no significant

main effect for any of the effects of interest (time, group) in

clusterwise inference with FWE-correction. The same was true for

models CA2 (adjusting for age, sex, and average of logmFD). Results

did not differ between AROMA + CC and AROMA + CC + GSR den-

oising pipelines. In Model CA3 (adjusting for age, sex, average of

logmFD, and baseline BMI), there also was no significant interaction

when adding baseline BMI. Yet, we found a significant main effect of

time in this model. For AROMA + CC + GSR denoised data, there

was decreased functional connectivity of the NAcc with the lateral

occipital cortex at baseline compared to follow-up (FWE-corrected

p = .030), and decreased functional connectivity of the PCC within

the DMN to the medial anterior cingulate cortex (FWE-corrected

p = .046; see Supporting Information). The unthresholded contrast

maps of group, time, and group-by-time interaction for the unadjusted

model for AROMA + CC + GSR were uploaded on NeuroVault.

3.1.2 | Aggregated functional connectivity analysis

There was no significant group-by-time interaction for aggregated

DMN and reward network functional connectivity (see Figure 2 and

Supporting Information for a detailed summary of the models), regard-

less of the adjustments (CA1 without adjustment, CA2 adjusting for

age, sex, and average of mFD or CA3 adjusting for age, sex, average

of mFD, and baseline BMI), and whether the analyses were performed

on two and three time points.

3.2 | Exploratory analysis

3.2.1 | Whole-brain analysis

Reward network functional connectivity was not significantly related to

neither average nor change in BMI, for either of the denoising pipelines

F IGURE 1 Trajectory of BMI
separately for the bariatric
surgery group (BARS) and the
waiting-list control group
(NBARS); individual trajectories
are plotted in transparent, mean
trajectories including standard
deviations in opaque colors
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and regardless whether we adjusted for logmFD in Models EA1 and

EA2. Only in Model EA3 (adjusting for average and change in both BMI

and logmFD), we found that more BMI decrease (e.g., weight loss)

predicted higher functional connectivity between NAcc and a cluster in

the posterior-medial frontal region (see Figure 3 and Table 3).

The peak voxel was classified as belonging to superior frontal gyrus

(45% probability) and supplementary motor area (SMA; 37% probability)

in the Harvard–Oxford atlas. Voxel activation at local maximum within

this cluster was significant at peak level after FWE-correction (p = .030),

similarly in AROMA + CC + GSR-denoised data (p = .041).

Moreover, average logmFD was positively associated with func-

tional connectivity between NAcc and motor cortex in Model EA3 for

both denoising pipelines (see Figure 4 and Table 3). For the DMN,

we found that higher average BMI predicted lower functional

(a) (b)

F IGURE 2 Mean network connectivity per group over time separately for the bariatric surgery group (BARS) and the waiting-list control
group (NBARS); individual trajectories are plotted in transparent, mean trajectories including SDs in opaque colors

(a)

(b)

F IGURE 3 Stronger BMI decrease is associated with increased functional connectivity between NAcc and posterior-medial frontal region,
adjusted for age, sex, average BMI, and logmFD (Model EA3). (a) denoised with AROMA + CC, (b) denoised with AROMA + CC + GSR. Legends
denote empirical Z values

HEINRICHS ET AL. 5363



connectivity of the precuneus/PCC with the lingual gyrus, mid orbital

gyrus and temporal gyrus in the images denoised with AROMA + CC.

This finding was significant in Models EA1, EA2, and EA3 (see Fig-

ures 5 and 6 and Table 2). Yet, none of the clusters survived statistical

thresholding when using AROMA + CC + GSR denoised data (see

Table 3). Unthresholded maps for the t-tests as well as contrasts of

average BMI and change BMI of the main model, and post hoc con-

trasts for average logmFD and change in logmFD were published on

NeuroVault.

Similarly to the analysis with two time points, there was no signif-

icant interaction or main effect when analyzing Models EA4 and EA5

in the full data set of three time points for neither reward network

nor DMN.

In the additional exploratory model including only head motion

(EA6), higher average logmFD was associated with stronger functional

connectivity between the NAcc and a cluster located in proximity to

the central sulcus and motor areas (see Table 4 and Figure 7). This

cluster only differed in size between denoising pipelines. We did not

find any clusters with a significant association of either average

logmFD or change in logmFD and DMN functional connectivity.

3.2.2 | Aggregated functional connectivity analysis

As expected, there was no association of average BMI or within-

subject BMI change and within reward network functional

TABLE 2 Changes in functional connectivity in whole brain analysis in Models EA1 and EA2

Seed Covariates

Clusterwisea Voxelwise at local maximum

FWE-

corr. P

Cluster

size

Z

score

FWE-

corr. P

MNI coordinates

Hem Anatomical regionbX Y Z

Average BMI (decrease)

PCC (CC) Age, sex 0.006 212 1.708 0.019 �6 �30 �3 –

0.045 �3 �45 6 –

0.056 12 �39 0 R Lingual gyrus

0.035 70 1.562 0.129 �48 �9 �15 R Superior temporal

gyrus

0.287 �54 �3 �21 R Middle temporal

gyrus

0.032 75 1.573 0.173 �3 57 �12 L Mid orbital gyrus

0.199 9 54 �6 R Mid orbital gyrus

0.030 77 1.578 0.299 60 �12 �6 L Middle temporal

gyrus

0.514 66 �21 �9 L Middle temporal

gyrus

Average BMI (decrease)

PCC (CC) Age, sex, log

mFD

0.002 230 1.772 0.014 �6 �30 �3 –

0.051 �3 �45 6 –

0.075 12 �39 0 R Lingual gyrus

0.044 70 1.602 0.146 �51 �9 �12 L Mid orbital gyrus

0.308 �54 �3 �21 R Mid orbital gyrus

0.040 76 1.617 0.185 �3 57 �12 L Superior temporal

gyrus

0.249 9 54 �6 L Middle temporal

gyrus

0.047 67 1.593 0.331 60 �12 �6 R Superior temporal

gyrus

0.574 66 �21 �9 R Middle temporal

gyrus

Abbreviations: CC, preprocessing with AROMA + CC; FWE-corr., family-wise error corrected; GSR, preprocessing with AROMA + CC + GSR; Hem,

hemisphere; L, left; MNI (Montreal Neurological Institute) coordinates of primary peak location: X, sagittal; Y, coronal; Z, axial; R, right.
aTo identify significant clusters, we applied a cluster size threshold with p < .001 determined by Wild Bootstrap of 1,000 samples.
bConnectivity with maximum three voxels that mark local maxima within the respective cluster; more detailed description of anatomical regions that are

assigned to overall clusters and corresponding probability in Supporting Information.
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connectivity in models EA1, EA2, or EA3 adjusting for age, sex, and

logmFD (for detailed results, see Supporting Information).

Like in the whole-brain analysis, higher average BMI was associ-

ated with reduced aggregated DMN functional connectivity, regard-

less of whether we adjusted for logmFD (Model EA1: p = .014 and

EA2: p = .017). The association also remained significant when we

split logmFD into average and change in logmFD (EA3) (p = .015) and

there was no significant association of average or change in logmFD

with DMN functional connectivity (see Supporting Information for

overview of all models).

3.2.3 | Functional decoding

Functional decoding of the two activation patterns from the pre-regis-

tered, exploratory analysis EA3 showed different top association

TABLE 3 Changes in functional connectivity in whole brain analysis in Model EA3

Seed Covariates

Clusterwisea Voxelwise at local maximum

FWE-

corr. P

Cluster

size

Z

score

FWE-

corr. P

MNI coordinates

Hem Anatomical regionbX Y Z

Change in BMI (decrease)

NAcc (CC) Age, sex 0.030 112 1.671 0.021 6 6 66 R Posterior-medial

frontal

Average logmFD (increase)

NAcc (CC) Age, sex 0.006 143 1.588 0.034 9 �15 60 R Posterior-medial

frontal

0.094 12 �27 63 R Paracentral lobule

0.462 9 �18 72 R Posterior-medial

frontal

Change in BMI (decrease)

NAcc (GSR) Age, sex 0.041 99 1.457 0.101 6 9 63 R Posterior-medial

frontal

0.374 0 3 66 L Posterior-medial

frontal

Average logmFD (increase)

NAcc (GSR) Age, sex 0.021 46 1.768 0.134 9 �15 60 R Posterior-medial

frontal

0.487 9 �6 72 L Posterior-medial

frontal

0.914 0 �15 60

Average BMI (decrease)

PCC (CC) Age, sex 0.002 251 1.796 0.021 �6 �30 �3 –

0.052 �3 �45 6 –

0.067 12 �39 0 R Lingual gyrus

0.042 70 1.612 0.128 �51 �9 �12 L Mid orbital gyrus

0.273 �54 �3 �21 R Mid orbital gyrus

0.021 91 1.658 0.134 �3 57 �12 L Superior temporal

gyrus

0.152 9 54 �6 L Middle temporal

gyrus

0.045 69 1.609 0.308 60 �12 �6 R Superior temporal

gyrus

0.583 66 �21 �9 R Middle temporal

gyrus

Abbreviations: CC, preprocessing with AROMA + CC; FWE-corr., family-wise error corrected; GSR, preprocessing with AROMA + CC + GSR; Hem,

hemisphere; L, left; MNI (Montreal Neurological Institute) coordinates of primary peak location: X, sagittal; Y, coronal; Z, axial; R, right.
aTo identify significant clusters, we applied a cluster size threshold with p < .001 determined by Wild Bootstrap of 1,000 samples.
bConnectivity with maximum three voxels that mark local maxima within the respective cluster; more detailed description of anatomical regions that are

assigned to overall clusters and corresponding probability in Supporting Information.
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terms. For the https://neurosynth.org/decode/?neurovault=441783

frontal, anterior insula and inferior frontal were the top terms, while

for the https://neurosynth.org/decode/?neurovault=441784, primary

motor, motor, and premotor cortex were the meta-analytic activation

maps most similar to this contract. The functional connectivity con-

trasts were thus somewhat distinct, though the decoding method

does not allow to conclude specificity (for further information, see

here https://www.talyarkoni.org/blog/tag/neurosynth/.

4 | DISCUSSION

In this pre-registered study, we investigated the effects of bariatric

surgery on the functional connectivity of major resting-state brain

networks in a longitudinal controlled design. Moreover, we explored

the longitudinal relationship of surgery-induced weight loss and func-

tional connectivity, and carefully adjusted for head motion by using

two efficient denoising pipelines and controlling for head motion on

the group level.

We did not detect significant effects of bariatric surgery com-

pared to waiting on whole-brain functional connectivity of the PCC

and NAcc, core hubs of the reward network and DMN, according to

pre-registered whole-brain analyses. This was regardless of whether

we adjusted for age, sex, and individual head motion. DMN and

reward network functional connectivity was lower at baseline com-

pared to follow-up for the whole group only when adjusting for age,

sex, average logmFD and baseline BMI. In an exploratory model, dis-

entangling the effects of average and change in BMI, higher BMI was

associated with lower DMN functional connectivity for the more

lenient denoising pipeline. When we additionally adjusted for both,

average and change in head motion, decreases in BMI between the

three time points were associated with increased connectivity of

the NAcc with a posterior-medial frontal cluster. This result was sig-

nificant in both denoising pipelines. Functional decoding revealed sim-

ilarities of the connectivity pattern with frontal, anterior insula, and

inferior frontal activation patterns. Finally, higher average head

motion was associated with increased NAcc connectivity with a clus-

ter in precentral gyrus, close to, yet more posterior cluster associated

with change BMI.

In this study, we could not confirm our pre-registered hypotheses.

Based on previous studies in bariatric surgery patients, we expected

within-DMN functional connectivity to increase, and DMN functional

connectivity to other somatosensory and attention networks to

decrease, in line with more efficient processing of visceral and bodily

signals after surgery (Frank et al., 2013; Li et al., 2018; McFadden,

Cornier, Melanson, Bechtell, & Tregellas, 2013). Further, we expected

(a)

(b)

F IGURE 4 Higher average logmFD is positively associated with functional connectivity between NAcc and motor cortex, adjusted for age,
sex, average BMI, change in BMI, and change in logmFD (Model EA3). (a) denoised with AROMA + CC, (b) denoised with AROMA + CC + GSR.
Note that clusters have different sizes depending on denoising pipeline. Legends denote empirical Z values
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functional connectivity between reward network regions to decrease,

as bariatric surgery has been previously shown to reduce hyper-

activation in reward network regions and hedonic motivation to eat

(Cerit et al., 2019; Ochner, Stice, et al., 2012; Scholtz et al., 2013).

These studies, notably, did not include adequate longitudinal obese

control groups, making false-positive findings possible. We thus

conclude that surgery-induced heavy weight loss does not strongly

affect DMN and reward network functional connectivity based on the

current results.

However, in an exploratory analysis, stronger BMI decrease

predicted higher connectivity of the NAcc and a cluster in a posterior-

medial frontal brain region. Based on the Harvard-Oxford atlas and

(a)

(b)

F IGURE 5 Higher average BMI is associated with lower functional connectivity of PCC/precuneus with different regions in AROMA + CC
denoised data. (a) adjusted for age and sex (Model EA1). (b) adjusted for age, sex, and logmFD (EA2). Legends denote empirical Z values

F IGURE 6 Higher average BMI is associated with lower functional connectivity of PCC/precuneus with different regions, adjusted for age,
sex, average BMI, average logmFD, and change in logmFD (Model EA3) in AROMA + CC denoised data. Legend denotes empirical Z values
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NeuroSynth decoding, this region might be part of the salience net-

work and involved in action preparation. The enhanced functional

connectivity between the NAcc and this region seems at odds with

our expectation of reduced hedonic drive to eat after bariatric sur-

gery. On the other hand, higher connectivity might also indicate a bet-

ter crosstalk between hedonic drive and salience processing in action

planning. Previously, a decrease in local (regional homogeneity [ReHo]

and frequency of low-amplitude oscillations) and global connectivity

(degree centrality) measures in a similar region of the left SMA was

reported after glucose administration (Al-Zubaidi et al., 2019).

Reduced connectivity in this region was interpreted as an inhibition of

action planning or initiation because of fulfilled energy requirements

and reduced need for foraging. Yet, this lower regional (and global)

connectivity might also reflect a relative shift, that is, less connectivity

to distributed brain regions, but higher connectivity within the

reward-action inhibition network. One could argue that a higher level

of segregation (i.e., higher SMA and NAcc connectivity) of signals

between the reward network and action initiation regions could relate

to more efficient information transfer (Sporns, 2013). Yet, this inter-

pretation is highly speculative, and increased ReHo in motor regions

has also been reported after bariatric surgery (Rullmann et al., 2018).

Further research thus should address whether the connectivity

between NAcc and SMA is a relevant feature in altered brain connec-

tivity after bariatric surgery.

Overall, our results point to the importance of head motion as a

confounder in neuroimaging studies in obesity, challenging definite

conclusions on the relationship between weight loss and functional

connectivity changes. Previously, we reported a decrease in head

motion in the bariatric surgery versus control patients in this sample

(Beyer et al., 2020), which might be due to weight loss related alter-

ations in breathing patterns or less discomfort in the scanner (Fair

et al., 2020; Matos et al., 2012, Beyer et al., in preparation). We, there-

fore, conducted careful analyses of the impact of head motion on our

results. To our surprise, the effect of weight loss on the connectivity of

the NAcc with the posterior-medial frontal region was only present

when separating average mFD and change in mFD and thereby intro-

ducing two instead of one regressor into the model. These results may

be due to the presence of multicollinearity between change in FD and

change in BMI which might appear more pronounced in the split model,

and thus lead to unreliable estimations of effects and standard errors.

Contrarily, one could argue that only with the careful disentanglement

of average and change in BMI and FD the effect of change in BMI

could be singled out. This argument is supported by the survival of the

cluster when using AROMA + CC + GSR denoised data, and the dis-

tinct results of the decoding analysis. Further, average FD was associ-

ated with a cluster in a similar, yet not identical region, and crucially,

this association was positive. Thus, confounding of the negative BMI

change effect and the positive average head motion effect on

posterior-frontal functional connectivity seems unlikely. Head motion

also played a role in the association of higher BMI and reduced DMN

functional connectivity. While this result was no longer significant on a

whole-brain level when using stringent denoising, aggregated within-

DMN functional connectivity was negatively associated with BMI in

both denoising schemes. Thereby, this result echoes a previous finding

from our group, and may be interpreted as accelerated age-related

decline of the DMN in relation to the cardiometabolic risk related to

BMI. Yet, midline regions are prone to motion artifacts and doubts

regarding the complete removal of motion confounding remain (Savalia

et al., 2016). The major strength of our study is the prospective inter-

vention controlled design. We compared bariatric surgery patients to

an obese control group who did not differ in baseline BMI, com-

orbidities, treatment history, or recommendation and were scanned

after the same time intervals (Thiese, 2014). Another strength of our

study was the pre-registered analysis plan, which was corrected prior

to statistical analysis after we noticed flaws in the first version. In par-

ticular, we included more details on denoising pipelines and models and

determined that we would use the SwE toolbox, an advanced statistical

toolbox to deal with longitudinal repeated measures (Guillaume

et al., 2014). Opposed to the flexible factorial models which is the stan-

dard in SPM, marginal models use less degrees of freedom, and thus

allow for the inclusion of covariates and higher power.

Limitations of our study include the low number of patients who

participated in all three time points. In total, only 34 participants con-

tributed to the estimation of the longitudinal effects with at least two

time points. Patients in the intervention group were not missing at

random over time points, as often, before surgery, they did not fit into

the MRI scanner. While this sample size is comparable to previous

rsfMRI studies in bariatric surgery, it seems unlikely that our power

was high enough to detect small effect sizes. Increasing the sample

size, for example, by pooling data, would increase power to enable

analyzing differences between surgery types. Indeed, we did not

differentiate due to small sample sizes for each surgery type, yet

separate analyses for restrictive (e.g., GB and VSG) and malabsorptive-

restrictive surgical interventions (e.g., RYGB) should be subject of

future research as they may act differently on metabolism, eating

behavior, and glucose control (Buchwald et al., 2004; Hao et al.,

2017). Distinct effects on the metabolism could further increase

sensitivity for changes in the DMN (Cha et al., 2015). We used seed-

based connectivity to derive large-scale brain networks. While this

approach yielded reasonable DMN and reward network maps, it is a

univariate approach not taking into account the inter-relatedness of

subnetworks and assuming that the connectivity of a central hub

reflects the connectivity of the network as a whole. Furthermore, our

rsfMRI was relatively short, which might have further reduced

our power. We did not monitor hunger or satiety in our design,

although all participants were scanned after the intake of a breakfast

following an overnight fast. Hunger feelings and levels of appetite

regulating hormones such as insulin and ghrelin have been shown to

predict reward network responsivity to food cues, as well as resting-

state brain organization (Kroemer et al., 2012; Lepping et al., 2015;

Ochner, Laferrére, et al., 2012; Wiemerslage et al., 2016), and might

thus have confounded our results (Li et al., 2019). Size and composi-

tion of our sample did not allow sex-stratified analyses. However, the

disproportionate sex distribution is reflective of the prevalence differ-

ences and under-utilization of bariatric surgery by men (Chooi, Ding, &

Magkos, 2019; Fuchs et al., 2015).
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TABLE 4 Changes in functional connectivity in whole brain analysis in Model EA6

Seed Covariates

Clusterwisea Voxelwise at local maximum

FWE-
corr. P

Cluster
size

Z
score

FWE-
corr. P

MNI
coordinates

Hem Anatomical regionbX Y Z

Average logmFD (increase)

NAcc (CC) Age, sex 0.005 126 1.576 0.053 9 �15 60 R Posterior-medial

frontal

0.266 12 �24 63 R Posterior-medial

frontal

0.383 9 �18 69 R Posterior-medial

frontal

Average logmFD (increase)

NAcc (GSR) Age, sex 0.027 54 1.770 0.138 9 �15 60 R Posterior-medial

frontal

0.406 9 �6 72 R Posterior-medial

frontal

0.898 0 �15 60 L Posterior-medial

frontal

Abbreviations: CC, preprocessing with AROMA + CC; FWE-corr., family-wise error corrected; GSR, preprocessing with AROMA + CC + GSR; Hem,

hemisphere; L, left; MNI (Montreal Neurological Institute) coordinates of primary peak location: X, sagittal; Y, coronal; Z, axial; R, right.
aTo identify significant clusters, we applied a cluster size threshold with p < .001 determined by Wild Bootstrap of 1,000 samples.
bConnectivity with maximum three voxels that mark local maxima within the respective cluster; more detailed description of anatomical regions that are

assigned to overall clusters and corresponding probability in Supporting Information.

(a)

(b)

F IGURE 7 Positive association of average logmFD and functional connectivity of NAcc with a cluster in motor cortex, adjusted for age, sex,
average BMI, change BMI, and change logmFD. (a) denoised with AROMA + CC, (b) denoised with AROMA + CC + GSR. Legends denote
empirical Z values
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5 | CONCLUSION

Taken together, this prospective well-controlled study did not con-

firm previous findings claiming strong effects of bariatric surgery on

functional connectivity of the reward network and DMN in obese

patients. Differential changes in head motion adjustment strongly

altered rsfMRI neuroimaging results. We thus recommend to rigor-

ously control head motion at acquisition through online monitoring

or prospective motion correction or to investigate brain organization

with less motion-prone techniques such as task-based fMRI. Pre-

registration of concrete and testable hypotheses and publication of

null findings as done in the current study would help to increase rep-

licability of the field. Moreover, future studies should include obese

control groups, and increase efforts to share and pool valuable

patient data into meta-analysis to enhance our understanding of the

neural underpinnings of altered gut–brain communication after bar-

iatric surgery.
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