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Abstract: The role and prognostic value of tetraspanins (TSPANs) in vulvar squamous cell carcinoma
(VSCC) remain poorly understood. We sought to primarily determine, at both the molecular and
tissue level, the expression profile of the TSPANs CD9, CD63, CD81, and CD82 in archived VSCC
samples (n = 117) and further investigate their clinical relevance as prognostic markers. Our studies
led us to identify CD63 as the most highly expressed TSPAN, at the gene and protein levels. Multi-
comparison studies also revealed that the expression of CD9 was associated with tumor size, whereas
CD63 upregulation was associated with histological diagnosis and vascular invasion. Moreover,
low expression of CD81 and CD82 was associated with worse prognosis. To determine the role of
TSPANs in VSCC at the cellular level, we assessed the mRNA levels of CD63 and CD82 in established
metastatic (SW962) and non-metastatic (SW954) VSCC human cell lines. CD82 was found to be
downregulated in SW962 cells, thus supporting its metastasis suppressor role. However, CD63 was
significantly upregulated in both cell lines. Silencing of CD63 by siRNA led to a significant decrease
in proliferation of both SW954 and SW962. Furthermore, in SW962 particularly, CD63-siRNA also
remarkably inhibited cell migration. Altogether, our data suggest that the differential expression of
TSPANs represents an important feature for prognosis of VSCC patients and indicates that CD63 and
CD82 are likely potential therapeutic targets in VSCC.

Keywords: tetraspanins; VSCC; immunohistochemistry; HPV infection; prognosis; cell culture; siRNA

1. Introduction

Vulvar cancer, albeit rare, represents about 4% of all gynecological malignancies. The
American Cancer Society (ACS) estimated that, in 2020, more than 6000 new cases of vulvar
cancer were diagnosed in the USA alone, with over 1300 patients dying from the disease
due to cancer progression [1,2]. Among all types of vulvar malignancies, vulvar squamous
cell carcinoma (VSCC) is the most frequent histological subtype (~90%) [1,3,4]. VSCC may
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arise from two different etiopathogenic pathways: the first is associated with infection by
high-risk human papillomavirus (hrHPV) and the second forms independent of HPV [5].
HPV-associated tumors have a basaloid or verrucous morphology and represent almost half
of all VSCC cases, often occurring in younger women. The HPV-independent subset, on
the other hand, tends to occur in older women (50+ years old) and is frequently associated
with either chronic inflammatory skin conditions, such as lichen sclerosus, lichen planus,
or differentiated vulvar intraepithelial neoplasia (d-VIN) [6–8].

The involvement of lymph nodes (LN) during VSCC progression carries profound
prognostic implications and dictates subsequent treatment and therapy decisions. For
instance, while the 5-year survival rate for patients with a negative LN is over 80.7%, the
presence of four or more positive inguinofemoral nodes significantly reduces their survival
rate to 13% and to less than 11% in patients with distant groin LN metastases [3,9–11].
Currently, radical vulvectomy with inguinofemoral lymph node dissection is the surgery
of choice to treat VSCC. Unfortunately, such an approach is associated with high morbidity.
Hence, to improve prognosis and quality of life for VCSS patients, less invasive therapeutic
options are urgently needed. In this context, in-depth studies of the molecular mechanisms
underlying VSCC development and progression are necessary to define better and more
effective therapeutic options [12–16].

Tetraspanins (TSPANs) are a family of conserved transmembrane proteins that con-
nect intracellular and extracellular compartments. TSPANs, such as CD9, CD37, CD63,
CD81, CD82, and CD151, serve as membrane scaffolds, bringing together different classes
of surface molecules (i.e., cell surface receptors, immunoglobulins, adhesion molecules),
generally through the tetraspanin-enriched microdomains (TEMs) [17–19]. As “master
organizers” of membrane proteins and because of their numerous potential interacting
partners, TSPANs participate in a myriad of fundamental physiological and pathophysio-
logical processes [20–22]. Furthermore, TSPANs, in a context-depended manner, are able
to either play a key role in immunity against infectious diseases or function as facilitators
for viruses, such as HPV [23–25], HIV [23,26,27], HCV [28], and MERS-coronavirus [29,30],
to enter the cells.

In cancer, several studies have proposed a complex dual role for TSPANs, suggesting
that their differential and spatiotemporal expression is associated with either the devel-
opment and progression of different cancer types (e.g., colorectal [31], breast [32], and
epithelial ovarian cancer [33], oral [34,35] and esophageal [36] squamous cell carcinomas)
or providing better clinical outcomes [35,37]. For instance, while the expression of the
TSPAN CD81, also known as TSPAN28, in breast cancer, multiple myeloma, and acute
myeloid leukemia is considered a marker for worse prognosis, in patients with gallbladder
carcinoma, its expression indicates a favorable outcome [38,39]. Similarly, the CD63, also
known as melanoma-associated antigen ME491 or MLA1, is highly expressed at the tissue
level in the initial stages of melanoma development but down-regulated in advanced
metastatic lesions, suggesting that CD63 is likely a suppressor of tumor progression [40,41].
Recently, Garcia-Mayea et al. (2020) identified TSPAN1 as an important protein involved in
the development, progression, and chemoresistance of HNSCC tumors [42]. Furthermore,
An et al. (2020) isolated extracellular vesicles (EV) from patients who underwent surgery
for SCC of the lung and observed that both low CD63 and EV expression correlated with
unfavorable disease-free survival (DFS) [43].

In vulvar tumors, the expression profile of TSPANs remain poorly elucidated, and
thus, their role and contribution for VSCC origin and development, as well as their use
as potential therapeutic targets, remain unclear. Herein, we sought to determine the gene
and protein expression profiles of four major TSPANs (i.e., CD9, CD63, CD81, and CD82)
and investigate their correlation with clinical and pathological features in patients with
VSCC. Moreover, we also functionally elucidated the role of CD63 at the cellular level in
both metastatic and non-metastatic vulvar cancer human cell lines. Together, our results
provide new clinical and functional insights of TSPANs in VCSS and exploit their role as
potential new targets for therapy.
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2. Results
2.1. Case Selection and Clinical Features of the Study Population

For this study, 117 archived VSCC samples were selected from a comprehensive set of
300 vulvar cancers collected from patients who underwent treatment at the AC Camargo
Cancer Center (São Paulo, Brazil) between 1978 and 2009 (Table 1) [14,44–49]. The criteria
for patient/tissue selection were stipulated based on well annotated clinicopathological
medical records, as well as clinically relevant parameters for diagnosis, treatment, progno-
sis, and currently known VSCC risk factors (e.g., HPV) [50]. As depicted in Table 1, the
median age of the patients selected for our studies was 67.22 years (ranging from 14 to
98 years old), where the median age for patients in the menopause was 50 years (ranging
from 35 to 64 years old), in menarche was 14 (ranging from 11 to 19 years old), and in
sexarche was 20 (ranging from 15 to 38 years old). Other clinicopathological parameters,
such as tumor size, tumor stage, tumor invasion, metastasis, and HPV infection status,
were also evaluated and are summarized in Table 1.

Table 1. Clinical and histopathological features of patients with VSCC (n = 117).

Variables Categories
Overall Population by

Medical Record/Percentage
Frequencies

Age ≤50 12 (10.5%)
>50 102 (89.5%)

Menarche
11 to 14 years old 41 (68.3%)
15 to 19 years old 19 (31.7%)

Menopause No 3 (4.6%)
Yes 62 (95.4%)

Sexarche
15 to 18 years old 16 (51.6%)
≥19 years old 15 (48.4%)

Number of partners ≤2 36 (92.3%)
≥3 3 (7.7%)

Symptoms No 1 (1.2%)
Yes 86 (98.8%)

Contraceptive No 61 (92.4%)
Yes 5 (7.6%)

Alcoholism
No 74 (98.6%)
Yes 1 (1.4%)

Smoking No 59 (77%)
Yes 17 (23%)

Tumor size (mm3)
≤5 mm 42 (37.5%)

6 to 10 mm 21 (18.8%)
≥10 mm 49 (43.7%)

Histological diagnosis

VSCC 1 44 (38%)
VSCC 2 47 (40.5%)
VSCC 3 11 (9.5%)

Basaloid carcinoma 11 (9.5%)
Verrucous carcinoma 3 (2.5%)

Neoadjuvant chemotherapy No 69 (87%)
Yes 10 (13%)

Adjuvant chemotherapy No 76 (91.5%)
Yes 7 (8.5%)
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Table 1. Cont.

Variables Categories
Overall Population by

Medical Record/Percentage
Frequencies

Adjuvant radiotherapy No 73 (89%)
Yes 9 (11%)

Pelvic lymphadenectomy No 69 (89.6%)
Yes 8 (10.4%)

Depth of invasion

Superficial dermis 11 (9.8%)
Dermis 70 (62.5%)

Lower layer of the dermis 20 (17.9%)
Subcutaneous 9 (8%)
Rectal mucosa 1 (0.9%)

Dermis and subcutaneous 1 (0.9%)

Inflammatory infiltrate
1+ Low 37 (33%)

2+ Moderate 67 (60%)
3+ High 8 (7%)

Vascular invasion
No 98 (83.8%)
Yes 19 (16.2%)

Perineural invasion
No 102 (91%)
Yes 10 (9%)

FIGO 1 stage

I (A/B) and II 43 (57.4%)
III A 5 (6.7%)
III B 19 (25.3%)
III C 7 (9.3%)

IV (A/B) 1 (1.3%)

Relapse No 41 (50.6%)
Yes 40 (49.4%)

Lymph node metastasis No 24 (60%)
Yes 16 (40%)

Status
Alive 33 (38%)
Death 54 (62%)

HPV infection
No 20 (39.2%)
Yes 31 (60.8%)

HPV co-infection
No 20 (64.5%)
Yes 11 (35.5%)

HPV type
High-risk 25 (80.6%)
Low-risk 3 (9.7%)

Both 3 (9.7%)
1 FIGO: International Federation of Gynecology and Obstetrics.

During data analysis, we found that 13% of the patients (n = 10) out of 79 medical
records available received neoadjuvant chemotherapy as part of their care (Table 1). To
further evaluate the impact of neoadjuvant chemotherapy on clinicopathologic variables,
we performed a series of univariate and multivariate analyses (Table S1). For instance,
our analyses indicate that, within the patients receiving neoadjuvant therapy, 5 patients
were reported having perineal commitment against 11 patients in the non-treated arm
(p = 0.015). Still within the non-treated group (n = 68), 75% of them showed tumors larger
than 6 mm3 (p = 0.014), with about 86% of those (n = 66) presenting deeper lesions when
compared to neoadjuvant treated patients (p = 0.050). Additionally, nearly 61% of patients
(n = 40) in the non-treated group had dermis commitment compared to other lesion types
within the same group. The frequency of tumor relapse was also higher in patients that
did not receive neoadjuvant chemotherapy (78%) as compared to treated individuals (22%)
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(p = 0.010). Surprisingly, 100% of non-treated patients showed infection by high-risk HPV
compared to patients receiving chemotherapy (p = 0.021).

Furthermore, we found that 60.8% of patients (n = 31) within the 51 VSCC cases with
clinical annotated status on HPV-infection were positive for the virus (Table 1). Considering
HPV positive patients, 80.6% of them (n = 25) exhibited high-risk HPV and 9.7% (n = 3)
showed a low-risk type of HPV. Considering only patients with high-risk HPV, 28% (7 out
of 25) showed coinfection with two or three virus isotypes. Additionally, 9.7% (3 out of
31) of HPV positive samples had coinfection with both high and low-risk types (Table S2).
Additionally, the HPV 16 type was found predominantly in 58% of HPV-infected patients
(18 out of 31), followed by the HPV 33 type, which affected 23% of patients, as shown in
Table S3.

2.2. TSPANs Expression in Patients’ Samples

To determine the expression profile of TSPANs in VSCC at the molecular level, we
first performed a quantitative real-time PCR (qRT-PCR) analysis for CD9, CD63, CD81,
and CD82 in 16 archived frozen tumors and matched normal adjacent tissues randomly
selected from our 117 patients. As depicted in Figure 1a, our analyses revealed that the
overall relative expression (mean ± SD) of CD9 was significantly down-regulated by nearly
50% in tumor samples compared to normal tissues (p = 0.0006). In contrast, VSCC samples
had a significant increase of CD63 mRNA levels by ~1.0-fold (p < 0.005), as compared to
the control. Notably, no statistical differences were observed when CD81 and CD82 were
compared to normal tissues. Upon further investigation of the expression frequency of
each TSPAN in our VSCC cohort, we found that CD63 was upregulated in 75% (n = 12) of
the samples (fold regulation (FR) >1), as compared to its counterparts (CD81 at 25%, CD82
at 20%, and CD9 at 6%, respectively; Figure 1b).

Next, to expand on our initial findings and determine whether the protein expression
(Figure 1c) and frequency (Figure 1d and Table 2) of each TSPAN were consistent with
the gene expression results (Figure 1a,b), a series of immunohistochemical analyses were
performed on pre-determined FPPE samples (n = 117, Table 1). To ensure reproducibility
and consistency in data acquisition and semi-quantitative protein analysis, tonsils were
used as a positive control reference (Figures S1 and S2). At the tissue level, CD9 was
found to be predominantly localized at the cell membrane, whereas CD63, CD81, and
CD82 were primarily found in the cytoplasm of the tumor samples (Figure 2). Our analysis
also showed a heterogeneous staining pattern of all four TSPANs, which were classified
from a negative to strong expression, regardless of their cell compartment localization,
according to the H-score method (0–12). Considering only samples with a H-score result
≥3 (moderated and strong staining—Figures 1c and 2), we found that CD81 was poorly
expressed in VSCC samples, with 20% of the tissue showing a dull staining pattern (H-score
of ~1.5). CD82 and CD9 were both found to be moderately expressed in most samples
with a frequency of 51% and 41%, respectively. Lastly, and similar to the gene expression
results, CD63 was found to be more highly expressed (H-score ≥ 4, Figures 1d and 2) and
the most frequent (positive in 83% of the samples, Figure 1d and Table 2) TSPAN in all
VSCC samples evaluated. Primary antibodies specificity and sensitivity can be seen in
Supplementary Figure S3.



Int. J. Mol. Sci. 2021, 22, 5015 6 of 22Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 1. The TSPAN gene and semi-quantitative protein expression profile in VSCC samples. (a) Frequency (%) of tissue 
samples with upregulation (FR > 1) of CD9, CD63, CD81, and CD82 (n = 16). (b) Relative quantification of TSPAN expres-
sion in tumors samples compared to normal, tumor-free edges (tissue reference). Human hypoxanthine phosphoribosyl-
transferase (HPRT) was used as an internal reference. * p = 0.0035; *** p = 0.0006. (c) Frequency (%) of samples with positive 
protein expression (n = 117). (d) Semi-quantitative expression analysis of TSPANs in VSCC samples (* p < 0.01; ** p < 0.001; 
*** p < 0.0001). Dotted lines indicate the cut off values for RT-PCR (≥1; a) and IHC (≥3, c) analyses. 

Figure 1. The TSPAN gene and semi-quantitative protein expression profile in VSCC samples. (a) Frequency (%) of
tissue samples with upregulation (FR > 1) of CD9, CD63, CD81, and CD82 (n = 16). (b) Relative quantification of
TSPAN expression in tumors samples compared to normal, tumor-free edges (tissue reference). Human hypoxanthine
phosphoribosyltransferase (HPRT) was used as an internal reference. * p = 0.0035; *** p = 0.0006. (c) Frequency (%) of
samples with positive protein expression (n = 117). (d) Semi-quantitative expression analysis of TSPANs in VSCC samples
(* p < 0.01; ** p < 0.001; *** p < 0.0001). Dotted lines indicate the cut off values for RT-PCR (≥1; a) and IHC (≥3, c) analyses.

Table 2. Frequency of TSPANs immunohistochemical positive staining (moderate and strong) in
VSCC samples (n = 117).

Target/
Staining

CD9
n (%)

CD63
n (%)

CD81
n (%)

CD82
n (%)

Total
n (%) p

Negative 66 (59) 18 (17) 84 (80) 56 (52) 223 (52)
<0.0001Positive 45 (41) 89 (83) 21 (20) 51 (48) 206 (48)

Total * 111 (100) 107 (100) 105 (100) 107 (100) 429 (100)
* Total number of analyzed samples; some cores were missed during IHC reactions.
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categorized as negative (a–d), weak (e–h), moderate (i–l), and strong (m–p) reactions (original magnification, ×40), con-
sidering membrane and/or cytoplasmic positivity. 
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Figure 2. Representative photomicrographs of IHC reactions for CD9, CD63, CD81, and CD82. The
pattern of staining was categorized as negative (a–d), weak (e–h), moderate (i–l), and strong (m–p)
reactions (original magnification, ×40), considering membrane and/or cytoplasmic positivity.

Statistically, the comparison analysis within the protein expression of each TSPAN
showed significant differences between CD63 and CD9 (p < 0.01), as well as between CD9
and CD81 (p < 0.0001, Figure 1c). Robust statistical differences were also found among the
expressions of CD63, CD81, and CD82 (p < 0.0001) and between CD81 and CD82 (p < 0.001).
Moreover, co-expression analysis among TSPANs showed a moderate positive correlation
between CD82 and CD9 (r = 0.597, p < 0.0001) and four less robust, yet positive correlations
between CD9/CD63 (r = 0.325, p = 0.001), CD9/CD81 (r = 0.423, p < 0.0001), CD63/CD82
(r = 0.422, p < 0.0001), and CD81/CD82 (r = 0.356, p < 0.0001) (Table 3), thus suggesting
that TSPANs may interact with each other in VSCC.

Table 3. Correlation analysis of TSPANs.

TSPAN Correlation Coefficient (r) p

CD9
CD63 0.325 0.001
CD81 0.423 <0.0001
CD82 0.597 <0.0001

CD63
CD81 0.202 0.039
CD82 0.422 <0.0001

CD81 CD82 0.356 <0.0001
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2.3. Clinical Implication of TSPANs Expression for VSCC Patients

Based on the unique molecular and tissue signature of CD9, CD63, CD81, and CD82,
we sought to investigate whether their expression could be clinically useful as markers for
diagnosis and/or prognosis or used to predict patterns of treatment response and outcome.
Therefore, their expression profiles were evaluated in tandem with the patients’ clinical
features and available follow-up medical information.

Although the overall survival (OS) analyses showed no statistical differences for
either CD9 (n = 79; p = 0.950), CD63 (n = 76; p = 0.485), CD81 (n = 76; p = 0.205), or CD82
(n = 76; p = 0.923) expression, disease-free survival (DFS) (Figure 3a) showed that patients
with CD81 positive tumors (23%) had a median relapse rate of 5 ± 2.12 months, whereas
CD81 negative tumors (77%) showed a median relapse rate of 18 ± 4.46 months (n = 34;
p = 0.004). Further univariate analysis of relapsed patients (CD81+: 8 patients; CD81-:
25 patients) that did or did not receive neoadjuvant chemotherapy regardless of CD81
status revealed that non-treated patients had a better DFS over 25 months (15.00 ± 5.62;
95% CI: 3.98–26.01) than treated patients (5.00 ± 2.12; 95% confidence interval (95% CI):
0.84–9.15) (Figure 3b). Multivariate analysis, considering the expression status of CD81
and neoadjuvant chemotherapy (Cox regression model), showed that CD81 expression is
not an independent prognostic factor for VSCC (p > 0.05) (Table 4).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 22 
 

 

Table 3. Correlation analysis of TSPANs. 

TSPAN  Correlation Coefficient (r) p 

CD9 
CD63 0.325 0.001 
CD81 0,423 <0.0001 
CD82 0.597 <0.0001 

CD63 
CD81 0.202 0.039 
CD82 0.422 <0.0001 

CD81 CD82 0.356 <0.0001 

2.3. Clinical Implication of TSPANs Expression for VSCC Patients 
Based on the unique molecular and tissue signature of CD9, CD63, CD81, and CD82, 

we sought to investigate whether their expression could be clinically useful as markers 
for diagnosis and/or prognosis or used to predict patterns of treatment response and out-
come. Therefore, their expression profiles were evaluated in tandem with the patients’ 
clinical features and available follow-up medical information. 

Although the overall survival (OS) analyses showed no statistical differences for ei-
ther CD9 (n = 79; p = 0.950), CD63 (n = 76; p = 0.485), CD81 (n = 76; p = 0.205), or CD82 (n = 
76; p = 0.923) expression, disease-free survival (DFS) (Figure 3a) showed that patients with 
CD81 positive tumors (23%) had a median relapse rate of 5 ± 2.12 months, whereas CD81 
negative tumors (77%) showed a median relapse rate of 18 ± 4.46 months (n = 34; p = 0.004). 
Further univariate analysis of relapsed patients (CD81+: 8 patients; CD81-: 25 patients) 
that did or did not receive neoadjuvant chemotherapy regardless of CD81 status revealed 
that non-treated patients had a better DFS over 25 months (15.00 ± 5.62; 95% CI: 3.98–
26.01) than treated patients (5.00 ± 2.12; 95% confidence interval (95% CI): 0.84–9.15) (Fig-
ure 3b). Multivariate analysis, considering the expression status of CD81 and neoadjuvant 
chemotherapy (Cox regression model), showed that CD81 expression is not an independ-
ent prognostic factor for VSCC (p > 0.05) (Table 4). 

 
Figure 3. Kaplan–Meier Curves for DFS, according to CD81 status (n = 105). (a) In total, 77% of the 
CD81 negative patients showed cancer relapse, while 23% of relapse was recorded among CD81 
positive patients (p = 0.004). The total number of patients with cancer relapse was 34 (100%). (b) 
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Figure 3. Kaplan–Meier Curves for DFS, according to CD81 status (n = 105). (a) In total, 77%
of the CD81 negative patients showed cancer relapse, while 23% of relapse was recorded among
CD81 positive patients (p = 0.004). The total number of patients with cancer relapse was 34 (100%).
(b) Neoadjuvant chemotherapy analysis, including 8 treated and 25 non-treated relapsed VSCC
patients (p = 0.022) (n = 33 *). p-value was determined using the log-rank test, which refers to the
corresponding expression status. * One patient was excluded due to lack of treatment information.

Table 4. Multivariate proportional hazard analysis of the neoadjuvant chemotherapy status and
CD81 protein expression.

Variable HR (95% CI) p

CD81 expression 1 0.41 (0.11–1.49) 0.178
Neoadjuvant chemotherapy 2 0.69 (0.19–2.46) 0.576

1 Compared to greater expression; 2 Compared to treatment. HR, hazard ratio; CI, confidence interval.

Secondary analysis revealed that the CD63 did not show any significant association
with clinical features when samples were grouped in positive (Hscore > 3 to 12) or negative
(Hscore 0 to 3) groups (Table S5). However, by stratifying the patients into negative/weak,
moderate, and strong expressions, we found that moderate expression of CD63 (Hscore ≥ 6
to ≤ 12) strongly correlated with histological diagnosis (p < 0.022), treatment (p < 0.0162),
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and vascular invasion (p < 0.0009, Table S6). In regard to histological diagnosis, we found
that 83% of the VSCC I and 76% of the VSCC II cases were positive for CD63 (p < 0.0022,
Table S6).

CD81 down-expression was mainly associated with tumor location, treatment, and
death. Specifically, 73% of the cases with labia majora commitment were attributed to
patients with low CD81 expression, compared to 27% of similar cases in CD81 positive
samples (p = 0.029). In total, 85% of patients with CD81 negative tumors did not undergo
neoadjuvant chemotherapy or radiotherapy (p = 0.023), and low expression of CD81 was
associated with increasing mortality as compared to CD81 positive patients (p = 0.039,
Table S7).

Lastly, we found that the majority of large tumors (>6 mm3) were negative for CD82,
while in contrast, CD82 positive tumors represented about 61% of smallest tumor samples
(<5 mm3, p = 0.027). A large number of CD82 positive samples was also found to be
associated with patients who underwent adjuvant therapy (p = 0.004). Moreover, 60% of
the CD82 positive tumors show HPV coinfection (p = 0.051, Table S8).

No other clinicopathological feature showed relevant statistical significance associated
with the expression of TSPANs at the gene or protein levels. A complete list of the variables
analyzed is shown in Tables S2–S6.

2.4. Role of TSPANs in Metastatic and Non-Metastatic Cell Lines

To mechanistically investigate the role of TSPANs in VSCC, we selected the tetraspanins
CD63 and CD82 to study, as they are well characterized as having opposite roles in tumor
development and prognosis in the literature.

First, we assessed the basal expression profiles of CD63 and CD82 by qRT-PCR in both
SW954 (non-metastatic) and SW962 (metastatic) human cell lines. Figure 4a shows that
the expression of CD63 was 4.5 times higher in SW962 compared to SW954 cells (p < 0.05),
whereas the expression of CD82 was decreased by nearly 2 times in the metastatic cells
compared to SW954 (p < 0.05).

Next, we transiently silenced CD63 expression by transfecting both cell lines with
a small interfering RNA (siRNA). By qRT-PCR, we found that SW954 and SW962 cells
transfected with CD63-siRNA had a significant decrease of CD63 mRNA by 70% and 90%
(p < 0.05), respectively, as compared to the non-transfected cells (CC) and siRNA control
(Ct siRNA) (Figure 4b,c). Consistently, at the protein level, the intensity of CD63 staining
in immunocytochemistry (ICC) was found to be reduced by 80% and 90% in SW954 and
SW962 CD63-siRNA transfected cells, respectively, as compared to the controls (Figure 4d).
Further semi-quantitative analysis in both silenced cell lines showed a significant statistical
difference in downregulation of CD63 expression (using the score of intensity and frequency
of stained cells) in both cell lines when compared to the controls (p = 0.0005, Table 5).

Table 5. Semi-quantitative measurement of CD63 expression in CD63-siRNA transfected and controls by ICC.

Treatment
Group

Non-Metastatic
Positive n (%) n (%) Metastatic

Positive n (%) n (%) * p

Cell Control 2002 (98) 2043 (100) 561 (98) 571 (100)
0.0005siRNA Control 2318 (98.5) 2354 (100) 603 (98.7) 611 (100)

CD63 siRNA 410 (21) 1966 (100) 67 (14) 472 (100)

* Chi-square test.
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At the cellular level, silencing of CD63 in both cell lines led to a significant reduction
in cell viability (proliferation assay) as early as 24 h and up to 96 h after CD63-siRNA
transfection. Based on the siRNA efficiency data, we assessed the CD63 silencing effects 48 h
after transfection. Significant differences in the cell proliferation were observed for CD63-
siRNA SW954 cells after 72 h (~50% of inhibition, p < 0.05) and 96 h (~70% of inhibition,
p < 0.005) (Figure 5a), while CD63-siRNA SW962 cells showed higher inhibition rates after
96 h (~20%, p < 0.05) (Figure 5a). CD63-dependent cell migration was also investigated in
both siRNA transfected and controls cells using the wound healing (scratch) assay 48 h
after CD63 silencing. As depicted in Figure 5b, the ability migration of SW954 cells was
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compromised after CD63 silencing. However, a significant effect was observed 6 h after
the scratch (CC = 40%, siRNA C = 55%, CD63-siRNA = 20%; p < 0.05, Figure 5b), and after
12 h, the effect was sustained but without statistical significance. Similarly, a robust and
pronounced migration inhibition was also observed in CD63-silenced SW962 cells 24 h
after scratch (CC = 50%, siRNA C = 50%, CD63-siRNA = 25%; p < 0.05, Figure 5c), without
wound closure even after 48 h (CC = 90%, siRNA C = 90%, CD63-siRNA = 50%; p > 0.05).
The migration analysis of the cells has continued until total wound healing in the control
cells group.
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Based on our findings, we propose, as schematically represented in Figure 6, that
the differential expression of TSPANs, in particular CD9, CD63, CD81, and CD82, might
contribute to VSCC development and poor prognosis. Our results indicate that these
alterations, along with high risk-HPV infections, are associated mainly with larger tumor
size, lymph node metastasis, and mortality. In vitro, we showed that the expression of CD63
is associated with increased cell survival and migration in the VSCC cells, highlighting
the potential clinical benefit of targeting CD63 as a novel therapeutic modality for patients
with VSCC.
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Figure 6. Schematic illustration of TSPAN expression and their prognostic value for VSCC patients.
(a) During the TSPAN transcription and translation processes, genetic or epigenetic alterations may
occur at the molecular level, leading to loss or gain of expression of certain TSPANs that can contribute
to several pathogenic processes. (b) These alterations, together with high-risk HPV infections, may
be associated with larger tumor size, lymph node metastasis, and lower DFS rates, which represent a
poor prognosis for VSCC patients. CD63 is related to increased cell survival and migration in the
VSCC in vitro analyses. Red and green arrows indicate upregulation and downregulation of genes.
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3. Discussion

In the present study, 117 FFPE archived samples of VSCC (from 1978 to 2009) and
associated medical records were selected from a larger cohort of 300 samples previously
and exhaustively characterized by several studies [14,44–49]. A review study published by
Maia et al. in 2012 highlighted the uniqueness of the Brazilian’s VSCC registry and
concluded that the main prognostic factors for VSCC are mainly the patient’s age, treatment,
recurrence, and survival, corroborated with the global literature at the time. Nearly
a decade later, the main prognostic factors for VSCC remain virtually unchanged and
features such as the patient’s age, HPV/16 status, VINs occurrence, tumor stage and grade,
tumor size, depth of invasion, lymph node metastasis, stromal change, and margin status
continue to be relevant [1,7,9,10,16,51,52]. As such, our analysis revealed that the patient’s
age (~70 years old), therapy status (~80% of patients did not receive any therapy), VSCC
stage (~87% of the tumors were VSCC I/II), FIGO stage (~25% of patients were stage IIIB),
tumor recurrence (~50% of patients had recurrence), LN metastasis (~40% of patients did
present LN involvement), and mortality rate (~54% of the patients died) were adequate
prognostic features for selection of the study population and further correlative studies.

Although prognostic factors, such as those discussed above, are clinically important
for patient management and decision making, the lack of associated molecular markers to
further predict patient outcome (e, OS, DFS, and objective response rate) or to anticipate
VSCC progression remain an unmet clinical need. It is well stablished in the literature that
alterations in TSPAN expression are directly correlated with prognosis in many cancer
types [1]. However, in VSCC, their expression profile and molecular role remain poorly elu-
cidated. Here, we found that, among all four TSPANs analyzed, CD63 was predominantly
expressed and more frequent in VSCC samples at the molecular (qRT-PCR, 75%) and tissue
level (IHC, 83%) than CD9, CD81, and CD82. Curiously, no significant differences at OS
were found when the expression of CD63 or the other three TSPANs were evaluated in
conjunction with the patient’s clinical record.

CD9 is ubiquitously expressed in various normal and cancer tissues [53,54], and conse-
quently, its expression as a molecular marker is often ambiguous and cancer-
dependent [36,55–62]. Higher positive expression of CD9 has served as a good prog-
nostic marker in breast, lung, colon, and pancreatic carcinomas [55,63,64], as it is thought to
have a metastatic suppressor role by inhibiting tumor cell motility, at least in vitro [65,66].
However, in a previous study of tumor progression in penile squamous cell carcinomas [67],
we observed that invasive tumors have a heterogeneous pattern of CD9 expression, ranging
from strong expression in 80% of the cells to a marked loss of CD9 expression in the same
case. Similarly, Hori et al. (2004) and Soyuer et al. (2010) described that higher CD9 expres-
sion was associated with more aggressive tumors and increased number of lymph node
metastases in gastric cancers, therefore representing a marker of poor prognosis [60,61]. In
VSCC, although a direct correlation between CD9 expression and the potential of lymph
node metastasis and survival was not statistically significant, we anticipate that patients
that are CD9-low or CD9-negative will, more likely, bear tumors that are phenotypically
more aggressive and, therefore, have a worse prognosis.

Likewise, the low expression of CD82 in the tissue samples analyzed was associated
with larger tumors, as well as increased stromal invasion. Such findings are consistent
with previous studies, where downregulation of CD82 expression was associated with
both advanced cancer stages (e.g., in breast, bladder, ovary, and prostate carcinomas and
also in oral/esophageal/laryngeal/penile squamous cell carcinomas) and the transition
to a metastatic phenotype [37,59,68–70]. For example, Yang et al. (2001) reported that the
overexpression of CD82 in breast cancer cells resulted in the suppression of in vitro invasion
and in vivo metastasis, suggesting that CD82 does function as a tumor suppressor [71].
While the tumor suppressing ability of CD82 was also shown in bladder, oral cancer,
prostate, and ovary cancers, where cancer cell migration and invasion were drastically
reduced upon its upregulation [72–76], in penile cancer, loss of CD82 led to an increase in
tumor metastasis and higher HPV16 infection rates [24]. In this context, our analysis did
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reveal that a large majority of CD82 negative tumors (61% of 30 patients) were associated
with HPV16, thus further indicating that the lack of CD82 expression may contribute to a
poor prognosis in vulvar carcinomas. The etiological role of HPV in the development of
vulvar cancer has been well recognized [77], and further elucidating the role of TSPANs in
this process may be a key point for better understanding VSCC development.

On the other hand, both CD63 and CD81 were found to be overexpressed among the
VSCC samples analyzed. Our results showed that the strong CD63 tissue staining was
particularly associated with well-differentiated VSCC1 + VSCC2 samples, while lost or
downregulated in more aggressive tumors. A similar correlation between high expression
of CD63 and larger tumor size, as well as increased vascular and stromal invasion, and
higher mortality was observed in our analysis. We found that these results are well aligned
with recent publications, suggesting that increased expression of CD63 in certain cancer
is correlated with increased activity of pro-tumorigenic cell signaling pathways, such
as activation of β-catenin, phosphoinositide 3-kinases (PI3K), and extracellular signal-
regulated kinases (ERK) [5]. Furthermore, its increased expression was also reported as an
indicator of poor disease specific survival (DSS) in solid tumors [3,68], thus corroborating
our clinical findings and suggesting that CD63 functions as an oncogene in VSCC. Indeed,
our in vitro analyses showed that silencing of CD63 reduced the proliferation rate of both
VSCC cell lines and the migration capacity of the metastatic cells.

Lastly, the expression of CD81 in VSCC samples was robustly correlated with tumor
relapse, especially in patients who underwent neoadjuvant therapy. In fact, in the latter,
we found a staggering tumor relapse median that was three times higher than untreated
patients. Such observation can be attributed to the fact the that CD81 has been shown to
regulate cell migration and invasion and, therefore, is implicated in cancer progression and
chemoresistance. As such, its overexpression or downregulation has served as a prognostic
marker in several tumor types, including breast, lung, prostate, melanoma, brain cancer,
and lymphoma [78–80]. In our analysis, despite the low frequency of CD81 positive cases,
the results indicate that CD81 contributes to a worse DFS and unfavorable prognosis,
further corroborating with the literature [81,82].

Although more comprehensive analyses are necessary to better understand the role
of TSPAN in VSCC, our data indicate that these molecules are important benchmarks of
VSCC development and progression. Furthermore, to the best of our knowledge, this was
the first study of its kind shedding some light onto the relationship between TSPANs and
VSCC, and as such, we believe this work will pave the way for the development of novel
treatment modalities, as well as new perspectives for disease management options.

4. Materials and Methods
4.1. Patient Samples

The present study was approved by the Research Ethics Committee of the Faculdade
de Medicina da Universidade de Sao Paulo-FMUSP (Number 1.540.225) and complied with
the Helsinki Declaration. Selected samples included 117 formalin-fixed paraffin-embedded
(FFPE) tissues with invasive VSCC diagnoses, which were collected between 1979 and 2009
at the Anatomic Pathology Department of the AC Camargo Cancer Center in Sao Paulo,
Brazil [15]. A total of 16 frozen tissues were further selected from the 117 cohort, along
with 16 donor-matching morphologically normal tissue edges, for transcriptional analysis
of the TSPANs.

4.2. Cell Lines, Culture Conditions, and Authentication

Non-metastatic-SW954 (American Type Culture Collection [ATCC] HTB-117) and
metastatic-SW962 (ATCC HTB-118) VSCC human cell lines were grown in Roswell Park
Memorial Institute-1640 (RPMI; Vitrocell, Embriolife, Sao Paulo, SP, Brazil), medium
supplemented with 2 g/L of sodium bicarbonate (Sigma, Darmstadt, HE, Germany),
10% (v/v) fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, USA), and antibiotic mix
(ampicillin/streptomycin/amphotericin; Gibco, Waltham, MA, USA). Cells were cultured
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in 75 cm2 flasks and maintained at 37 ◦C in a humidified atmosphere containing 5% CO2.
Cell line authentication was performed using GenePrint 10 System (Promega, Madison,
WI, USA), followed by identification and matching of the short tandem repeat profiles to
cell line profiles at the ATCC data bank [83].

4.3. Total RNA Isolation, Complementary DNA (cDNA) Synthesis, and Quantitative Real-Time
PCR (qRT-PCR)

Total RNA was extracted from frozen tissues using the RNeasy Mini Kit (Qiagen,
Hilden, Germany), following the manufacturer’s recommendations. RNA isolation from
cell lines (SW954 and SW962) was performed with Trizol (Thermo Fisher Scientific, Carls-
bad, CA, USA), according to the manufacturer’s instructions. For studies using TSPAN-
silenced cells, 5 × 106 SW954 and SW962 cells were seeded in 4-well plates (NUNC™
Delta Treated, Thermo Fisher Scientific, Carlsbad, CA, USA) and transfected with spe-
cific TSPANs, targeting siRNA or siRNA control (described in detail below). Total RNA
from silenced cells was isolated using the PureLink RNA Mini Kit (Ambion, Austin, TX,
USA), following the manufacturer’s protocol. All RNA samples were quantified with
spectrophotometer NanoDrop 2000 (Thermo Fisher Scientific, Carlsbad, CA, USA) prior to
downstream applications. cDNA synthesis (reverse transcription) was carried out using
the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Carlsbad,
CA, USA). To evaluate the expression of each TSPAN, TaqMan assays for CD9 (assay ID:
Hs00233521_m1), CD63 (assay ID: Hs00156390_m1), CD81 (assay ID: Hs01002167_m1),
and CD82 (assay ID: Hs00356310_m1) were used, following the manufacturer’s recom-
mendations. B2M (TaqMan assay ID: Hs99999907_m1) and HRPT (TaqMan assay ID:
Hs99999909_m1) were predicted as the stable normalizer by the NormFinder algorithm
software [84] and used in our studies as housekeeping (HK) genes for data normaliza-
tion. qRT-PCR amplifications were performed in an ABI 7500 Real-Time PCR instrument
(Thermo Fisher Scientific, Carlsbad, CA, USA). As a reference sample, a pool of RNA iso-
lated from tumor-free edge tissues (n = 16) was used. Amplifications were run in duplicate,
and averages were obtained after normalization with either B2M (for cells) or HPRT (for
tissues). Relative quantification was set up comparing cycle threshold by ∆∆CT method in
SDS 3.0 and RQ manager LV2.0.6 software, and the fold regulation (FR) expression cut-off
values were established in ≥+2 and ≤−2 to identify differentially expressed genes.

4.4. TMA and Immunohistochemistry (IHC) Analysis

TMA construction was performed in duplicate with selected tumor blocks and adja-
cent normal tissue samples using the manual arraying instrument (Manual Tissue Arrayer
1, Beecher Instruments Microarray Technology, Sun Prairie, MI, USA). Cylinders of 2 mm
diameter were punched from distinct selected areas of each donor paraffin block, as previ-
ously described [15]. IHC reactions were carried out with CD9 (Neomarkers, Portsmouth,
NH, USA; dilution 1:300), CD63 (Neomarkers, Portsmouth, NH, USA; dilution 1:600),
CD81 (Novocastra Laboratories, Benton Ln, Newcastle, UK; dilution 1:30), and CD82
(Neomarkers, Portsmouth, NH, USA; dilution 1:100) antibodies. Sections were blocked
with protein block serum-free (Dako, Carpinteria, CA, USA) at room temperature for
20 min. Incubations with primary antibodies were performed at room temperature for 2 h,
followed by incubation with an indirect dextran polymer detection system for 1 h (Novo-
castra Laboratories, Newcastle, UK). After several washes, slides were incubated with
3,3-diaminobenzidine tetrahydrochloride (DAB) (Dako, Carpinteria, CA, USA) for staining.
All reactions were run in quadruplicate (two cores per slide, with two stained slides).

Two different pathologists performed semi-quantitative analysis, evaluating the av-
erage area of slides staining. Samples were scored using the intensity of staining and
frequency of positive tumor cells, as established elsewhere [59,85]. Staining intensity was
categorized into four groups: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong), and the
frequency score of stained tumor cells was ranked into: 1 (less than 10%), 2 (10 to 50%),
3 (50 to 75%), and 4 (more than 75%). A combined score using the intensity and frequency
multiplication was then defined, ranging from 0 to 12, generating four groups: negative
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(score 0–3), weakly positive (score 4–5), moderate (score 6–8), and strongly positive (9–12).
For statistical analysis, only two categorized groups of negative (score 0–3) and positive
(score 4–12) expression were used. Normal human tonsil samples were used as a positive
control tissue, as recommended by the manufacturer. For negative controls, tissues were
stained without primary antibodies (Figure S2).

4.5. DNA Isolation and HPV Genotyping

Total DNA was extracted from up to eight tissue sections (10-µm-thick). Sections were
pretreated with 350 µL ATL lysis buffer from the DNA FFPE kit (Qiagen, Valencia, CA,
USA) and added directly to the paraffin sections, followed by incubation of the tightly
closed tubes at 120 ◦C for 20 min. All procedures followed the supplier’s specification.
DNA was then quantified at the NanoDrop ND-1000 spectrophotometer (Wilmington, DE,
USA) and analyzed on 1% agarose gel.

HPV detection and typing was performed using the linear array HPV-genotyping test
(Roche Molecular Systems; Branchburg, NJ, USA). The assay was based on L1 consensus
PCR with PGMY primers, yielding a 450-bp amplicon, with type-specific hybridization
to detect 37 individual types (6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51, 52, 53, 54, 55,
56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72 73, 81, 82, 83, 84, 89, and IS39). In addition,
the assay included β-globin primers (150-bp amplicon) detected on the HPV typing strip
as a positive control for amplifiable sample DNA. Linear array HPV-genotyping strips
were manually interpreted using the HPV reference guide provided. The products of
hybridization were detected by a color reaction with an alkaline phosphatase–streptavidin
conjugate and substrate (5-bromo-4-chloro-3-indolyl phosphate and nitrobluetetrazolium),
which results in a purple precipitate. Hybridization results were visually assessed by
comparison with the standard grid [86].

4.6. CD63 Silencing-siRNA Transfection

Silencing of CD63 was performed using MISSION siRNA CD63 (EHU032781—Sigma-
Aldrich, MO, USA). Cells were cultured in Opti-MEM I Reduced Serum Medium (Thermo
Fisher Scientific, Carlsbad, CA, USA), and the siRNA transfection was carried out with
Lipofectamine RNAiMAX Reagent (Invitrogen, CA, USA) without antibiotic, according to
manufacturer’s instructions. The siRNA eGFP (EHUEGFP—Sigma-Aldrich, Saint-Louis,
MO, USA) was used as a negative control. Cell seeding density and the concentration of
each reagent were standardized for each functional assay, according to the manufacturer’s
recommendations.

4.7. Immunocytochemistry (ICC)

Prior to ICC studies, the specificity of the anti-CD63 antibody (MA1-19281, Thermo
Fisher Scientific, Carlsbad, CA, USA, Figure S3) was validated and confirmed by western
blot analysis (Figure S3). Because western blot analysis was not feasible due to the small
number of cells recovered after siRNA transfection, ICC was the method of choice to assess
the expression of CD63. All reactions were carried out in 4-well plates (NUNC™ Delta
Treated, Thermo Fisher Scientific, GE, USA), with 105 cells/well. Plates were washed with
phosphate buffered saline (PBS), and 500 µL of 3.7% formaldehyde (Merck, Darmstadt,
HE, Germany) was added for cell fixation. Hydrogen peroxide (H2O2; VIC pharma, Sao
Paulo, BR) was applied to block the endogenous peroxidase and nonspecific proteins. Next,
cells were incubated with PBS and 5% bovine serum albumin (BSA) for 20 min at room
temperature. For permeabilization, 0.1% Triton X 100 (Merck, Darmstadt, HE, Germany) in
PBS was added for 20 min. Anti-CD63 antibody was diluted 1:100 in PBS supplemented
with 0.1% Triton X 100 and incubated at room temperature for 1 h. Cells were submitted to
three washing steps and incubated with biotinylated secondary antibody for 20 min at room
temperature. After several washes, polymer HRP-peroxidase was added and extensively
washed. Samples were stained with DAB (1:50, Merck, Darmstadt, HE, Germany) and
counterstained with hematoxylin for 10 min at room temperature. Microphotographs and
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analysis were carried out with optical microscope Nikon Fase Contrast 0.90 Dry-Eclipse Ni
(Nikon, Tokyo, Japan), equipped with a photo camera Nikon DS-Ri1 (Nikon, Tokyo, Japan).

4.8. Cell Viability Assay

CD63-silenced SW954 (3.4 × 104/well) and SW962 (2 × 104/well) and controls cells
were seeded into 96-well treated microplates (Corning, Glendale, AZ, USA) under normal
growth conditions. Cell viability was measured over time with PrestoBlue Cell Viability
Reagent for Microplates (ThermoFisher Scientific, Carlsbad, CA, USA) (10:100 dilution),
according to the manufacturer’s protocol. Fluorescence was measured by a GloMax-Multi
Detection System (Promega, Madison, WI, USA).

4.9. Wound Healing Assay

SW954 (2 × 105/well) and SW962 (1 × 105/well) cells were seeded in 24-well plates
and allowed to reach complete confluence in growth media containing no antibiotics. To
make the wound, a plastic P200 pipette tip (Fisher) was used to scratch the cell monolayer
to create a cleared area. The wounded cell layer was washed once with 1X PBS to remove
loose cells and then transfected with CD63-siRNA and refed with fresh growth media
containing 1% FBS. The wounds were observed using phase contrast microscopy on an
inverted microscope Zeiss (AxioCam ERc 5c, Wetzlar, HE, Germany). Images were taken at
regular intervals over the course of 0 to 48 h and then analyzed by ImageJ (v1.50i, Bethesda,
MD, USA).

4.10. Statistical Analysis

Distribution of continuous data was analyzed by the Shapiro–Wilk normality test. For
comparison between TSPAN expression profiles in SW954 and SW962 cells, the Mann–
Whitney U test was used. The Kruskal–Wallis with Dunn’s post-test was used to compare
the expression levels of different TSPANs. To evaluate the statistical differences among
frequencies of each variable, the Chi-square test or Fisher’s exact test was used. The mean
and SD (mean ± SD) were used to represent the patient’s age, as previously described [87].
The Kaplan–Meier method evaluated patient outcome, and the differences between each
group were analyzed using the log-rank test (Mantel-Cox) and multivariate analysis with
Cox’s regression test by the Cox proportional hazard model. Survival rates were calculated
based on months. OS time was set up between the date of the patient’s surgery and either
death date or the last information date/follow-up. DFS was determined from the date of
surgery to the date of relapse or the last follow-up. Spearman’s rank correlation coefficient
was used to measure the strength of the linear relationship between two non-parametric
variables, as described elsewhere [87,88]. Statistical analysis was performed using the SPSS
(v21, IBM Corp., Armonk, NY, USA) and Graph Pad Prism 5.0 (v3, GraphPad Software Inc.,
San Diego, CA, USA) software [87]. All differences were considered statistically significant
when p < 0.05.

5. Conclusions

We saw that the imbalance in the TSPAN expression is associated with poor prognosis
in VSCC patients. CD63, the most frequent protein found in the samples, seems to have an
important and possibly stage-specific role in those tumors. Additionally, CD82 and CD63
might be potential targets for therapy in VSCC.
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