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Abstract
Background: Rosids are a major clade in the angiosperms containing 13 orders and about one-third of
angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders
and malvids with three orders). However, phylogenetic relationships within the two groups and among
fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to
be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of
the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined
phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic
relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including
matR, two plastid genes (rbcL, atpB), and one nuclear gene (18S rDNA).

Results: Comparison of mitochondrial matR and two plastid genes (rbcL and atpB) showed that the
synonymous substitution rate in matR was approximately four times slower than those of rbcL and atpB;
however, the nonsynonymous substitution rate in matR was relatively high, close to its synonymous
substitution rate, indicating that the matR has experienced a relaxed evolutionary history. Analyses of our
matR sequences supported the monophyly of malvids and most orders of the rosids. However, fabids did
not form a clade; instead, the COM clade of fabids (Celastrales, Oxalidales, Malpighiales, and Huaceae) was
sister to malvids. Analyses of the four-gene data set suggested that Geraniales and Myrtales were
successively sister to other rosids, and that Crossosomatales were sister to malvids.

Conclusion: Compared to plastid genes such as rbcL and atpB, slowly evolving matR produced less
homoplasious but not less informative substitutions. Thus, matR appears useful in higher-level angiosperm
phylogenetics. Analysis of matR alone identified a novel deep relationship within rosids, the grouping of the
COM clade of fabids and malvids, which was not resolved by any previous molecular analyses but recently
suggested by floral structural features. Our four-gene analysis supported the placements of Geraniales,
Myrtales at basal nodes of the rosid clade and placed Crossosomatales as sister to malvids. We also suggest
that the core part of rosids should include fabids, malvids and Crossosomatales.
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Background
Rosids [1] comprise one-third of all angiosperm species.
Their members are morphologically diverse without
apparent universal synapomorphies. Nevertheless, rosids
in general have a number of characters that are rare else-
where in the angiosperms, including nuclear endosperm
development, simple perforations in vessel end-walls,
diplostemony, mucilaginous epidermis, and epicuticular
wax rosettes [2-4]. Recent phylogenetic studies based on
both morphology and DNA sequences have demon-
strated that subclasses Dilleniidae, Hamamelidae, and
Rosidae of Cronquist [5] and Takhtajan [6] are not mono-
phyletic [[1-4,7-15], and references therein]. Some orders,
such as Malvales, Salicales, Violales, and Capparales of
Dilleniidae and Fagales and Urticales of Hamamelidae
have been shown to be rosids, whereas some families of
Rosidae, such as Cornaceae, Apiaceae, and Icacinaceae,
belong to the asterids [1-4,9-18]. Delimiting the rosid
clade and its subclades is therefore central to understand-
ing the phylogeny of eudicots.

Several large-scale phylogenetic analyses of flowering
plants at higher taxonomic levels have recently been pub-
lished based on rbcL, atpB, 18S rDNA and matK sequences,
either separately or combined [1-4,9-15]. The results indi-
cated that within the rosid clade there are 12–14 subc-
lades that are well supported and thus recognized as
orders. Most rosid orders have been assigned to two large
assemblages, fabids (eurosids I) and malvids (eurosids II).
Within fabids, there are two subclades, the nitrogen-fixing
clade [19] including Cucurbitales, Fagales, Fabales and
Rosales, and the COM clade [20] consisting of Celastrales,
Oxalidales, and Malpighiales. Nevertheless, inter-ordinal
relationships within fabids and malvids, and among
fabids, malvids and other rosid orders unassigned to
fabids or malvids are either poorly resolved or have low
support as measured by jackknife or bootstrap percent-
ages. For example, the placement of Crossosomatales,
Myrtales and Geraniales with respect to other rosids still
remains uncertain [4]. Recent molecular analyses sup-
ported the family Huaceae as sister to Oxalidales in the
COM clade [4,21,22], but it is desirable to further corrob-
orate these relationships using a broader taxon sampling.
A recent morphological study on supraordinal relation-
ships within rosids [[20], and references therein] pro-
duced largely congruent results with DNA-based studies.
However, a noteworthy relationship recognized by the
morphological data [20] was the grouping of the COM
clade of fabids and malvids, which was inconsistent with
all previous molecular studies. Therefore, both compre-
hensive taxonomic sampling and more molecular charac-
ters from different genomes are needed to further clarify
phylogenetic relationships within rosid clade.

In this study, we present new mitochondrial DNA
(mtDNA) sequences, approximately 1,800 base pairs of
the mitochondrial gene matR from 174 species to re-
examine the phylogenetic relationships of rosids within
the framework of eudicots [1]. One advantage of mtDNA
is the generally observed, reduced level of homoplasy
among more distantly related taxa as a consequence of a
slow rate of evolution [23-26]; another advantage is that
mtDNA sequences belong to different linkage groups
from plastid and nuclear genes, and, thus, provide the
possibility of combining phylogenetic information from
three genomes [27]. Furthermore, this gene has been
inherited vertically since it was inserted into nad1 group II
intron in the common ancestor of non-liverwort land
plants [28,29], and no paralogue has been found so far.
To date, few large-scale phylogenetic analyses of eudicots
or rosids have included sequences from any mitochon-
drial gene, although their utility has been established in
basal angiosperms and some orders and families of
angiosperms [27,30-33]. In addition to performing phyl-
ogenetic analysis based on matR alone, we also analyzed a
smaller combined four-gene (matR, rbcL, atpB and 18S
rDNA) 91-taxon matrix in an attempt to increase the res-
olution and internal support. To explore patterns of
molecular evolution in matR and its contribution to
resolving deep phylogenetic relationships, we also con-
ducted a comparative analysis of matR and two plastid
molecular makers (rbcL and atpB). The potential effect of
RNA-editing in matR on phylogeny reconstruction is also
evaluated. Our primary objectives are to resolve the deep
relationships among orders of rosids and to evaluate the
utility of matR in large-scale phylogenetic analyses by
comparing the results of matR with those based on other
widely used molecular markers.

Results
Sequence variability and evolutionary analyses
For the 174-taxon matrix of matR, nucleotide composi-
tions were not significantly different across the taxa as
indicated by a χ2 test (χ2 = 59.804, df = 519, p = 1.0). A rel-
atively high proportion of transversions was found, with
an overall transition/transversion ratio of 1.241 under the
GTR substitution model (Additional file 2). The overall
uncorrected P distance was 0.04, and the largest distance
occurred between Lobelia and Hypericum (11%) and the
smallest between Leea and Yua (0%). Similar rates of
change (steps/variable characters) were found among
three-codon positions, with 2.56, 2.57 and 2.92 for the
first, second, and third codon positions, respectively
(Additional file 3). Saturation was not detected for either
transitions or transversions at any codon position (data
not shown). The selection-pressure plot revealed that
both synonymous and nonsynonymous substitution cor-
relate well with uncorrected P distances (Figure 1a),
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implying that there is no obvious lineage-specific selec-
tion pressure within the taxa sampled.

The extent of functional constraints among different
domains of the matR gene was uneven (Figure 1b); the X
domain was the most conserved (dN/dS = 0.43) as found
in a previous study [29]. Synonymous substitutions per
synonymous site (dS) in the matR partition was approxi-

mately four times less than those in the plastid partition
(atpB and rbcL) (Figure 1c), showing an extremely low
rate of evolution in matR, as seen in other mitochondrial
regions [23-26]. Nonsynonymous substitutions per non-
synonymous site (dN) in matR were near to synonymous
substitutions per synonymous site (dS) (dN/dS = 0.81)
(Figure 1c), indicating a relaxed evolutionary history of
matR.

Based on the prediction of the C to U RNA-editing sites in
174 matR sequences, none of the sequences were found to
belong to processed paralog, which is capable of adversely
effecting the phylogeny estimation [34]. A new data
matrix, which excluded RNA-editing sites, was con-
structed on the basis of this prediction. The two data sets
yielded nearly identical ML tree topologies except for
some weakly supported interior branches (Additional file
8). In addition, we found that the ML tree from the pre-
dicted data received less bootstrap support on most
branches than that based on original data, indicating that
the exclusion of RNA-editing sites reduced phylogenetic
signal. Therefore, we directly used genomic sequences for
phylogenetic analysis as suggested by Bowe and dePam-
philis [34].

Phylogenetic analysis of matR
Alignment of matR sequences resulted in a matrix of 1776
sites, of which 732 (41%) were potentially parsimony-
informative. A parsimony analysis generated 34 most-par-
simonious trees of 3168 steps with a consistency index
(CI) of 0.53 and a retention index (RI) of 0.70. A maxi-
mum-likelihood (ML) analysis produced an optimal tree
with an lnL score of -23390.64. The ML tree with boot-
strap (BS) percentages above each branch and the maxi-
mum parsimony (MP) bootstrap (BS) percentages below
each branch is presented in Figure 2 and 3. The ML and
MP analyses recovered trees with virtually identical topol-
ogies; most of differences between ML and MP trees were
distributed on extremely short branches. The ML-BS per-
centages on each of the branches were almost identical
with the corresponding MP-BS percentages.

Relationships among the basal eudicots including Pro-
teales, Tetracentraceae, Didymelaceae, Buxaceae,
Sabiaceae were not resolved (Figure 2). The core eudicots
were strongly supported (96% ML-BS and 97% MP-BS).
Gunnera (Gunneraceae; Gunnerales) was sister to all other
core eudicots (59% ML-BS and 56% MP-BS) as found in a
previous study [14]. Relationships among the major core
eudicots including rosids, asterids, Caryophyllales, Santa-
lales, Dilleniaceae and Saxifragales were also poorly
resolved (Figure 2). The rosid clade was resolved with less
than 50% BS.

Evolutionary characteristics of matRFigure 1
Evolutionary characteristics of matR. (a) Increase of dN 
(triangles) and dS (squares) values versus the increase of the 
uncorrected pairwise genetic distance. R2 values show the fit 
of the relationship to a linear regression model; (b) a com-
parison of the dN (hatched) and dS (solid) values among dif-
ferent domains of the matR gene. The range of domains is 
determined according to Zimmerly et al [29]; (c) a compari-
son of the dN (hatched) and dS (solid) values for matR and 
two plastid genes (rbcL and atpB).
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ML tree (eudicots excluding rosid clade) from the 174-taxon matrix of matRFigure 2
ML tree (eudicots excluding rosid clade) from the 174-taxon matrix of matR. The numbers above branches are ML 
BS percentages >50; those below are MP BS percentages >50. For nodes where ML and MP analyses differ in topology, only the 
ML BS percentages are shown; asterisks denote contradictory resolutions between ML tree and MP strict consensus of all 
shortest trees.

rosids
EucommiaceaeEucommia
EbenaceaeDiospyros
PrimulaceaePrimula
StyracaceaeStyrax
TheaceaeCamellia
SapotaceaeEberhardtia
PentaphylacaceaePentaphylax
SymplocaceaeSymplocos
MyrsinaceaeArdisia
ClethraceaeClethra
BalsaminaceaeImpatiens
SladeniaceaeSladenia

Vaccinium
Pieris
Empetrum

Ericaceae

Ericales

AcanthaceaeBlepharis
OleaceaeJacaranda
OleaceaeJasminum
ApocynaceaeVinca

Withania
Solanum
Nicotiana

Solanaceae

CampanulaceaeLobelia
IcacinaceaeMappianthus
PittosporaceaePittosporum
HydrangeaceaeDeutzia
CornaceaeAlangium

Portulacaria
Alluaudia

Portulacaceae

BasellaceaeBasella
Bassia
Beta

Amaranthaceae

TamaricaceaeTamarix
NepenthaceaeNepenthes

Caryophyllales

Thesium
Osyris Santalaceae

Tetracera
Dillenia Dilleniaceae

Yua
Leea
Cissus

Vitaceae

PaeoniaceaePaeonia
HamamelidaceaeHamamelis
CrassulaceaeSedum

Saxifragales

GunneraceaeGunnera
SabiaceaeSabia

Buxus
Pachysandra Buxaceae

DidymelaceaeDidymeles
TetracentraceaeTetracentron
PlatanaceaePlatanus
NelumbonaceaeNelumbo Proteales

Sargentodoxa
Akebia Lardizabalaceae

Ranunculus
Xanthorhiza Ranunculaceae

BerberidaceaeMahonia
FumariaceaeDicentra
EupteleaceaeEuptelea

Ranunculales

99
90

89
100

67

100

61
100

57

69

100

100
100

100

94

100

100

100

100
99

86

93
54

57

72

66

85
91

53

96

73
61

59

Lamiales

Gentianales

Solanales

Asterales

Apiales

Cornales

Santalales

Gunnerales

Garryales
asterids

outgroup

co
re

 e
ud

ic
ot

s

74

61
93

79

61

90*
79

50

97 99

100

99

100

*

100
*

*

*

*

100

*

*

*

*

99
86

55

77
100

99
100

99

10086

*

*

63

*

*

*

*

*

*

*

*
*

*

*

60

56

60



BMC Evolutionary Biology 2007, 7:217 http://www.biomedcentral.com/1471-2148/7/217

Page 5 of 15
(page number not for citation purposes)

ML tree (rosid clade) from the 174-taxon matrix of matRFigure 3
ML tree (rosid clade) from the 174-taxon matrix of matR. The numbers above branches are ML BS percentages >50; 
those below are MP BS percentages >50. For nodes where ML and MP analyses differ in topology, only the ML BS percentages 
are shown; asterisks denote contradictory resolutions between ML tree and MP strict consensus of all shortest trees.
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Within the rosid clade (Figure 3), all orders with multiple
representatives formed strongly supported groups except
for Rosales and Geraniales. Rosaceae (97% ML-BS and
95% MP-BS) were separated from the remaining members
of Rosales, but they were still retained in the nitrogen-fix-
ing subclade of fabids. Fabids did not form a clade in the
matR tree, and their monophyly [3,12,15] was also
rejected by AU test (Additional file 4). The COM subclade
of fabids was sister to malvids with 54% ML-BS support.
Tribulus, the single representative of Zygophyllaceae, fol-
lowed by Crossosomatales, was sister to the above large
clade of the COM subclade of fabids plus malvids. Within
the COM clade, Huaceae were sister to Oxalidales (76%
ML-BS and 82% MP-BS), and alternative topologies with-
out this relationship [3,12] were rejected statistically by
the Templeton and AU tests (Additional file 4). Malpighi-
ales and Oxalidales/Huaceae were sisters (78% ML-BS and
69% MP-BS), and alternative topologies without this rela-
tionship were either rejected or close to the rejection
threshold statistically by AU test (Additional file 4).

Monophyly of malvids was recovered (68% ML-BS and
65% MP-BS), including Malvales, Sapindales, Brassicales,
Tapiscia (Tapisciaceae)/Dipentodon (Dipentodontaceae)
(Figure 3). Brassicales were sister to Malvales with less
than 50% BS, and this pair was in turn sister to Sapindales
with less than 50% BS. Dipentodon plus Tapiscia (68% ML-
BS and 72% MP-BS) were sister to all other malvids.

Combined analysis
The four-gene matrix consisted of 6197 characters, of
which 1637 (26%) were potentially parsimony-informa-
tive. A parsimony analysis produced 25 most parsimoni-
ous trees of 10591 steps with a CI of 0.36 and a RI of 0.49.
ML analysis generated an optimal tree with an lnL score of
-65288.16. The maximum likelihood (ML) tree with BS
percentages above each branch and the maximum parsi-
mony (MP) BS percentages below each branch is pre-
sented in Figure 4. Data partitions and tree statistics for all
analyses are presented in Table 1. Comparison of sup-
ported supraordinal nodes within rosids is presented in
Table 2. The topology of the ML-based analysis was virtu-
ally identical with that of the MP-based analysis. The ML-
BS percentages were almost identical with those of the
MP-analysis as in the analysis of the matR alone.

The topology of the four-gene analysis was largely congru-
ent with that resulted from the analysis of matR alone
(Figure 2 and 3), but with higher bootstrap percentages,
especially on deeper nodes. The core eudicots were
strongly supported (100% ML and MP BS). The rosid
clade (excluding Vitaceae) was resolved with 66% BS sup-
port in the ML tree. Within rosids, Geranium was resolved
as sister to a clade including all other rosid members (58%
ML-BS and 61% MP-BS) in the ML tree, whereas the genus

was excluded from rosids and nested within Saxifagales in
the MP strict consensus tree. Myrtales (100% ML and MP
BS) were sister to a combined clade (65% ML-BS) of
fabids/malvids plus Crossosomatales. Crossosomatales
(100% ML and MP BS) were sister to well-supported
malvids with 69% ML-BS and 56% MP-BS support.

Monophyly of fabids was recovered (85% ML-BS and
70% MP-BS), and the sister relationship of the COM sub-
clade of fabids with malvids found in the analysis of matR
alone was rejected by all statistical tests (Additional file 4).
All orders within fabids were monophyletic, including
Oxalidales (100% ML and MP BS), Malpighiales (100%
ML and MP BS), Celastrales (100% ML and MP BS),
Fabales (100% ML-BS and 95% MP-BS), Fagales (100%
ML and MP BS), Rosales (100% ML and MP BS), and
Cucurbitales (100% ML and MP BS). Despite the typically
high support of these orders, relationships among them
were relatively weakly supported. There were two large
subclades in fabids; one is the nitrogen-fixing clade with
93% ML-BS and 78% MP-BS support, and the other is the
COM clade with 88% ML-BS and 74% MP-BS support
(Figure 4). Huaceae were grouped with Oxalidales/Mal-
pighiales with 60% BS support in ML tree, but alternative
topologies without this relationship [3,12] were not
rejected statistically.

Monophyly of malvids was strongly supported (99% ML-
BS and 96% MP-BS); they consisted of Malvales (100%
ML and MP BS), Sapindales (100% ML and MP BS),
Brassicales (100% ML and MP BS), and Tapiscia
(Tapisciaceae). Malvales were sister to Sapindales with
82% ML-BS and 76% MP-BS support, but alternative
topologies without this relationship [12,15] were not
rejected statistically. Tapiscia (Tapisciaceae) was resolved
as sister to Brassicales with <50% ML-BS and 51% MP-BS
support.

Discussion
Phylogenetic relationships and their robustness
Both bootstrap and jackknife percentages have generally
been considered as good indicators of the robustness of
clades in phylogenetic trees. However, short internal
branches, likely the result of rapid radiations that
occurred during earlier periods of flowering plant evolu-
tion [4,35], make phylogenetic reconstruction less accu-
rate [36-38]. We noticed that, in our case, ML analyses
resolved more inter-ordinal relationships with greater
internal support than those with MP (Figure 2, 3 and 4),
and most such cases involve clades with short internal
branches (Additional file 6 and 7). In addition, most cases
of contradictory resolution between ML and MP trees
occur on those extremely short internal branches (Addi-
tional file 6 and 7). Several simulation studies have shown
that model-based methods outperform parsimony in
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ML tree from the combined four-gene matrix of matR, rbcL, atpB and 18S rDNAFigure 4
ML tree from the combined four-gene matrix of matR, rbcL, atpB and 18S rDNA. The numbers above branches are 
ML BS percentages >50, and those below are MP BS percentages >50. For nodes where ML and MP analyses differ in topology, 
only the ML BS percentages are shown; asterisks denote contradictory resolutions between ML tree and MP strict consensus 
of all shortest trees.
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reconstructing short branches located deep in the tree if
saturation does not occur [39-41]. Therefore, our discus-
sion will be based on the ML tree although in general
terms the two methods produced highly similar estimates
of overall relationships and support.

The topology of the matR tree shows similar relationships
among major eudicot lineages as those based on plastid
genes rbcL, atpB and matK in previous separate or com-
bined analyses [12-15]. Clades occurring at basal nodes
include Proteales, Trochodendraceae, Buxaceae, and
Sabiaceae. Core eudicots are strongly supported and con-
sist of Gunnerales, Dilleniaceae, Caryophyllales, Santala-
les, Saxifragales, rosids, and asterids. The four-gene data
set did not resolve relationships among major eudicot
clades, including the rosids, asterids, caryophyllids, Santa-
lales, and Saxifragales. Most rosid orders are well sup-
ported in both matR and four-gene trees. These orders,

including their composition and phylogenetics have been
discussed previously [4,42]. Here we mainly focus on
higher-level relationships that are different and compare
them with other recent studies. Some clades do not
receive strong support, but they nevertheless warrant
attention in future studies.

Rosids
The rosid clade (excluding Vitaceae) has been recovered
with low to high bootstrap support in recent phylogenetic
analyses of the angiosperms [3,12,15,43,44]. Low support
for rosid clade was obtained in our four-gene analysis, and
relatively short internal branch lengths were observed for
the rosid node in both the matR and the four-gene trees
(Additional file 6 and 7). Likewise, when we examine sup-
port for the rosid clade from the four single-gene matrices
as well as various combinations of them we found that
this clade was either not present or showed only low ML-

Table 1: Data partitions and tree Statistics for each of the analyses. Data for matK are from reference [15].

Data partition Character CI RI Variable Character % variable 
character

Pi % Pi Steps *Rate of change

matR 1770 0.61 0.65 996 0.56 508 0.29 2160 2.17
rbcL 1395 0.28 0.46 595 0.43 448 0.32 3567 5.99
atpB 1371 0.31 0.49 600 0.44 449 0.33 3124 5.21
18S rDNA 1661 0.36 0.50 418 0.25 236 0.14 1545 3.70
matK 1749 0.14 0.63 1221 0.70 1083 0.62 20801 17.03
rbcL-atpB 2766 0.29 0.47 1231 897 0.32 6760
rbcL-atpB-matR 4536 0.36 0.50 2227 1405 0.31 8998
rbcL-atpB-18S 4427 0.30 0.47 1648 1132 0.26 8370
rbcL-atpB-18S-matR 6197 0.36 0.49 2644 1640 0.26 10604

Pi, parsimony informative; CI, consistency index; RI, retention index.
* Steps/variable characters [12].

Table 2: Comparison of the ML-BS percentages for supraordinal nodes within rosids in each of the analyses.

Node maatR rbcL atpB 18S matK rbcL/atpB rbcL/atpB/matR rbcL/atpB/18S rbcL/atpB/18S/matR

Rosids (not including 
Vitaceae)

<50 nr <50 nr 95 <50 72 <50 66

Geraniales/remaining 
rosids

nr <50 nr nr nr <50 nr <50 55

Crossosomatales/malvids nr nr <50 nr nr 64 75 <50 61
fabids nr 51 nr nr 52 62 83 68 85
Nitrogen-fixing clade <50 <50 <50 nr <50 74 99 68 92
Fagales/Rosales nr <50 nr nr nr 56 53 51 58
Fagales/Rosales/
Cucurbitales

55 <50 nr nr nr nr 69 57 85

COM clade 52 <50 nr nr 60 <50 88 <50 88
Oxalidales/Huaceae 76 nr nr nr -- nr nr nr nr
Malpighiales/Oxalidales 82 nr nr <50 nr <50 63 <50 59
malvids 68 50 <50 nr nr 90 100 87 99
Sapindales/Malvales <50 69 nr nr nr 81 83 84 82
Brassicales/Malvales nr nr <50 nr 89 nr nr nr nr

The node name is listed when it is resolved with >50% support (boldface) in any of these analyses. "nr" (not resolved) denotes unresolved node, 
whereas "--" refers to taxa/clade that not sampled. Data for matK are obtained from the MP-JK support in reference [15].
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BS support (Table 2), which is similar to some earlier
studies [10,12,13]. Like three-gene analysis [3] and those
of nearly complete plastid genomes [43,44], our four-
gene analysis also showed that Vitaceae are sister to rosids,
but received less than 50% ML-BS support.

Geraniales, Myrtales and Crossosomatales
Previous analyses have produced several positions for the
representatives of these three orders but they have never
received more than 50% JK or BS support. Therefore, they
are still among the major higher-level questions within
the rosids [4]. In this study, analysis of matR alone did not
resolve their placements with greater than 50% bootstrap
support, but the four-gene analysis did. In addition, it is
also worth noting that Crossosomatales were resolved as
a sister to a larger clade, including the COM subclade of
fabids and malvids, with slightly less than 50% bootstrap
support in the analysis of matR alone (results not shown).
There are two morphological characters supporting the
position obtained for Crossosomatales in this analysis:
(1) arillate seeds are conspicuous in the COM clade of
fabids, and they are also present in malvids and Crosso-
somatales although less prominent in the last two clades
[20]; (2) free carpels in which the upper part is postgeni-
tally united at anthesis, which appear to be restricted to
Malvales and Sapindales of malvids, some Crossosomat-
ales, and Saxifragales [20,45,46]. Therefore, we suggest
that Crossosomatales may belong to malvids or a larger
clade including the COM subclade of fabids and malvids.

Fabids
This large clade includes Malpighiales, Oxalidales, Zygo-
phyllaceae, Celastrales, Cucurbitales, Fagales, Fabales,
and Rosales. Our four-gene analysis recovered this clade
with moderate BS support, similar to the three-gene anal-
ysis of Soltis et al. [3]. However, our analysis of matR
alone did not recover fabids as a clade, and their mono-
phyly is also rejected by the AU test. Instead, an additional
sister relationship between the COM subclade of fabids
and malvids was recognized, albeit with low ML-BS sup-
port. This conflicting resolution may arise from a different
history or evolutionary phenomena for matR than the
other partitions. Support for fabids primarily comes from
the two plastid (rbcL and atpB) and nuclear genes (18S
rDNA; Table 2), although addition of matR improved res-
olution within fabids. We note that a sister relationship of
the COM subclade of fabids and malvids was moderately
supported by floral structural features, but there was only
weak support for the fabids from reproductive features
[20], particularly an inner integument that is thicker than
the outer at the time of fertilization. Other supporting
characters [20] include: (1) contorted petals, (2) a ten-
dency towards polystemony, (3) a tendency towards poly-
carpelly, and (4) integuments often free from each other
and from the nucellus; none of these are particularly

robust (most are tendencies). Thus, the deepest split
within rosids might be between the nitrogen-fixing clade
and a large clade including malvids, the COM subclade of
fabids, Crossosomatales and Zygophyllaceae (Figure 3),
as suggested by Endress and Matthews [20], not between
fabids and malvids. It is obvious that more molecular data
from all three genomes will be required to further assess
whether this novel relationship is locus-specific or gen-
eral. Our four-gene analysis also identified a larger assem-
blage of orders with low BS support including fabids,
malvids and Crossosomatales, which constitutes the core
part of rosids.

There are two major subclades within fabids, the nitrogen-
fixing clade [19] and the COM clade [20]. Our four-gene
analysis is basically in agreement with those based on
three genes [3] but obtains higher support for these two
subclades. Within the nitrogen-fixing clade, the sister rela-
tionship of Cucurbitales and Fagales was supported in
various analyses [3,47]; however, our four-gene analysis
does not recognize their sister relationship. In contrast,
the sister relationship of Fagales and Rosales was weakly
supported in the ML tree, and then they grouped with
Cucurbitales to form a larger clade with moderate ML-BS
support. These three orders each contain actinorhizal
plants with roots nodulated by strains of Frankia [48]. Pre-
vious molecular analyses have recognized these actinor-
hizal plants as a clade [47,49], but the taxonomic
sampling in these analyses seems to be inadequate for
evaluating their relationships. Our results support the
hypothesis that the actinorhizal plants originated sepa-
rately from Fabaceae and Ulmaceae, which are nodulated
by rhizobial bacteria [4,19].

In the COM clade, Celastrales have been resolved as sister
to Oxalidales in previous studies [9,15,31]. In a more
recent multi-gene analysis, Celastrales were recognized as
sister to Malpighiales with high JK support [21], consist-
ent with the result of Chase et al. [9]. In our analysis of the
matR alone, Malpighiales and Oxalidales appeared as sis-
ter groups, consistent with several previous analyses
[3,12,14], but with apparently higher support; in our four-
gene ML tree, they were also resolved as sister groups, but
with a decreasing BS support, indicating this signal is pri-
marily derived from the matR gene (Table 2); alterna-
tively, the weaker support could be the result of sparser
sampling in the four-gene analysis. Analysis of the matR
matrix placed Huaceae as sister to Oxalidales with moder-
ate support, in agreement with other recent results
[4,21,22], whereas our four-gene analysis demonstrates
different resolutions between MP and ML trees: the MP
analysis resolves Huaceae as sister to Celastrales with
<50% BS support, whereas the ML analysis recognizes
Huaceae as sister to Oxalidales plus Malpighiales with low
BS support.
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Malpighiales are a large order including more than 30
families [1], and they have received strong support in pre-
vious analyses [3,12,15]. Some families of Dilleniidae
sensu Cronquist [5], such as Ochnaceae, Clusiaceae, Viol-
aceae, Passifloraceae, Salicaceae and Flacourtiaceae are
included in Malpighiales. In the matR tree, Salicaceae s.l.
(including some former Flacourtiaceae [50]) form a
strongly supported clade (BS 100%); Caryocar of Caryoca-
raceae and Drypetes of Putranjivaceae form a weakly sup-
ported clade (55% MP-BS). Balanops, the only genus of
Balanopaceae, was previously supposed to be related to
Fagales because of similar pollen and a cupule-like struc-
ture [5]. The matR analyses support a position of Balano-
paceae in Malpighiales, in agreement with the results of
the three-gene analysis [3] and the recent morphology-
based study [51].

Malvids
Both matR alone and the four-gene combined analyses
resolve malvids as a monophyletic clade, as has been
found in other analyses [3,12,15,30]. In our analysis of
matR alone, Dipentodon (Dipentodontaceae), with uncer-
tain position in APG (2003) [1], was resolved as sister to
Tapiscia (Tapisciaceae) with low support, which is consist-
ent with another recent analysis [30]. Our analysis of matR
alone did not resolve relationships of Malvales, Brassi-
cales and Sapindales with greater than 50% BS support,
but in our four-gene analysis, the sister-group relationship
of Malvales and Sapindales received a moderate BS sup-
port, in agreement with the result (51% MP-JK) of three-
gene analysis of Soltis et al. [3] and the result (89% MP-
BS) of four-gene analysis of Nickrent et al. [31]. Malvales
and Sapindales share two morphological characters, i.e.,
"a tendency towards the presence of several (more than
two) meiocytes in an ovule and elaborate apocarpy" [20].

Potential of matR in large-scale phylogenetic studies
Our analysis of matR alone produced a tree highly congru-
ent with previous studies of single and multiple genes
[3,12,15]. In particular, the main contribution of the matR
data appears to be for estimating support of orders. When
supraordinal relationships within the rosid clade are com-
pared on the basis of individual genes, matR data resolves
more nodes with ML-BS support >50% than rbcL, atpB or
18S rDNA (length corrected) and is similar to matK alone
and rbcL-atpB combined (Table 2). In addition, when
matR is combined with rbcL-atpB or rbcL-atpB-18S rDNA
data, additional supraordinal relationships with BS sup-
port >50% occur (Table 2). This indicates that mitochon-
drial matR is suitable for reconstructing angiosperm
phylogeny at higher levels.

The matR gene exhibits two outstanding evolutionary fea-
tures, a slow rate of evolution and relaxed selection (Fig-
ure 1c). For phylogenetic analyses in general, genes that

evolve relatively slowly are likely to contain fewer homo-
plasious substitutions, but then are also expected to have
fewer informative sites. Obviously, slowly evolving matR
should provide less phylogenetic information than plas-
tid genes like rbcL and atpB, and this should affect its
resolving power on short internal branches due to the
reduction of phylogenetic signal [36,52]. However, this
reduction is at least partially offset by relaxed evolutionary
constraints, which leads to more nonsynonymous substi-
tution sites at otherwise conservative first and second
codon positions. As a result, the matR data has more vari-
able characters and parsimony-informative sites (Pi) com-
pared to the other three genes (length corrected) (Table
1). Although both matR and plastid matK have experi-
enced a relaxed evolutionary history [15], matR (Table 1)
provides a significantly higher consistency index (CI) and
slightly higher retention index (RI) than significantly
more rapidly evolving matK [[15], and references therein].

Conclusion
Analyses of matR sequences alone or combined with atpB,
rbcL, and 18S rDNA have provided new insights into sev-
eral deep relationships among rosid lineages, albeit with
low support, including the grouping of malvids and COM
subclade of fabids from single matR gene analysis, and the
placements of Geraniales, Myrtales and Crossosomatales
from the combined four-gene analysis. At ordinal and
deeper nodes, matR provides many informative sites with
less homoplasy, which makes it suitable in higher-level
angiosperm phylogenetics. Mitochondrial matR
sequences have produced a different topology when com-
bined with plastid and nuclear sequences, and therefore,
more genes from the mitochondrial genome should be
used in combination with plastid and nuclear genes to
further investigate the results presented here, although
there are major problems to be overcome with transfers of
some gene to the nuclear genome and unusual patterns of
molecular evolution for some mitochondrial genes, such
as atp1 and coxI, used in monocot phylogenetics [53].

Methods
Taxon sampling
For this study, a total of 174 matR sequences representing
118 families of eudicots and 72 families of rosids, with
representatives from 59% of fabid families and 41% of
malvid families [1] were included. Of them, 93 matR
sequences were newly generated. Vouchers are deposited
in either the herbarium of the Institute of Botany, Chinese
Academy of Sciences, Beijing, People's Republic of China
(PE), or the Herbarium, Royal Botanic Gardens, Kew, UK
(K). In addition to the 174-taxon matR matrix, we also
analyzed a smaller four-gene combined matrix by com-
bining the matR sequences with previously published
sequences of rbcL, atpB, and 18S rDNA available from
GenBank. The combined dataset consisted of 91 taxa.
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When possible, the same species was used for all four
genes. The taxa and collection information have been
listed in Additional file 1

DNA extraction and sequencing
For each of the 93 specimens newly sequenced for matR,
fresh leaves were frozen or dried in silica gel [54]. Total
genomic DNAs were isolated following procedures
described in [55]. The primers matR 26F (5' GACCGCT-
NACAGTAGTTCT 3') and matR 1858R (5' TGCTTGT-
GGGCYRGGGTGAA 3') were used for both PCR
amplification and sequencing. Two additional internal
primers, matR 879F (5' ACTAGTTATCAGGTCAGAGA 3')
and matR 1002R (5' CACCCACGATTCCCAGTAGT 3'),
were also used in sequencing. These internal primers are
not universal for all sampled taxa, and therefore, two
additional sequencing primers were designed, matR-F3
(5' GGACACACCTGCGCGGATTA 3') and matR-R3 (5'
ATCTAGGATAGGCRGCCAACC 3').

PCR was performed using a Perkin Elmer 9600 thermocy-
cler (Norwalk, Connecticut, USA). PCR products were
purified using Wizard PCR purification (Promega, Madi-
son, Wisconsin, USA). Sequencing reactions were per-
formed using the PRISM Dye Terminator Cycle
Sequencing Ready Reaction Kit (Applied Biosystems, Inc.,
ABI, Foster City, California, USA), and the products were
analyzed using an ABI 377 DNA sequencer, all following
the manufacturer's protocols.

Alignment and Data matrix
The174 matR sequences were first aligned at the amino
acid level using Clustal X [56], and then the correspond-
ing DNA sequence alignment was constructed according
to the protein sequence alignment using PAL2NAL pro-
gram [57], followed by some manual adjustment. The
smaller combined data matrix with 91 taxa was con-
structed by combining newly generated matR sequences
with sequences of the three other genes from GenBank.
The three protein-coding genes (matR, rbcL and atpB) used
in combined matrix were aligned independently with the
same procedure as described above. For 18S rDNA, some
ambiguous regions were excluded because positional
homology could not be established; a total of 61 ambigu-
ously aligned positions were excluded. Autapomorphic
insertions and ends of sequences were removed from each
alignment. Alignments are available on TreeBASE [58]
under M3533 and M3534.

Phylogenetic analyses
The 174-taxon matR matrix and the four-gene combined
matrix with 91 taxa were analyzed with maximum parsi-
mony (MP) and maximum likelihood (ML) methods.
Ranunculales were designed as outgroup based on topol-
ogies of the eudicots in previous large-scale angiosperm

studies [3,9,12,13,59]. Equally weighted MP analysis was
performed in PAUP* v4.0b10 [60] using 1,000 random
replicates of tree-bisection-reconnection (TBR) heuristic
searches with a maximum of 1,000 trees held per TBR
search. Robustness of clades under MP analysis was eval-
uated by non-parametric bootstrap using 500 pseudo-rep-
licates with 100 random additions per replicate. For ML
analyses, the optimal model and parameters were deter-
mined using the hierarchical likelihood ratio tests
(hLRTs) as implemented in Modeltest v.3.6 [61], and
analyses were implemented in PHYML v.2.4.4 [62] under
GTR+Γ model for 174-taxon matR matrix and GTR+I+Γ
for four-gene combined matrix with all parameters for
each data matrix (Additional file 2). Support was esti-
mated by non-parametric bootstrap using 1000 replicates.
We used the following descriptions and ranges in the text
for describing bootstrap (BS) support in ML and MP anal-
ysis: low, up to 75%; moderate, 76–85%; high, 86–100%
[63].

Several potential data partitions in the combined matrix
were analyzed to compare their phylogenetic signal and
contribution to results. These data partitions include each
of the four genes, plastid genes (rbcL-atpB), plastid plus
mitochondrial gene (rbcL-atpB-matR), plastid plus nuclear
genes (rbcL-atpB-18S), and plastid plus mitochondrial
plus nuclear genes (rbcL-atpB-18S-matR). The optimal
models and parameters were derived from each partition
(Additional file 2). In addition, analyses based on the
three-codon positions in matR were also conducted on
174-taxon matR matrix to compare variation and phyloge-
netic signal.

To assess alternative phylogenetic hypotheses, we
employed the Templeton [64] and winning-site [65] tests
as implemented in PAUP* v4.0b10 under MP, and the
Shimodaira-Hasegawa (SH) [66] and approximately
unbiased (AU) [67] tests under ML as implemented in
CONSEL [68]. Constraint trees of alternative topologies
were generated using MacClade v4.06 [69]Additional file
5.

Sequence variability and pattern of molecular evolution
We used PAUP* v4.0b10 [60] to analyze homogeneity of
nucleotide composition, transition/transversion ratios
and saturation. PAML v3.15 [70] and MEGA v 3.1 [71]
were used to calculate synonymous substitutions per syn-
onymous site (dS) and nonsynonymous substitutions per
nonsynonymous site (dN) for each gene. We compared
the dS and dN values among three protein-coding genes
(matR, rbcL and atpB) to test for differences in rates and
constraints. Such estimation was also performed for dif-
ferent domains in matR to evaluate the distribution of the
variation. We plotted uncorrected pairwise sequence
divergence distances against corresponding dS and dN
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values to test change in lineage-specific selection pressure.
If some lineages experienced more relaxed or rigorous
selection than others in the light of divergence distances,
the dN value should reveal a poor linear fit than dS value.
Use of nonsynonymous substitutions with lineage-spe-
cific selection pressure change could lead to incorrect phy-
logenetic inference [72].

Sites of C to U RNA-editing in matR have been identified
experimentally in several angiosperm species [73-76].
Although previous small-scale studies revealed no signifi-
cant differences in phylogenetic inference between includ-
ing and excluding RNA-edited sites [34,77], it may be
necessary to test for this effect on phylogeny estimation
when a large-scale analysis is conducted because these
sites are not always conserved among species [76]. In
addition, processed paralogs, which may disrupt phylog-
eny estimation if they are jointly analyzed with vertically
transferred DNA [34], can be also detected if a given
sequence is relatively free from RNA editing. We used
PREP-Mt program [78] with cutoff value of 0.6 for predict-
ing RNA-editing sites in the 174-matR sequences. The
resulting data matrix (TreeBASE: M3532) was analyzed
and compared with original data matrix to examine effects
of RNA editing.
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