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Abstract

Divergence ofprotein sequences and gene expressionpatterns are two fundamentalmechanisms thatgenerate organismal diversity.

Here, we have used genome and transcriptome data from eight mammals and one bird to study the positive correlation of these two

processes throughout mammalian evolution. We demonstrate that the correlation is stable over time and most pronounced in neural

tissues, which indicates that it is the result of strong negative selection. The correlation is not driven by genes with specific functions

andmay insteadbestbeviewedasanevolutionarydefault state,whichcanneverthelessbeevadedbycertaingenetypes. Inparticular,

genes with developmental and neural functions are skewed toward changes in gene expression, consistent with selection against

pleiotropic effects associated with changes in protein sequences. Surprisingly, we find that the correlation between expression

divergence and protein divergence is not explained by between-gene variation in expression level, tissue specificity, protein connec-

tivity, or other investigated gene characteristics, suggesting that it arises independently of these gene traits. The selective constraints

on protein sequencesand gene expressionpatterns also fluctuate in acoordinate manner acrossphylogeneticbranches:We find that

gene-specific changes in the rate of protein evolution in a specific mammalian lineage tend to be accompanied by similar changes in

the rate of expression evolution. Taken together, our findings highlight many new aspects of the correlation between protein

divergence and expression divergence, and attest to its role as a fundamental property of mammalian genome evolution.
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Introduction

Phenotypic evolution depends on mutations that alter protein

sequences and mutations that affect gene regulation, but

their relative contributions remain to be settled. One line of

evidence suggests that the two types of mutations play differ-

ent roles during evolution, such that genes involved in phys-

iological traits are biased toward changes in protein

sequences, whereas genes involved in morphological traits

evolve primarily in terms of gene expression (Wray 2007;

Haygood et al. 2010; Liao et al. 2010). According to this

view, protein divergence and expression divergence can, at

least to a certain extent, be considered decoupled processes.

In contrast, other studies have reported a positive correlation

between protein divergence and expression divergence in

pairwise comparisons of mammals (Jordan et al. 2005;

Khaitovich et al. 2005; Liao and Zhang 2006a) and several

other species (Nuzhdin et al. 2004; Lemos et al. 2005;

Sartor et al. 2006; Hunt et al. 2013), as well as among

recent gene duplicates in humans (Makova and Li 2003).

These results instead suggest that protein divergence and

expression divergence are two highly related phenomena,

which affect individual genes in similar ways. How can these

seemingly opposing views of the roles of protein divergence

and expression divergence during evolution be reconciled?

To add further uncertainty, the mechanism underlying the

correlation between protein divergence and expression diver-

gence remains poorly understood. One possibility is that the

correlation is linked to a specific gene characteristic. As an

example, highly expressed genes tend to have slow-evolving

protein sequences (Subramanian and Kumar 2004;

Drummond and Wilke 2008) and less divergent gene expres-

sion patterns (Liao and Zhang 2006b; Gout et al. 2010),

meaning that the correlation between protein divergence

and expression divergence could be a result of between-gene

variation in expression levels. That said, Lemos et al. (2005)
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found that, in Drosophila, the strength of the correlation was

not affected when they took expression level into account.

They also excluded protein length and the number of protein–

protein interactions as responsible factors and speculated that

the correlation was instead due to more general selective

constraints that affect gene expression and protein sequences

in similar ways (Lemos et al. 2005). It is, however, possible that

the true effect of one of these factors was hidden by mea-

surement noise (Drummond et al. 2006; Kim and Yi 2007) or

that the evaluation of additional factors could yield different

results. For example, Khaitovich et al. (2005) found that, in

humans and chimpanzees, the correlation became weaker

after correction for expression breadth and the tissues in

which genes were expressed. This result is somewhat difficult

to interpret, because the explained variance in their original

model was very low, but a role for tissue specificity in estab-

lishing the correlation would be consistent with the fact that

genes experience different selective constraints depending on

their tissue expression profile (Duret and Mouchiroud 2000;

Khaitovich et al. 2005; Gu and Su 2007; Brawand et al. 2011)

and might also provide an explanation for why the correlation

is absent in yeast (Tirosh and Barkai 2008).

In this study, we use gene expression and sequence

data from eight mammals and one bird to explore the corre-

lation between protein divergence and expression divergence

in detail. Our results help clarify the respective roles of these

two processes during evolution and add new layers to the

current understanding of mammalian genome evolution.

Materials and Methods

Pairwise Expression Divergence

Normalized gene expression values from six organs (brain,

cerebellum, heart, kidney, liver, and testis) and nine species

(human, chimpanzee, gorilla, orangutan, rhesus macaque,

mouse, gray short-tailed opossum, platypus, and nondomes-

ticated chicken) were taken from Brawand et al. (2011). These

expression measurements were based on RNA sequencing of

adult individuals, typically one male and one female per

species. No data were available for orangutan testis. The

normalization procedure applied to these data involved rank-

ing genes in terms of their expression level, choosing the

1,000 genes with the most stable expression ranks and then

scaling the data, so that the median expression level of these

genes would be the same across species and tissues (Brawand

et al. 2011). We further took the natural logarithm of all

expression values to ensure that an n-fold change in expres-

sion would be treated equally, regardless of whether it af-

fected a lowly or a highly expressed gene. Expression

estimates below 10�6 were replaced by this value before

log transformation.

We analyzed two gene sets: protein-coding genes with 1:1

orthologs in the primate species (the primate data set) or in all

the studied species (the amniote data set), based on the

assignments by Brawand et al. (2011). In cases where the

transcribed regions of two genes overlapped in at least one

species, both genes were removed from all subsequent anal-

yses. For all species pairs, we calculated the expression diver-

gence for each gene either as the Euclidean distance between

the species means for the different tissues (i.e., by considering

a six-dimensional Euclidean space where each dimension cor-

responds to one tissue) or as 1� r, where r is the Pearson

correlation coefficient between the two tissue expression

profiles.

Sequence Divergence

For each gene, for which we had gene expression data, we

downloaded its longest coding sequence from the Ensembl

database, version 57 (Flicek et al. 2011). Information on the

base calling quality in the chimpanzee, orangutan, macaque,

opossum, platypus, and chicken genome assemblies was

available from the UCSC Genome Browser Database (Fujita

et al. 2011), and we used this to mask all bases with a quality

score below 40. We aligned the protein-coding sequences

using the codon option in PRANK (Löytynoja and Goldman

2008), which has been shown to outperform other alignment

algorithms (Fletcher and Yang 2010), and removed all codons

that corresponded to a gap in at least one species. Only genes

for which at least 150 high-quality bases aligned across all

species were used for further analysis. Following this filtering

step, the amniote data set contained 3,749 nonoverlapping

genes (see Pairwise Expression Divergence), whereas the pri-

mate data set contained 10,227. We estimated the number of

nonsynonymous substitutions per nonsynonymous site (dN)

and synonymous substitutions per synonymous site (dS) in

these alignments using the codeml program in the PAML

package (Yang 1997), both for pairwise comparisons and

for each branch in the species tree (free-ratios model).

Multispecies Expression Divergence

We estimated ancestral gene expression levels in each tissue

using AncML (Schluter et al. 1997; Holloway et al. 2007) and

the following branch lengths (in million years): ((((((((human:6,

chimpanzee:6):1, gorilla:7):7, orangutan:14):11, macaque:

25):64, mouse:89):91, opossum:180):20, platypus:200):110,

chicken:310) (Brawand et al. 2011). For each branch, we cal-

culated expression divergence for individual tissues and jointly

for all tissues (see Pairwise Expression Divergence), and

summed the values from all external and internal branches.

It should be noted that this method is based on a Brownian

motion model and therefore does not take negative selection

into account. We found that a more complex approach, in

which we fitted an Ornstein–Uhlenbeck model to the data,

using the geiger R package (Harmon et al. 2008) and then

transformed the tree branch lengths accordingly before run-

ning AncML, gave highly similar estimates (for total expression
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divergence across all species, the Spearman correlation coef-

ficient was 0.99 for the primate data set and 0.98 for the

amniote data set). To track how the addition of more species

affected our results, we began by summing up the divergence

along the branches connecting only two species (human and

chimpanzee) and then added one species at a time.

The estimation of ancestral gene expression levels is not

trivial, especially for traits that are heavily affected by negative

selection and for which the ancestral values might therefore

frequently fall outside the range observed in extant species.

An approach that relies on the estimation of ancestral states

can nevertheless be justified, provided that the gain in power

from combining data from multiple species outweighs the

shortcomings of the model. In our analysis, it is improbable

that biases in the estimation of expression divergence would

lead to a biologically irrelevant inflation of the correlation

between expression divergence and protein divergence,

which is measured independently. The fact that the observed

correlation between expression divergence and protein diver-

gence increases with each added species (fig. 1C) therefore

confirms the usefulness of our method.

Enrichment of Gene Ontology Terms

We identified overrepresented gene ontology (GO) terms

(Gene Ontology Consortium 2000), using the GOrilla tool

(Eden et al. 2009), which is designed to find enrichments at

the top of a ranked gene list. All analyses were based on

human annotations. We corrected the P values for 115,357

multiple tests using the Benjamini–Hochberg method

(Benjamini and Hochberg 1995), with a false discovery rate

(FDR) of 0.1% as our cutoff value.

Correlation Analysis

All analyses were performed in R 2.12.2 (R Development Core

Team 2011). Partial Spearman correlations with correction for

single or multiple factors were calculated with the ppcor pack-

age. To summarize gene expression across species, we used

the estimated expression levels for the most basal node of the

tree. These values are interchangeable with the average across

species (Spearman correlation coefficients above 0.99 for all

six tissues). The expression levels were averaged across tissues.

Tissue specificity was calculated using the tissue specificity

index, t (Yanai et al. 2005), which is 0 for genes that are

uniformly expressed and 1 for genes that are exclusively ex-

pressed in a single tissue. To ensure that n-fold expression

changes were treated equally, we did not log-transform the

expression levels. To calculate neural bias, we divided the total

expression in neural tissues (brain and cerebellum) by the total

expression in all six tissues.

We downloaded information on gene family size (number

of paralogs), length of the coding sequence, and GC content

of the transcribed sequence from Ensembl version 57 (Flicek

et al. 2011). Data on connectivity, developmental onset of

gene expression, phyletic age, and essentiality were taken

from the OGEE database, build 304 (Chen et al. 2012). All

downloaded data referred to humans, unless otherwise

specified in the text.

Branch-Wise Analysis

We calculated branch-specific protein divergence and expres-

sion divergence as described above for each branch in the

amniote species tree, while leaving out chimpanzee, gorilla,

and orangutan to avoid short branch lengths. For each

branch, we ranked genes according to the two types of diver-

gence and replaced the divergence estimates with these

ranks, to make direct comparisons between branches possi-

ble. We then calculated the Spearman correlation coefficient

for expression divergence ranks and protein divergence ranks

for each gene. The analysis was repeated for expression levels

in the six studied species and dN/dS values for the terminal

branches leading to those species.

Results

The Correlation between Protein Divergence and
Expression Divergence Is Evolutionarily Stable

We based our analysis of protein divergence and expression

divergence on data from nine species (Lander et al. 2001;

Mouse Genome Sequencing Consortium 2002; International

Chicken Genome Sequencing Consortium 2004; Gibbs et al.

2007; Mikkelsen et al. 2007; Warren et al. 2008; Brawand

et al. 2011; Locke et al. 2011; Scally et al. 2012). These com-

prised six placental mammals (human, chimpanzee, gorilla,

orangutan, rhesus macaque, and mouse), one marsupial

(gray short-tailed opossum), one monotreme (platypus), and

one bird (nondomesticated chicken). We further focused on

two gene sets: protein-coding genes with 1:1 orthologs in all

the studied species (the amniote data set) or in the five pri-

mate species (the primate data set). For each gene and each

species pair, we calculated protein divergence as the rate of

nonsynonymous substitutions (dN) and expression divergence

as the Euclidean distance between log-transformed expression

values (see Materials and Methods). Gene expression data

were available for brain (cerebral cortex or whole brain with-

out cerebellum), cerebellum, heart, kidney, liver, and testis

(Brawand et al. 2011), which allowed us to determine the

degree of expression divergence for each individual tissue,

as well as the total expression divergence across all six tissues.

The dissimilarity between protein and gene expression evo-

lution was clear in our data (fig. 1A). Protein divergence

increased steadily with the evolutionary time that separated

two species, whereas the increase in expression divergence

quickly tapered off. We previously observed this saturation

effect using a different divergence measure (Brawand et al.

2011), and the same trend was also demonstrated in fruit flies

(Bedford and Hartl 2009). We might expect that the saturation
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of expression divergence would make it difficult to distinguish

fast-evolving and slow-evolving genes, which in turn would

lead to a decay of the correlation with protein divergence. This

was, however, not the case, given that we obtained compa-

rable correlation coefficients when we compared primates

with each other and when we compared mammals with

birds (fig. 1B). The pattern was also present when we used

an alternative method, based on the Pearson correlation

coefficient, to estimate expression divergence (supplementary

table S1, Supplementary Material online), in spite of a previous

microarray-based study, where no significant correlation was

found for dN and this measure of expression divergence (Liao

and Zhang 2006a). The Pearson correlation coefficient

method is complementary to the Euclidean distance, because

it focuses on changes in tissue expression profiles rather than

expression values but has been shown to be unreliable under
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FIG. 1.—Evolutionary and tissue-specific dynamics of the correlation between protein divergence and expression divergence. (A) Genome-wide patterns

of protein and expression divergence in pairwise species comparisons. Estimates of dN and dS were based on a concatenation of all gene alignments,

whereas expression divergence was calculated as the median expression divergence for individual genes across six tissues. All values refer to the amniote data

set. Because we did not have access to data from orangutan testis, comparisons with this species were excluded. The corresponding analysis using all species

and five tissues is presented in supplementary table S1, Supplementary Material online. (B) Spearman correlation coefficients for dN and total expression

divergence across six tissues in pairwise species comparisons. Each datapoint represents 3,749 genes from the amniote data set. (C) Spearman correlation

coefficients for total and tissue-specific ED against dN when estimates were combined for multiple species. Results are shown for both the amniote

(N¼ 3,749) and primate (N¼ 10,227) data sets, with the leftmost bar representing the correlation coefficient for human and chimpanzee, the next showing

human, chimpanzee and gorilla, and so on. No data were available for orangutan testis.
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some circumstances (Pereira et al. 2009). A further advantage

of the Euclidean distance method is that it is more flexible, in

that it is possible to either combine data from all tissues into a

single divergence value or to consider each tissue separately.

We therefore used this method for our further analyses.

In summary, our results suggest that expression divergence

saturates at different levels for different genes and that the

constraints that determine the maximum level of expression

divergence show substantial overlap with the constraints that

affect protein evolution.

Strong Negative Selection Acts to Preserve the
Correlation in Neural Tissues

The evolutionary conservation of the correlation between

expression divergence and protein divergence suggests that

it is the result of long-term selection. Two mechanisms could

be responsible: On the one hand, strong negative selection

might place similar constraints on both protein sequences and

gene expression patterns. On the other hand, strong selection

might primarily affect either protein divergence or expression

divergence, whereas less constrained genes would be free to

change in both regards, thereby driving the correlation. How

can these alternatives be distinguished from one another?

Conveniently, it is known that the selection on gene expres-

sion varies across tissues (Khaitovich et al. 2005; Brawand

et al. 2011). We therefore assessed the impact of selection

strength by calculating the correlation between protein diver-

gence and tissue-specific expression divergence. Given that

the correlation was maintained over evolutionary time, we

decided to combine data from multiple species to minimize

the contribution of noise to our divergence estimates

(see Materials and Methods). The value of this approach is

evident from figure 1C, which shows that the observed cor-

relation strength increased with each added species. When all

species were included, Spearman’s rho for protein divergence

and total expression divergence had reached 0.27 (P< 10�15)

for the amniote data set and 0.38 (P< 10�15) for the primate

data set. In the latter case, the inclusion of the final species

brought about a considerable increase in correlation strength,

indicating that the correlation coefficient might have to be

revised further upward as transcriptome data become avail-

able for additional species.

Strikingly, we identified strong correlations even for indi-

vidual tissues (fig. 1C), in particular for brain and cerebellum.

For the amniote data set, these correlations even exceeded the

correlation we observed when all tissues were analyzed to-

gether. As neural tissues are associated with particularly

strong negative selection on gene expression (Khaitovich

et al. 2005; Brawand et al. 2011), these results show that

intense negative selection contributes to, rather than detracts

from, the overall correlation between protein divergence and

expression divergence.

Enrichment for Functional Categories among ED-Biased
and dN-Biased Genes

Previous studies reported Pearson correlation coefficients of

0.03 for human and chimpanzee (Khaitovich et al. 2005) and

0.19 for human and mouse (Liao and Zhang 2006a). The

correlations revealed by our analysis were therefore substan-

tially stronger (fig. 1C), presumably due the superior sensitivity

of RNA sequencing compared with microarrays (Wang et al.

2009). We also found a qualitative difference compared with

these earlier results: In our data, the correlation was stronger

for closely related species, that is, the primate data set. When

we further split the primate data set into genes that also oc-

curred in the amniote data set and those that did not, we

found a correlation coefficient of 0.26 for the shared genes

(P< 10�15), consistent with our results for the amniote data

set, whereas the coefficient reached 0.43 (P< 10�15) for

genes specific to the primate data set. Compared with the

full primate data set, genes that overlapped with the amniote

data set were more frequently associated with biological pro-

cesses linked to development, with the highest ranking GO

term being “anatomical structure development” (P¼0.006

following Benjamini–Hochberg correction for multiple tests).

This caused us to speculate that genes belonging to certain

functional categories might make differential contributions to

the overall correlation.

To further investigate the potential link between correlation

strength and gene function, we ranked all genes in the pri-

mate data set based on their degree of divergence and or-

dered the resulting gene list in three ways: according to which

genes had the highest expression divergence rank relative to

their protein divergence rank (ED-biased genes), a higher rel-

ative protein divergence rank (dN-biased genes), or the smal-

lest difference between the two ranks (nonbiased genes)

(fig. 2A). At an FDR of 0.1%, there was no enrichment for

GO terms referring to biological process or molecular function

among the most nonbiased genes, and only a single signifi-

cant term from the cellular component category: “extracellu-

lar region.” The ED-biased genes, on the other hand, showed

significant enrichments of 452 GO terms after correction for

multiple testing, whereas dN-biased genes were enriched for

78 terms (supplementary table S2, Supplementary Material

online). Together, these results suggest that the correlation

between protein divergence and expression divergence is a

global phenomenon that spans a broad range of gene cate-

gories, whereas deviations from the overall patterns tend to be

associated with specific biological functions.

We observed clear functional differences between genes

that primarily changed their expression pattern or their pro-

tein-coding sequences. Among the dN-biased genes, the

enriched GO terms were primarily associated with the electron

transport chain and tRNA processing, whereas ED-biased

genes showed enrichment for processes related to cell com-

munication and the regulation of development (fig. 2B).
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Perhaps surprisingly, these differences did not seem to chiefly

stem from differences in gene expression levels between

genes of different functions: For the full data set, there was

a negative correlation between the degree of ED bias and the

average expression level across tissues (rho¼�0.33,

P<10�15, Spearman correlation), but when we repeated

the analysis using only genes with above-median expression,

the correlation between ED bias and expression level disap-

peared (rho¼�0.01, P¼0.47), whereas we still observed en-

richments of the same broad functional categories among the

ED-biased and dN-biased genes (supplementary table S2,

Supplementary Material online).
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For the full data set, many of the GO terms associated with

the most ED-biased genes were connected to the

nervous system, for example, sensory perception (corrected

P value< 10�10), axon guidance (P<10�9), learning or

memory (P<10�8), and several others. Because we based

our analysis on the total ED across six tissues, of which two

were neural, we speculated that this might be due to sampling

effects. However, the preponderance of neural GO terms per-

sisted when we tested brain and cerebellum individually, and

many terms were also found for heart, kidney, liver, and testis

(supplementary table S2, Supplementary Material online). This

was not surprising considering that ED was correlated across

tissues (e.g., for brain and heart: rho¼0.55, P<10�15),

possibly due to similar constraints on gene expression across

tissues or a spillover effect, where negative or positive

selection on gene expression in a specific tissue also affects

divergence in other tissues due to shared regulatory elements.

Although the overall correlation between protein divergence

and expression divergence is strongest in brain and cerebellum

(fig. 1C), it therefore seems that the evolution of genes with

specific functions in the primate nervous system is skewed

toward changes that affect gene expression.

The Correlation Persists After Correction for 11 Factors

Is the correlation between expression divergence and protein

divergence linked to specific gene characteristics or does it

reflect more general selective constraints? To investigate

this, we performed a partial Spearman correlation analysis,

where we corrected the correlation between protein diver-

gence and expression divergence for each of the following

factors in turn: average expression level across tissues, tissue

specificity, expression bias toward neural tissues, local muta-

tion rate (dS), protein connectivity, developmental stage at

which the gene is first expressed, phyletic age, gene family

size, GC content of the genomic locus, and essentiality (see

Materials and Methods). As our test case, we used estimates

of protein divergence and total expression divergence from

the multispecies analysis of the primate data set (supplemen-

tary table S3, Supplementary Material online). For lowly ex-

pressed genes, the difficulty of distinguishing true expression

divergence from experimental noise could potentially intro-

duce an expression-dependent bias in our calculations, and

we therefore performed separate analyses for highly and

lowly expressed genes.

Notably, the correlation between protein divergence and

expression divergence was present in both gene sets (fig. 3). If

one or more of the investigated factors was crucial for estab-

lishing the correlation, we would therefore expect to see a

reduction in correlation strength for both highly and lowly

genes after correction for the relevant factor. We found

that, for lowly expressed genes, the correction for expression

level abolished the correlation (fig. 3), possibly due to the bias

discussed earlier. A similar, but less pronounced, effect was

also seen for some other factors, such as developmental stage,

that correlated with expression level and for which the same

bias would therefore be present (fig. 4). Importantly, we did

not detect the same pattern among the highly expressed

genes, where none of the 11 tested factors appeared to

have made a substantial contribution to the observed correla-

tion. To some extent, the correlation might have been rein-

forced by variation in the local mutation rate, consistent with

the notion that expression divergence is primarily due to

cis-regulatory mutations (Wilson et al. 2008). However, be-

cause synonymous mutations are not completely neutral

(Chamary et al. 2006), it is also conceivable that dS is subject

to the same varying selection pressures that affect protein

divergence and expression divergence, that is, the relationship

is not causal. In conclusion, we did not find convincing evi-

dence that any of the 11 investigated factors were sufficient

to drive the correlation between expression divergence and

protein divergence.

Although we were unable to identify a single responsible

factor, we speculated that a combination of the investigated

factors might drive the correlation in highly expressed genes.

We therefore repeated the analysis simultaneously correcting

for all 11 factors, but the correlation remained (rho¼ 0.16,

P<10�15, partial Spearman correlation). As further validation,

we constructed a linear model with expression divergence as

the dependent variable, and the 11 tested factors and dN as

explanatory variables; dN remained highly significant in this

analysis (P< 10�15). When we instead excluded dN from the

model and calculated the correlation between the residuals

and dN, we obtained a Pearson correlation coefficient of 0.14

(P< 10�14). Even when taken together, the 11 factors thus

cannot provide a full explanation for the observed correlation.

Naturally, we cannot formally exclude that the impact of

one or more of the investigated factors has been underesti-

mated due to noise. Nevertheless, we note that each of the 11

factors showed a significant correlation with at least one

other, independently measured, factor (fig. 4), indicating

that the estimates are biologically informative. It is also

worth noting that the correlation persists in spite of several

other differences between the two gene sets. For example,

expression level and gene length showed opposite correlation

patterns in highly and lowly expressed genes, as was previ-

ously shown (Carmel and Koonin 2009). We also observed the

same for expression level versus protein connectivity, dS and

GC content (fig. 4). Given the many interconnections shown

in figure 4, we also consider it unlikely that the analysis of

further factors would drastically change our results, because

these factors would presumably be correlated with at least

one factor in the present data set and would therefore to

some extent already have been tested indirectly. Our results

therefore suggest that the correlation between expression di-

vergence and protein divergence is not directly linked to

between-gene variation in one or more specific gene
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characteristics but instead is the result of more general selec-

tive constraints on gene function.

With this in mind, it is nevertheless surprising that we did

not observe a reduced correlation after correction for gene

essentiality, given that this parameter should serve as a proxy

for the selective constraints that affect a given gene. However,

gene essentiality is difficult to measure, especially for humans,

and this might have precluded us from appreciating its true

impact. We therefore repeated the analysis for a subset of 972

genes, where the human annotation as essential or nonessen-

tial was further supported by data from mouse (Chen et al.

2012). Because we only had data for a reduced number of

genes, we did not split the set according to expression level.

The Spearman correlation coefficient for expression diver-

gence and protein divergence was 0.28 (P<10�15) for

these genes, but after correction for essentiality, it decreased

to 0.24 (P<10�14). Although the decrease was modest, it

was nevertheless significant: We repeated the analysis for

100,000 permutations of the essentiality data and in no

case did we observe a similar or more extreme decrease.

This analysis therefore provides some additional support to

the hypothesis that the correlation between expression diver-

gence and protein divergence is driven by general selective

constraints, but it is too early to determine the full extent to

which these constraints can be captured by measuring gene

essentiality.

Concerted Changes of Gene Expression and Protein
Sequences during the Evolution of Individual Genes

In addition to our analyses of the genome-wide correlation

between expression divergence and protein divergence, we

asked a complementary question: For any given gene, are

periods of rapid protein evolution also associated with rapid

expression evolution? To address this, we correlated ranked

branch-specific estimates of protein divergence and expres-

sion divergence for each gene in the amniote data set (see

Materials and Methods). If there is no covariation between the

rates of protein and expression evolution, the average corre-

lation coefficient across genes should be 0. In our data, the

average correlation coefficient was significantly positive in all

cases, except for testis, showing that protein divergence and

expression divergence are indeed positively correlated during

the evolution of individual genes (fig. 5A). Consistent with

figure 1C, the correlation is most pronounced for brain and

cerebellum. As an aside, the same approach can also be used

to investigate other genomic relationships, such as the impact
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FIG. 3.—Contributions of specific gene characteristics to the correlation between expression divergence and protein divergence. Spearman correlation

coefficients for expression divergence (6 tissues) and dN following correction for individual factors, based on the primate data set. Genes with missing data

for at least one factor were omitted, leaving a total of 6,228 genes. The data set was further split into highly expressed (above-median expression) and lowly

expressed (below-median expression) genes. The black bar represents the uncorrected correlation and the other bars represent partial Spearman correlations,

controlling for, from left to right: Total expression across six tissues, tissue specificity (t), neural bias, dS, protein connectivity, developmental stage at which

expression is first observed in humans, phyletic age, gene family size, gene length, GC content of the transcribed region, and essentiality. All correlation

coefficients, except after correction for expression level in lowly expressed genes, were significantly different from 0 (P< 0.05) following Benjamini–

Hochberg correction for multiple testing.
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of expression level on the rate of protein evolution

(Subramanian and Kumar 2004; Drummond and Wilke

2008; Gout et al. 2010). We compared expression levels in

each species with dN/dS along the corresponding terminal

branches and found that, on average, they were negatively

correlated (fig. 5B), which suggests that changes in expression

level tend to occur in close association with adjustments of the

constraint on the protein-coding sequence.

The average correlation between branch-specific protein

divergence and expression divergence was small, but this is

not surprising, because many genes will presumably experi-

ence similar selective pressures in all lineages. For these genes,

we would not expect to observe correlated patterns of diver-

gence and they would therefore not contribute to the overall

signal. In addition, the estimates of expression divergence are

likely to be noisy, due to the difficulties of estimating ancestral

expression levels (see Materials and Methods). That we still

observe a clear effect therefore demonstrates that there

exists a robust positive correlation between protein divergence

and expression divergence, not only when we compare dif-

ferent genes with each other but also during the evolution of

individual genes.

Discussion

We have analyzed the evolutionary relationship between the

two principal sources of phenotypic variation between spe-

cies: expression divergence and protein divergence. Our anal-

yses demonstrate that the positive correlation between these

two processes is a general theme of mammalian genome evo-

lution, both in the longer and shorter term: We observe a

genome-wide correlation that is stable over evolutionary

time, as well as a correlation across phylogenetic branches

when we compare orthologs of individual genes. In both

cases, the effect is strongest in neural tissues, which implies

that the correlation is maintained by strong negative selection.

These selective constraints do not appear to be directly linked

to the 11 gene characteristics evaluated in this study, with the
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possible exception of gene essentiality. In particular, we find

that the correlation is not explained by tissue specificity or

neural bias, which are the two factors in our study that are

directly linked to multicellularity. Thus, our results do not sup-

port the hypothesis that the correlation arises in multicellular

organisms, as a consequence of tissue-dependent selection

pressures (Khaitovich et al. 2005; Gu and Su 2007; Tirosh

and Barkai 2008). The absence of the correlation between

expression divergence and protein divergence in yeast there-

fore remains unexplained. It is worth noting that yeast, unlike

mammals (fig. 4), also lacks a correlation between expression

divergence and dS (Tirosh and Barkai 2008).

Although we have attempted to perform an exhaustive

analysis, it is of course possible that we have overlooked

one or more factors that might be responsible for the corre-

lation between expression divergence and protein divergence.

Considering the many associations that exist between differ-

ent genomic features (fig. 4), we would nevertheless expect to

see the indirect effects of such a factor. For example, we have

shown that features of developmental gene expression are

reflected in data from adult individuals, as shown by the cor-

relations between different aspects of adult gene expression

and the developmental stage at which gene expression is first

observed (fig. 4). Another possibility is that our results are

influenced by the fact that we have measured expression di-

vergence at the mRNA, rather than the protein, level. Given

the imperfect correspondence between mRNA and protein

expression levels (Vogel and Marcotte 2012), the correlation

between protein expression divergence and sequence diver-

gence might therefore be different from that which we report

here. Conceivably, this discrepancy might also prevent us from

detecting the causal factor underlying the correlation. That

said, we are not aware of a mechanism through which

post-transcriptional events could obscure the connection to

specific gene characteristics, while still allowing us to observe

a clear correlation between mRNA expression divergence and

sequence divergence. Our results therefore provide substan-

tive evidence in favor of the hypothesis proposed by Lemos

et al. (2005), namely that expression divergence and protein

divergence are shaped by similar selective constraints but that
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FIG. 5.—Correlated rates of expression divergence and protein divergence during the evolution of individual genes. (A) Mean value with 95%

confidence interval for 3,749 gene-specific Spearman correlation coefficients obtained by correlating ranked branch-specific gene expression

divergence and dN values across all branches of the six-species tree (included species: human, macaque, mouse, opossum, platypus, and chicken). The
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and dN/dS values for the terminal branches leading to the same species.
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these constraints are not linked to any specific gene

characteristic.

Our analysis also shows how the positive correlation be-

tween expression divergence and protein divergence can be

reconciled with the unequal contributions seen for morpho-

logical and physiological genes (Wray 2007; Haygood et al.

2010; Liao et al. 2010). As seen in figure 2, certain gene cat-

egories are more likely to “escape” from the correlation and

show disparate values of protein divergence and expression

divergence. In particular, we find that genes with dispropor-

tionally high expression divergence tend to have developmen-

tal and neural functions. This is consistent with what is known

about positive selection: Haygood et al. (2010) previously

found that human genes with roles in neurogenesis are

more likely to show signs of positive selection in their cis-reg-

ulatory sequences, in agreement with the hypothesis that

adaptive changes in developmental programs are primarily

due to changes in gene regulation because these have

fewer pleiotropic effects (Wray 2007). However, given that

the patterns we observe appear to be primarily due to nega-

tive selection and are maintained over long time frames, our

results suggest that the bias toward expression divergence

among genes involved in development and neural functions

is not restricted to genes undergoing adaptive evolution.

Although “escaper” genes tend to belong to particular

functional categories, we do not see any enrichment for

genes where expression divergence and protein divergence

are in proportion to each other. This suggests that the corre-

lation between expression divergence and protein divergence

is a global phenomenon, rather than being driven by a few

gene types. Together with our observations on the stability

and pervasiveness of the correlation, this underlines that the

correlated patterns of expression divergence and protein di-

vergence represent a fundamental property of mammalian

genome evolution. We therefore suggest that the correlation

might best be viewed as an evolutionary “default” state but

that specific functional requirements can cause the balance to

shift.

Supplementary Material

Supplementary tables S1–S3 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).
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