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Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine.
Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung,
muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents
are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily
used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and
antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through
changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among
extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including
chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of
glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for
the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of
chronic obstructive pulmonary disease and asthma.

1. Muscarinic Receptors

The muscarinic receptors are metabotropic receptors that
may be linked to plasma membrane K+ or Ca2+ ion channels
[1, 2]. They belong to the superfamily of rhodopsin-
like, seven transmembrane domains, single-glycoprotein
receptors that are connected by intra- and extracellular
loops. Muscarinic receptors initiate intracellular responses
via interaction with GTP-binding proteins (G-proteins),
although activation of other signaling molecules has been
reported [1, 3, 4]. There are five subtypes of muscarinic
receptors, referred to as M1 to M5, based on the order of
their discovery, and according to the nomenclature proposed
by Caulfield and Birdsall [5]. Muscarinic receptors are
symbolized in the literature as “M1 mAChR,” “M1-mAChR,”
“m1AChR,” or “mAChR1” for the M1 receptor. In this paper
muscarinic receptor subtypes will be referred to as M1, M2,
M3, M4, and M5, according to IUPHAR [6] and the MeSH

Browser [7] of the National Library of Medicine of the
National Institute of Health, USA.

Molecular cloning revealed that the five muscarinic
receptors are encoded by separate intronless human genes.
The muscarinic receptor gene sequences have significant
homologies with other members of this large super-family
and across mammalian species. The seven hydrophobic
transmembrane domains of the muscarinic receptors are
highly conserved with an average of 66% identity. In
contrast, their intracellular loops are less conserved, with
the third intracellular loop being particularly variable and
accommodating the binding domain of receptor subtypes.
Between the fifth and the sixth transmembrane regions,
muscarinic receptors possess a large intracytoplasmic loop
that exhibits high divergence between the different subtypes
and is considered to be responsible for the G-protein-
coupling selectivity [8–10] The name and gene location
of the human M1 is on chromosome 11q13; M2 is on
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chromosome 7q31-35; M3 is on chromosome 1q43; M4 is
on chromosome 11q12-112; M5 is on chromosome 15q26
[8, 9, 11].

2. Intracellular Signaling of
Muscarinic Receptors

As mentioned above, muscarinic receptors modulate differ-
ent intracellular signal transduction pathways by coupling to
multiple G proteins, which include stimulation of phospho-
lipases C, A2 and D, cAMP degradation, cGMP production,
attenuation of cAMP synthesis, and regulation of several
ion channels [3, 10]. This diversity in signaling is more
complicated, since a single muscarinic receptor subtype is
capable of activating more than one type of G protein in a
single cell and, thus, is coupled to more than one effector
complements of the cell [3, 10, 12]. Muscarinic receptors
can be divided into two groups according to their primary
coupling efficiency to G-proteins. The first group of M2

and M4 muscarinic receptors couple to the pertusiss-toxin
sensitive Gi/o type proteins. The second group including
M1, M3, and M5 can couple to Gq/11-type proteins [3, 5].
However, there is also evidence that muscarinic receptors
couple to a wide range of signaling pathways, some of which
are mediated by other types of G-proteins or other signaling
mediators [13, 14]. An overview of known muscarinic
receptor signaling is provided in Figure 1.

Studies on animal and human cell lines as well as
on tissues demonstrated that muscarinic receptors also act
via activation of the extracellular signal-regulated kinases
1 and 2 (ERK1/2) that is referred to as mitogen-activated
protein (MAP) kinase 1 [15]. In human bronchial epithelial
cells, it was demonstrated that various muscarinic receptor
inhibitors including tiotropium (M1, M2, and M3 antag-
onist), gallamine (M2 antagonist), telenzepine (M1 antag-
onist), and 4-diphenylacetoxy-N-methylpiperidine methio-
dide (M3 antagonist) downregulated acetylcholine-induced
leukotriene B4 release via the activation of ERK1/2 and
nuclear factor-kappaB (NFκB) pathways [16]. With respect
to the involvement of muscarinic receptors in the regulation
of inflammatory response, it has been reported that M2

and M3 receptors facilitate cigarette-smoke-extract-induced
interleukin (IL)-8 secretion by in human airway smooth
muscle cells via a protein kinase C-dependent activation of
the inhibitor of IκBα and ERK1/2 [17], which suggests a
signaling pathway depicted in Figure 2.

3. Functional Role of Muscarinic Receptor
Subtypes in the Lung

Muscarinic receptors are expressed by tissue-forming cells in
the airways, predominantly by smooth muscle, epithelium,
and fibroblasts. In the human lung, the density of parasym-
pathetic cholinergic innervation is greatest in the proximal
airways and diminishes peripherally. The predominant role
of acetylcholine released by the parasympathetic system is
in the control of distal airway resistance and the release of
mucus from submucosal glands, and from goblet cells in

the airway epithelium [18]. The distribution of muscarinic
receptors in the human airway has been mapped by receptor
autoradiography and in situ hybridization throughout the
bronchial tree and is mainly restricted to muscarinic M1, M2,
and M3 receptors [18–20], though M4 may also be involved.
Acetylcholine released by cholinergic nerves regulates airway
smooth muscle tone and mucus secretion [21].

In the human lung M1 subtype occurs not in the
bronchus [20], but has been reported in human bronchial
fibroblasts [22] and bronchial epithelial cells [16]. The
presence of the M1 receptor mRNA was described in human
peripheral lung tissue [19]. Stimulation of M1 receptors in
the human lung causes bronchoconstriction and plays a
modulatory role in electrolyte and water secretion [18, 23].

The presence of M2 receptors was reported in the human
peripheral lung and the bronchus [20, 24]. Western blot
analysis revealed the presence of M2 protein in human
bronchial fibroblasts [22], epithelial cells [16], and smooth
muscle cells [18]. Muscarinic M2 receptors are expressed
by neurons, where they function as autoreceptors, limiting
the release of acetylcholine from both preganglionic and
parasympathetic nerve terminals of the lung [18, 21], of the
human trachea [25], and of bronchi, but not of bronchioli
[26]. Here, M2 mediated the inhibition of adenylyl cyclase
and thereby preventing bronchodilation [27].

The M3 receptor is the primary muscarinic receptor
subtype that mediates contraction of bronchial and tracheal
smooth muscle, even though it is expressed in these tissues
at considerable lower levels (about 1/4) than M2 [28]. M3

receptor is expressed by the smooth muscle cells of the
airways [29], by human bronchial fibroblasts [22], and by
human bronchial epithelial cells [16], as well as in the human
peripheral lung [24]. The receptor predominantly occurs in
the bronchus and its density decreases from the segmental to
subsegmental bronchus and is abolished in lung parenchyma
[20].

Stimulation of M3 receptors in the human lung, human
central and peripheral airway smooth muscle, and in the
human isolated bronchus causes bronchoconstriction and
mucus secretion from submucosal glands [18, 27, 29–31].
However, activation of M3 receptors on vascular endothelial
cells also induces the synthesis of nitric oxide, which
diffuses to adjacent vascular smooth muscle cells and causes
vasodilatation [32].

4. The Functional Role of Nonneuronal
Muscarinic Receptor Subtypes in the Lung

During the past decade, several investigators have demon-
strated that the biosynthesis, release mechanisms, and mus-
carinic receptors of the cholinergic system are functionally
expressed independently of cholinergic innervations. It is
concluded from such evidence that acetylcholine is not
merely a neurotransmitter and that it transcends the nervous
system, which in relation to lung pathophysiology can mod-
ify the phenotypic and cell function of airway cells, including
epithelial cells (M1–M4), pulmonary vessel endothelial cells
(M1–M5), mesenchymal cells, such as smooth muscle fibers
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Figure 1: Receptor-specific G-protein coupling and signaling for the five human muscarinic receptors: (a) M1, (b) M2, (c) M3, (d) M4, and
(e) M5.
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Figure 2: Synergistic effects of acetylcholine (ACH) and cigarette
smoke on M1, M2, and M3 receptors. LTB4: leukotriene B4, PKC:
protein kinase C, NFκB: nuclear factor kappaB, and IκB: inhibitor
of NFκB.

(M2, M3) and fibroblasts (M2 > M1 > M3 > M4), and lung-
infiltrating immune cells, such as mononuclear leukocytes
(M1–M5) [33], monocytes, and macrophages (M1, M2, and
M3) [34].

The function of nonneuronal acetylcholine released by
the airway epithelium may participate in airway smooth-
muscle contraction [35], but this remains controversial [36].
Additionally, acetylcholine, either neuronal or nonneuronal,

may modulate airway inflammation and tissue remodeling
[21]. For example, ensuing cellular effects in the airways
following stimulation of M1 increased proliferation, while
M4 activation increased migration and wound healing in
epithelial cells. The stimulation of M2 increased proliferation
of fibroblasts [33].

5. Muscarinic Receptors in Obstructive
Pulmonary Diseases

The pathophysiology of pulmonary obstructive diseases,
such as chronic obstructive pulmonary disease (COPD) and
asthma, is associated with the stimulation of the parasym-
pathetic system, resulting in increased bronchoconstriction
and mucus secretion from airway submucosal glands in the
human lung. Since the early 70s, it has been established that
it is the muscarinic receptor activity of acetylcholine that
is involved in the pathophysiology of asthma and COPD.
Muscarinic anticholinergic agents proved to be effective
in the treatment of asthma and COPD, since the vagal
cholinergic tone appears to be a reversible component of
airway narrowing [18]. Thus, inhalation of ipratropium
bromide, which inhibits M1, M2, and M3, was the first
muscarinic inhibitor introduced for the treatment of patients
with obstructive pulmonary diseases [37], followed by
tiotropium bromide monohydrate that also binds to M1,
M2, and M3 and has a longer duration of anticholinergic
action [38]. Tiotropium has a considerably slower rate of
dissociation from the M1 and the M3 receptors than from the
M2 receptor, rendering kinetic selectivity of the drug for M1
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and M3 receptors [39]. Thus, tiotropium is more effective,
since it improves dyspnea and exercise capacity and reduces
hyperinflation. It further reduces exacerbations in patients
with moderate-to-severe COPD [40].

In addition, there is evidence from animal and human
studies of defect expression and/or stimulation of muscarinic
receptors in the lungs of asthma and COPD patients. It
has been reported that M2 autoinhibitory receptors do not
function normally in airways of some asthmatics [41]. The
loss of function of M2 receptors mediated lung hyperreac-
tivity in antigen-challenged animals and proposed to be an
important cause of airway hyperreactivity in asthma [42].
The dysfunction of M2 autoinhibitory receptors in allergic
asthma was proposed to be due to eosinophil-derived major
basic protein, which acts as an allosteric antagonist of the
M2 receptor [43], augmenting acetylcholine release, and
this may modulate the cellular response associated with
airway remodeling [44]. In leukocytes and the bronchi of
patients with cystic fibrosis it was shown that the content
of acetylcholine is substantially reduced, leading to reduced
vesicle storage and transport of nonneuronal acetylcholine
[33]. With respect to gene expression of muscarinic recep-
tors, bronchoscopic evaluation of the mucosa in asthma
patients revealed an increased expression of M3 receptor
mRNA in severe asthmatics compared to patients with mild-
to-moderate asthma and significantly higher levels of M3

receptor mRNA in patients with brittle asthma [45]. A
similar investigation revealed that there are significantly
lower levels of the M3 receptor mRNA in patients with
COPD as compared to asthma patients, and that M3 receptor
mRNA gene expression was significantly elevated in COPD
patients with bronchial hyperresponsiveness as compared
with patients without bronchial hyperresponsiveness [46],
indicating that different molecular mechanisms underlie
the clinical heterogeneity of bronchoconstriction in severe
asthma and COPD.

6. Muscarinic Receptors and Tissue
Remodeling in the Lungs

Accumulating evidence over the past decade demonstrated
that the pathology of asthma and COPD, in addition to
bronchoconstriction, is attributed to inflammation of the
airways [18]. The inflammation that occurs in asthma
can be described as eosinophilic with an increase in Th2
(CD4+) cells, whereas inflammation that occurs in COPD is
mainly neutrophilic with CD8+ T cells predominating [47].
Both neuronal or nonneuronal acetylcholine and muscarinic
receptors appear to be involved in inflammation [21].

Pulmonary obstructive diseases are determined by cellu-
lar and structural changes of the airways, a process that was
associated to chronic airway inflammation. Airway remodel-
ing in asthma and COPD correlates with disease severity [48,
49] and is characterized by mucus gland hypertrophy, goblet
cell hyperplasia, and pulmonary vascular remodeling [50].
Specific cellular and structural changes in asthma include
basement membrane thickening, subepithelial fibrosis, and
thickening of the airway smooth muscle bundle [51], while in

COPD specific changes include peribronchial fibrosis and in
severe stages of the disease increased airway smooth muscle
mass [48]. Acetylcholine, neuronal or nonneuronal and mus-
carinic receptors appear to play an essential regulatory role
in airway remodeling [21, 52, 53]. Recent studies in human-
volunteering asthma patients, however, demonstrated that
cholinergic stimuli and allergen can induce a very fast
remodeling of the airway epithelium and the underlying
mesenchymal cells within 8 days [53]. Interestingly, all
features of remodeling were prevented by an inhaled beta2-
agonist, leading the authors to postulate that relaxation of
the bronchi prevented remodeling [53]. Based on our earlier
studies, we suggest a more direct inhibitory effect of the
beta2-agonist on various extracellular matrix genes [54].

Airway epithelial cells contribute to airway remodeling
by hypersecretion of mucous and proliferation, while airway
mesenchymal cells contribute by means of proliferation,
expression of contractile protein, and the release of com-
ponents such as mediators, extracellular matrix protein
deposition, and matrix metalloproteinase (MMP) secretion
[21, 55].

The hypersecretion of mucous by airway epithelial cells
contributes to airway obstruction in chronic airway diseases
[56]. In vitro and in vivo studies on animal models of asthma
and COPD demonstrate the important role of acetylcholine
in the regulation of mucus secretion [21]. Using human
bronchus and cultured epithelial cells it was shown that
the expression of MUC5AC is increased in asthma and
COPD patients [57] and can be induced by carbachol and
cigarette smoke extract while being inhibited by aclidinium, a
long-acting muscarinic antagonist, or atropine [58]. Animals
studies show that tiotropium inhibits increased MUC5AC
expression and mucus gland hypertrophy in a guinea pig
model of COPD [59], as well as the allergen-induced mucus
gland hypertrophy and MUC5AC-positive goblet cell num-
ber [60]. Tiotropium also reduced the neutrophil elastase-
induced goblet cell metaplasia in mice [61]. Acetylcholine
may also regulate the proliferative and profibrotic response
of airway epithelial cells, either through the induction of
mechanical strain or by an autocrine/paracrine mechanism
required for the repair of the damaged airway epithelium
[21]. Epithelial cell proliferation and the expression of trans-
forming growth factor (TGF)-β (profibrotic cytokine) were
increased in bronchial biopsy specimens of patients with
mild asthma following repeated challenge with methacholine
or house dust mite allergen [53]. Animal studies indicated
that acetylcholine induces proliferation of epithelial cells in
the rat trachea, mediated by muscarinic M1 receptors [62]
and of airway epithelial cells in monkeys [63].

In the human lung, the stimulation of the M2 recep-
tor induced cell proliferation of fibroblasts [44, 64] and
acetylcholine enhanced cell proliferation in cells isolated
from COPD patients, as compared to healthy nonsmokers,
through a process involving ERK1/2 and NFκB phos-
phorylation [65]. Airway smooth muscle thickening is a
characteristic pathology of asthma, and to a lesser extent
of COPD. Accumulating evidence suggests that stimula-
tion of muscarinic receptors is involved in the prolifera-
tion and maturation of airway smooth muscle cells [21].
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Figure 3: Cell type and muscarinic receptor specific effects on airway wall remodeling.

Furthermore, muscarinic receptor activation enhanced the
mitogenic effect of platelet-derived growth factor (PDGF)
and EGF on airway smooth muscle cells [66, 67]. However,
the molecular interaction of the signalling cascades is not
clear. Moreover, the expression of myosin light-chain kinase
was augmented by carbachol in human airway smooth
muscle cells exposed to cyclical mechanical strain [68]
and stimulation of muscarinic receptors further enhanced
the TGF-β1-induced expression of the contractile protein
[69]. In animal models of asthma and COPD, tiotropium
significantly inhibited airway smooth muscle remodeling
and contractile protein expression in guineapigs [52, 60] and
smooth muscle thickening and the expression of TGF-β1 in
bronchoalveolar lavage fluid in an ovalbumine mouse model
[70]. Similar effects have been described for the selective
M3 receptor antagonist bencycloquidium bromide, which
inhibited ovalbumin-induced mRNA expression of IL-5, IL-
4, and MMP-9, as well as lung tissue eosinophil infiltration,
airway mucus production, and collagen deposition in lung
tissues in a murine asthma model [71]. The cell-type-
specific expressions of muscarinic receptors and their effect
on airway remodeling and inflammation is summarized in
Figure 3.

7. Muscarinic Receptor and Extracellular
Matrix Molecules

Extracellular matrix molecules, such as collagenous pro-
teins, matrix metalloproteases (MMP), glycosaminoglycans
(GAG), and proteoglycans play a key role in airway remodel-
ing, inflammation, and emphysema [72–76].

7.1. Matrix Metalloproteases. Increased levels of MMP-1,
MMP-2, and MMP-9 have been reported in the sputum [77]
and lung parenchyma [78] of asthma or COPD patients.
Hypoxia, which is associated with extracellular matrix
remodeling in inflammatory lung diseases, such as fibrosis,
COPD, and asthma, upregulated the expression of MMP-1,
MMP-2, and MMP-9 precursors without subsequent acti-
vation in human lung fibroblasts and pulmonary vascular
smooth muscle cells. MMP-13 expression was increased
only in fibroblasts and PDGF-BB inhibited the synthesis
and secretion of all hypoxia-induced MMP via ERK1/2
MAP kinase activation [73]. Same evidence indicates that
muscarinic receptors mediate the expression of MMP in
obstructive pulmonary diseases. Tiotropium inhibited TGF-
β-induced expression of MMP-1 and MMP-2 in human lung
fibroblasts, but had no effect on TGF-β-induced TIMP-1
and TIMP-2 expression [79, 80]. In contrast, bencycloquid-
ium bromide, a selective M3 receptor antagonist, inhibited
ovalbumin-induced expression of MMP-9 mRNA in a
murine asthma model [71], indicating that M1 and M3

receptors mediate profibrotic and inflammatory response via
specific MMPs. Evidence for the involvement of muscarinic
receptors in the homeostasis of MMP comes also from other
tissues. In human colon cancer, the activation of the M3

receptors stimulated the expression of MMP-1, MMP-7, and
MMP-10, with subsequent transactivation of the epidermal
growth factor receptor and proliferation [81].

7.2. Collagenous Proteins. Hypoxia and PDGF-BB induced
synthesis of soluble collagen type I via ERK1/2 and p38
MAP kinase in human lung fibroblasts and pulmonary
vascular smooth muscle cells [73]. In human lung fibroblasts
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stimulation of M2 receptors induced cell proliferation and
collagen synthesis [44, 64]. In a clinical trial, inhalation of
methacholine induced airway remodeling in asthma patients,
through the expression of TGF-β and collagen type-I as
shown in bronchial biopsies [53]. Treatment with tiotropium
inhibited the increased peribronchial collagen deposition in
a guinea pig COPD model [59].

7.3. Glycosaminoglycans (GAG). GAG provide structural
links between fibrous and cellular elements of the extracel-
lular matrix. They contribute to viscoelastic properties, regu-
late permeability and retention of plasma components within
the matrix, inhibit vascular cell growth, affect hemostasis,
platelet aggregation, and interact with lipoproteins and
various growth factors [82]. There are two main types of
GAG: the nonsulphated hyaluronic acid and the sulphated
GAG, heparan sulphate, heparin, chondroitin sulphate,
dermatan sulphate, and keratan sulphate. With the exception
of hyaluronic acid, GAG are usually covalently attached to
a protein core, forming overall structures referred to as
proteoglycans [82].

Evidence for the involvement of muscarinic receptors
in the homeostasis of GAG comes from studies on various
tissues, including the lung. In rat bladder, hyaluronic acid
ameliorated H2O2-induced hyperactivity, possibly via the
antioxidant activity and the inhibition of purinergic and
muscarinic signaling pathway [83]. In rat vascular smooth
muscle cells of the aorta, M3 receptors were involved in
heparin-dependent relaxation [32]. In rabbits, acetylcholine-
induced reactive oxygen species generation in myocytes
and the intact heart was mediated via transactivation of
EGF receptors through MMP-dependent release of heparin-
binding EGF via muscarinic receptors [84]. In mouse pan-
creatic beta cells, heparin inhibited a muscarine-dependent
ionic current [85]. In humans, inhaled heparin inhibited
the bronchoconstriction induced by methacholine [86], even
though contrary results have also been reported [87].

8. Conclusion

Muscarinic receptors and their intracellular molecular path-
ways comprise a major drug target in obstructive lung dis-
eases. There is a need for further pharmacological exploita-
tion of this crucial family of receptors as targets for more
effective treatment of asthma and COPD. This huge potential
transcends the beneficiary effect of antimuscarinic agents
on bronchoconstriction and expands to anti-inflammatory,
antiproliferative, and antiremodeling effects. Extracellular
matrix molecules, such as GAG and MMP may be valuable
biomarkers to determine the effect of muscarinic receptor
inhibitors in clinical studies investigating drugs with anti
inflammatory and anti-remodeling effects in the human
lung.

List of Abbreviations

COPD: Chronic obstructive
pulmonary disease

EGF: Epidermal growth factor

ERK1/2: Extracellular signal-regulated
kinases 1 and 2

GAG: Glycosaminoglycans
G-proteins: GTP-binding proteins
IL: Interleukin
MMP: Matrix metalloproteinases
M1, M2, M3, M 4 , and M5: Muscarinic receptors
NFκB: Nuclear factor-kappaB
PDGF: Platelet-derived growth factor
TGF: Transforming growth factor.
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