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SUMMARY

Identifying the side effects related to drugs is beneficial for reducing the risk of drug development failure
and saving the drug development cost. We proposed a graph reasoning method, RKDSP, to fuse the se-
mantics of multiple connection relationships, the local knowledge within each meta-path, the global
knowledge amongmultiple meta-paths, and the attributes of the drug and side effect node pairs.We con-
structed drug-side effect heterogeneous graphs consisting of the drugs, side effects, and their similarity
and association connections. Multiple relational transformers were established to learn node features
from diverse meta-path semantic perspectives. A knowledge distillation module was constructed to learn
local and global knowledge of multiple meta-paths. Finally, an adaptive convolutional neural network-
based strategy was presented to adaptively encode the attributes of each drug-side effect node pair.
The experimental results demonstrated that RKDSP outperforms the compared state-of-the-art
prediction approaches.

INTRODUCTION

Failure of drug clinical trials due to adverse reactions following normal drug use can pose health risks to participants and lead to significant

financial losses.1–3 Therefore, exploring the potential association between drugs and side effects can improve our understanding of drugs and

reduce the cost of their development.4,5 New computational predictions of drug side effect associations can screen drugs for potential side

effects for biologists to conduct further experiments.6–8 Earlier researchers proposed molecular docking-based approaches to estimate

association score for drug side effect. These methods9,10 use 3D structural information of drug-related proteins to screen potential drug

candidates for side effects. However, the docking-based approach cannot be applied to those drugs of interest for which protein structure

information is incomplete.11

Machine learning-based models can achieve better performance in predicting drug side effect associations. Zhao12 used a minimum

redundancy maximum correlation algorithm to prioritize all drug side effect node pairs. A triple matrix decomposition and a non-negative

matrix decomposition model were used, respectively, by Guo et al.13 andGaleano et al.14 to predict new potential side effects. Other models

based onmachine learningmethods, such asmulti-label learning,15 randomwalk,16 graph regularizationmatrix decompositionmodels,17 and

multi-core learning,18 also achieved excellent prediction performance. Nguyen et al. reviewed the studies on adverse drug reactions and eval-

uated the performances of multiple methods for predicting the adverse drug reactions.19 Liu et al. constructed a prediction model based on

support vector machine.20 Alpay et al. assessed the ability of the previous methods in inferring the side effects which were contained by the

pharmaceutical literature.21 Galeano22 constructed a geometric self-expressive model (GSEM) to learn a global optimization representation

of drugs and side effects and identify the potential candidate side effects for the drugs. Several models were constructed based on the

network-based inference (NBI) method,23 multiple evidence fusion,24 and multi-kernel learning18 for predicting the potential side effects

for drugs. These methods integrate surface-level data regarding drug side effect connections, but they are unable to disclose the complex

associations between drug and side effect nodes.

More deep learning-based methods can extract deep features to predict possible side effects of drugs as deep learning techniques

advance. Zhao et al.25 suggested a multilayer perceptron-based model for predicting novel side effects by combining multi-source similarity

data of the drugs and side effects. Li26,27 developed a graph neural network-based model to calculate the possibility that a drug might have

side effects. Xuan et al.28 embedded the extensive similarity of drugs into a matrix and proposed a method based on graph convolutional
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Figure 1. Framework of the constructed RKDSP model for predicting drug-related side effects

(A) construct two drug-side effect heterogeneous graphs based on two types of drug similarities (B) learn and update the representations of the drug and

side effect nodes based on relational transformer and knowledge distillation on the semantic subgraphs (C) encode the attribute representation of each

drug-side effect node pair by the adaptive convolutional neural networks (D) fuse multiple representations to estimate the association score for each pair of

drug and side effect nodes.
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auto-encoders. Zitnik et al. utilized the graph convolutional networks to model polypharmacy side effects.29 Lin et al. proposed the twin

network30 and comparative learning-basedmethods to predict the drug-drug interactions,31 respectively.Wang et al. designed a deep neural

network model to utilize the chemical information of drugs, the biological one as well as their biomedical information.32 Traditional trans-

former has been utilized in the link prediction, and it demonstrated the decent prediction performance.33–37 Recently, several methods

were proposed based on network analysis,38 feature analysis,39 and knowledge graph embedding.40 However, the traditional transformer

ignored the diverse connection relationships. The aforementioned approach ignores the importance of local knowledge in the connection

relationships and global knowledge between the connection relationships.

A method referred to the relational transformers and knowledge distillation for drug-related side effect prediction (RKDSP) is

presented to predict the potential side effects for the interested drugs (Figure 1). The unique contributions of this model are summarized

as follows,

(1) The drug similarities based on their chemical substructures and the ones based on their associated diseases formed the specific to-

pological structures.Most previous approaches ignored the importance of integrating drug similarity based on associated diseases for

the prediction of potential drug side effects. Therefore, we constructed two heterogeneous graphs according to these two types of

drug similarities (Figure 2). Each of heterogeneous graph is composed of the drug and side effect nodes, and the similarity connections

and the association ones among these nodes.

(2) Most previousmeta-path-basedmethods only aggregate the neighbors of the target node based on the currentmeta-path but ignore

the attribute information of the connecting relationships in the meta-path. Therefore, we establish multiple meta-paths to embed the

semantics of the similarity and association connections. The relational transformer-based module is constructed to enhance the se-

mantic information of drug and side effect nodes within multiple meta-paths and to learn target node features based on meta-

path instances.

(3) Multiple nodes within the same meta-path have locally tight connections between them, and individual nodes between multiple

different meta-paths contain deep global relationships. Most prior meta-path learning approaches did not fully utilize this local

and global knowledge. Thus, the knowledge distillation strategy is designed to update the node feature representation derived

from these meta-paths (Figure 3). As the semantic learning from multiple meta-paths has various importance for the drug-side effect

association prediction, the meta-path-level attention is presented to distinguish their importance.
2 iScience 27, 109571, June 21, 2024
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Figure 2. Matrix notations of multi-source data and construction of an adjacency matrix for the entire drug-side effect heterogeneous graph

(A) Matrix notations of multi-source data, including two types of drug similarities, associations between drugs and side effects, and the side effect similarities.

(B) Construct the adjacency matrix of the drug-side effect heterogeneous graph.

ll
OPEN ACCESS

iScience
Article
(4) Most previously learned nodes’ convolution operations on pairwise attributes focus on using standard convolution kernels, ignoring

the importance of individual locations in the feature graph. To overcome this disadvantage, we constructed a module based on the

convolutional neural networks with adaptive convolution kernels for learning the attributes of a pair of drug and side effect nodes. The

adaptive convolution strategy enhances the ability in learning the local more important features for each drug-side effect pair.
RESULTS

Evaluation metrics

In order to assess the RKDSP’s capacity to detect potential side effects of drugs, we conducted a 5-fold cross-validation. In particular, we

separated all positive samples of drug-side effect associations known to exist into five random folds. In each fold, we trained the model using

four known associations and an equal number of unknown associations, and the remaining positive and negative samples made up the test

set. As an evaluation metric, we used the area under the receiver operating characteristic (ROC) curve (AUC).41 The dataset has 2,887,722

unobserved drug-side effect node pairs compared to 80,164 known drug side effect associations. Therefore, as a further evaluation metric,

we selected the area under the PR curve (AUPR).42 AUPR can better assess the prediction performance when the unknown and known asso-

ciations are heavily unbalanced. For each drug, we predicted its association score with 4,192 side effects. The recall of the top k also had to be

calculated since biologists regularly select the top-ranked candidates for additional experimental validation.

Parameter settings

For the relational transformer-based module, we fine-tuned the features dimensions in the first and second layers with the values in {1600,

2400, 3200} and {800, 1200, 1600}. Finally, the dimension numbers are 2,400 and 1,200, respectively. The number of layers within the relational

transformer was selected from {2, 3, 4}, and the best performance was achievedwhen it was 2. In the convolution layer, the number of adaptive

convolution kernels was set to 16.We set the number of layers of the transformer of themeta-path-based representation learningmodule to 2.

The output dimensions of the first-level and the second-level relation transformer are 2,400 and 1,200, respectively. The number of rounds,
iScience 27, 109571, June 21, 2024 3



Figure 3. Illustration of the knowledge distillation strategy for capturing the local knowledge within meta-paths and the global knowledge among

multiple meta-paths
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learning rate, and batch size were 50, 0.0005, and 32, respectively. With an NVIDIA GeForce RTX 2080TI, we apply the suggested method

based on the PyTorch framework.
Ablation studies

We verified the effectiveness of meta-path semantic learning, knowledge distillation (both intra-(LKD) and inter-meta-path knowledge distil-

lation (GKD)), meta-path level attention (MPA), and pairwise dual-view attribute encoding (PDE) with ablation studies. The experimental re-

sults appear in Table 1. The best AUC andAUPRwere achievedby the finalmodels, which also included LKD,GKD,MPA, and PDE, with scores

of 0.970 and 0.353, respectively. To evaluate the effectiveness of the meta-path semantic learning based on the relational transformer, a

model without the learning (MSL) was constructed. Eliminating the learning caused 4.1% and 6.6% decrease in AUC and AUPR compared

the complete prediction model. Therefore, learning the semantic information of multiple meta-paths through the relational transformer is

necessary for improving the prediction performance. Without LKD (GKD), the AUC and AUPR decreased by 3.6% (3.2%) and 4.8% (5.4%),

respectively, compared to the final model because drug and side effect nodes contain different semantic information in their features within

and between meta-paths. The significance for enhancing local and global information when predicting drug-related side effects is further

confirmed by this result. AUC and AUPR were reduced by 2.8% and 2.4%, respectively, when MPA was removed. This decline results from

the fact that various meta-paths have unique semantic information. Assigning greater weights to meta-paths containing more important
Table 1. Ablation study results of our method

MSL LKD GKD MPA PDE SCS SAD Average AUC Average AUPR

3 U U U U U U 0.929 0.287

U 3 U U U U U 0.934 0.305

U U 3 U U U U 0.938 0.299

U U U 3 U U U 0.942 0.329

U U U U 3 U U 0.911 0.285

U U U U U 3 U 0.913 0.299

U U U U U U 3 0.928 0.304

U U U U U U U 0.970 0.353

4 iScience 27, 109571, June 21, 2024



Table 2. Experimental results for comparing the proposed relational transformer strategy with the previous strategies

Strategy RKDSPdrug RKDSPrtnet RKDSPreltr RKDSPknow RKDSP

Average AUC 0.956 0.958 0.967 0.964 0.970

Average AUPR 0.338 0.336 0.345 0.341 0.353
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information while appropriately reducing those containing edge information is more effective than directly aggregating eachmeta-path. Our

method improved the accuracy of AUC and AUPR by 5.9% and 6.8% compared to the model with PDE removed. This result indicates the

importance of adaptively assigning weights to the convolution kernel to distinguish the importance of different positions in the feature

map. In addition, the AUC and AUPR of the model eliminating the drug similarities based on the chemical substructures (SCS) decreased

by 5.7% and 5.4%, respectively. The AUC and AUPR of the model without the drug similarities (SAD) calculated by their associated diseases

dropped by 4.2% and 4.9%. The results showed that drug similarities based on the chemical substructures contributes the most to the

improvement of prediction performance.

To assess the effectiveness of the proposed relational transformer for the drug-side effect association prediction, we compared

the model with it and the models with other transformers (Table 2). Unlike our prediction method, the method43 ignored the semantic

information within multiple meta-paths about the drug nodes, and it constructed the separated modules for the drug nodes and

the protein nodes for learning their topology information. To compare with the method, we constructed a prediction instrance by

replacing the relational transformer with its transformer strategy. The instrance is referred to as RKDSPdrug. The researchers also con-

structed the prediction models based on the relation transformer with an attention,44 the relational converter with the encoder and

decoder framework,45 and the position encoding strategy.33 Thus, three prediction instances were constructed by replacing our de-

signed relational transformer with these transformer strategies, respectively. These instrances were named as RKDSPrtnet , RKDSPreltr ,

and RKDSPknow .
Comparison with other methods

Seven state-of-the-art methods were compared to the suggested method, including FGRMF,17 RW-SHIN,16 GraRep,38 Galeano’s method,14

EEG-DTI,46 DTI-MGNN,26 GCRS,28 GSEM,22 KGDNN,41 and SDPred.25 We set the hyperparameters in each comparison model according to

the best parameters reported in the corresponding literature, where l = 4 were used for FGRMF, a = 0:05 for Galeano’s method, number of

layers of the graph convolutional network = 3 for EEG-DTI, LCE = LCD = 2 for GCRS, and lr = 1e � 4 and r = 32 for SDPred.

The average ROC and PR curves for all 708 drugs are displayed in Figure 4 for every method (Table 3). RKDSP reached the highest mean

AUC 0.970, and it is 5.1%, 7.8%, 4.3%, 5.8%, 3.7%, 3.1%, 1.3%, 2.6%, 4.5%, and 2.4% greater than that of FGRMF,17 RW-SHIN,16 GraRep,38

Galeano’s method,14 EEG-DTI,46 DTI-MGNN,26 GCRS,28 GSEM,22 KGDNN,40 and SDPred.25 RKDSP obtained the highest average AUPR

for all the drugs (AUPR = 0.353), and its AUPR is 21.2%, 25.4%, 17.4%, 22.2%, 16.4%, 15.5%, 8.1%, 9.3%, 12.7%, and 12.7% higher

than FGRMF,17 RW-SHIN,16 GraRep,38 Galeano’s method,14 EEG-DTI,46 DTI-MGNN,26 GCRS,28 GSEM,22 KGDNN,41 and SDPred,25

respectively.

On both the AUC and AUPR evaluations, RKDSP performs best. The specific topology of nodes is learned through the second-best

GCRS. The SDPred model performs the third best and takes into account various kinds of similarity information. The graph neural

network-based DTI-MGNN and the graph convolutional network-based EEG-DTI also learned the deep embedding of nodes to predict

potential side effects of drugs and also achieved good performance (DTI-MGNN’s AUPR = 0.198, EEG-DTI’s AUC = 0.933). The AUC of

FGRMF is slightly higher than Galeano’s method (0.7% difference), but its AUPR is 4.8% higher than that method. The possible reason is

that both are matrix decomposition-based methods, but FGRMF aggregates additional drug similarity information. The fact that RW-SHIN

only learns the topological information of drug nodes might be the cause of its worst performance. We discovered that the predicting

performance could be improved through the integration of multiple drug similarities (AUPR was 4.8% lower for the Galeano method

than for FGRMF). In addition, the proposed method RKDSP builds multiple meta-paths to deeply integrate semantic information and ex-

tracts local knowledge within meta-paths and global knowledge between meta-paths in heterogeneous graphs for guiding the deep

feature learning process. The machine learning-based methods GCRS, SDPred, DTI-MGNN, and EEG-DTI captured the topological fea-

tures in the heterogeneous graph with higher performance than the machine learning-based methods FGRMF, Galeano’s method, and

RW-SHIN. In summary, integrating semantic information in different meta-paths and capturing the depth properties of the nodes are

crucial to improve the prediction performance.

The recall rate of the top-k potential side effects is displayed in (Figure 5). More drug-related side effects were correctly screenedwhen the

recall was higher. RKDSP outperformed all other methods for different thresholds k, ranking 53.8% in the top 30, 74.4% in the top 90, and

78.8% in the top 120. With recall rates of 47.0%, 66.8%, and 71.9% in the top 30, 90, and 120, respectively, GCRS placed in second overall.

In the top 30, 90, and 120, SDPred received rankings of 41.8%, 62.3%, and 67.4%, respectively. With recall rates of 36.6%, 57.5%, and

62.9% for DTI-MGNN and 34.7%, 54.6%, and 59.8% for EEG-DTI in the top 30, 90, and 120, respectively, they were very close to each other.

The recall rates of GSEM are 44.2%, 65.1%, and 70.3% when k was 30, 60, 90. The corresponding recall rates of KDGNN are 41.6%, 58.7%, and

63.1%, and they are 6.1%, 5.2%, and 4.8% higher than that of GraRep. Although FGRMF and Galeano’s method have nearly identical recall

rates, the former model performs better in the top 30, 90, and 120 samples by 0.5%, 0.8%, and 1.3%, respectively. RW-SHIN ranks 23.7%,

41.3%, and 47.2%, and its performance is the worst.
iScience 27, 109571, June 21, 2024 5



Figure 4. ROC curves (A) and PR curves (B) of all the methods in comparison of all drugs
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For the top-ranked candidates, our method also obtained the highest precision rates and F1 scores as shown in the Table ST2. The pre-

cision rate (F1 score) of RKDSPwas 4.6% (5.6%), 2.2% (3.4%), and 1.2% (2.1%) higher than that of the secondbestmethod (GCRS) for the top 30,

60, and 90 candidates. GSEM got the third highest precision rate (F1 score) which is 5.0% (6.6%), 2.9% (4.5%), and 2.1% (3.3%) lower than our

model when k is 30, 60, and 90. GraRep performed slightly better than KGDNN, and the former’s corresponding precision rates (F1 scores) are

1.0% (0.5%), 1.3% (1.0%), and 1.2% (1.5%) greater than the latter. RW-SHIN’s performance was not as good as the other methods, its corre-

sponding precision rates (F1 scores) are 14.3% (17.9%), 11.0% (16.6%), and 9.4% (15.3%).

In order to verify the validity of the proposed model for the prediction of potential side effects of new drugs, we conducted new drug

effectiveness experiments. Since new drugs usually have no known associations with side effects. Therefore, we randomly selected 100 drugs,

removed all known associations with side effects for these drugs, and considered these 100 drugs as new. Ourmethod still achieved the high-

est performance compared to the other ten compared methods, and the experimental results are listed in Figures S1 and S2.
Case studies

We chose fivemedicines for the case study: loratadine, ibuprofen, oseltamivir, erlotinib, and ziprasidone in order to further evaluate the effec-

tiveness of RKDSP in predicting side effects related to drug.We assigned a descending ranking to each drug’s association scores for potential

side effects. Table 4 shows the top fifteen candidate side effects for these five drugs.

744,709 drug-ADE associations are contained in the online database called MetaADEDB, which includes extensive data on adverse drug

events (ADEs).47 DrugCentral provides information on pharmaceutical products, drug mode of action, indications, and pharmacologic ef-

fects.48 Rxlist is a clinically oriented searchable database of drug-related information, recording side effects, drug interactions, and other rele-

vant information for over 5,000 drugs.49 Of the 75 candidate side effects, MetaADEDB validated 50, DrugCentral included 39, and Rxlist

covered 30. Thus, the results of the clinical trials demonstrated the presence of the listed side effects of the drugs. Three side effects were
Table 3. Performance comparison of RKDSP with state-of-the-art prediction methods

Methods AUC AUPR Precision (top30) Precision (top 90) F1 score (top 30) F1 score (top 90)

RKDSP 0.970 0.353 0.308 0.157 0.392 0.259

FGRMF 0.919 0.179 0.201 0.113 0.249 0.185

RW-SHIN 0.892 0.099 0.143 0.094 0.179 0.153

GraRep 0.927 0.187 0.212 0.117 0.276 0.193

Galeano’s method 0.912 0.131 0.170 0.102 0.223 0.170

EEG-DTI 0.933 0.189 0.212 0.118 0.263 0.193

DTI-MGNN 0.939 0.198 0.214 0.121 0.270 0.200

GCRS 0.957 0.272 0.262 0.145 0.336 0.238

GSEM 0.944 0.260 0.258 0.136 0.326 0.226

KGDNN 0.925 0.226 0.202 0.105 0.271 0.178

SDPred 0.946 0.226 0.238 0.129 0.304 0.213
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Figure 5. The average recalls over all the drugs at different top k values
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supported by the published literature and marked as ‘‘literature’’.50–52 We labeled eight unconfirmed candidate side effects as ‘‘uncon-

firmed.’’ In summary, the five drug case studies demonstrate RKDSP’s ability to identify potential side effects of drugs.

Prediction of new drug-associated side effects

Finally, our method employed all known associations to train the RKDSP model and predicted possible side effects of novel drugs. In

Table ST3, we provide the top candidate side effects for all drugs to assist biologists in their quest to discover novel drug-associated side

effects through further studies.

Limitations of the study

Recently, there has been an influx of rich information about long noncoding RNAs (lncRNAs) and diseases, including novel computational

methods for lncRNA similarity and semantic similarity of diseases. In this context, one of the future research directions is to integrate data

from multiple sources and multiple modalities to more comprehensively and multidimensional understand and predict the association be-

tween lncRNAs and diseases.

Conclusion

We proposed a method (RKDSP) to fuse the various semantics frommultiple meta-paths within two heterogeneous graphs and to adaptively

learn the pairwise attributes for predicting drug-related side effects. Two established drug-side effect heterogeneous graphs were helpful for

the subsequent formulation of the attribute embeddings of the drug and side effect nodes. The constructedmultiple meta-paths implied the

diverse semantic information among the drug and side effect nodes. The node feature representations were formed by the constructedmod-

ule based on relational transformers from multiple meta-paths. The knowledge distillation module was constructed to capture the local

knowledge within meta-paths and the global knowledge among multiple meta-paths. The designed meta-path-level attention was able

to assign higher importance for the informative meta-path semantics. The local and more important attributes for each drug-side effect

pair were captured by the multi-layer convolutional neural networks with the adaptive convolution kernels. The comprehensive comparison

results indicate RKDSP achieved superior performance than seven advancedmethods in terms of bothAUCandAUPRmeasure. RKDSP is also

more attractive for the biologists since its top-ranked drug-related side effect candidates are more likely to contain the real drug-side effect

associations. The case studies on five drugs further confirm RKDSP’s ability in screen the potential candidate side effects for the interested

drugs.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability
iScience 27, 109571, June 21, 2024 7



Table 4. Top 15 candidate side effects of five drugs

Drug name Rank Side effect name Evidence Rank Side effect name Evidence

Loratadine 1 Nausea MetaADEDB, Drugcentral 9 Confusion MetaADEDB, Rxlist

2 Dizziness MetaADEDB, Drugcentral, Rxlist 10 Convulsions Drugcentral

3 Hypotension MetaADEDB, Drugcentral 11 Arthralgia MetaADEDB, Drugcentral

4 Paresthesia unconfirmed 12 Seizures unconfirmed

5 Dry mouth Drugcentral, Rxlist 13 Anxiety MetaADEDB, Drugcentral

6 Agitation MetaADEDB, Drugcentral 14 Arrhythmia MetaADEDB

7 Fever Rxlist 15 Angina MetaADEDB

8 Sweating Rxlist

Ibuprofen 1 Nausea Drugcentral, MetaADEDB, Rxlist 9 Pancreatitis Drugcentral, MetaADEDB

2 Urticaria Drugcentral, MetaADEDB 10 Dyspepsia Drugcentral, MetaADEDB

3 Erythema Drugcentral, MetaADEDB 11 Anxiety Drugcentral, MetaADEDB

4 Leukopenia Drugcentral, MetaADEDB 12 Pancytopenia Drugcentral, MetaADEDB

5 Tachycardia Drugcentral, MetaADEDB 13 Shock Drugcentral, MetaADEDB, Rxlist

6 Constipation Drugcentral, MetaADEDB, Rxlist 14 Hyperglycemia Unconfirmed

7 Pain Drugcentral, MetaADEDB, Rxlist 15 Myalgia Drugcentral

8 Paresthesia unconfirmed

Oseltamivir 1 Vomiting Drugcentral, MetaADEDB, Rxlist 9 Fatigue Drugcentral, MetaADEDB

2 Pain Drugcentral, MetaADEDB, Rxlist 10 Rhinitis MetaADEDB

3 Diarrhea Drugcentral, Rxlist 11 Fever Drugcentral, Rxlist

4 Edema Drugcentral, MetaADEDB 12 Sweating Unconfirmed

5 Palpitations Drugcentral 13 Psychiatric Disorders Drugcentral, MetaADEDB, Rxlist

6 Myalgia Drugcentral 14 Dry mouth Unconfirmed

7 Anorexia Drugcentral 15 Malaise Drugcentral

8 Gastritis unconfirmed

Erlotinib 1 Rash Drugcentral, MetaADEDB, Rxlist 9 Urticaria Drugcentral

2 Pain Drugcentral, MetaADEDB, Rxlist 10 Anemia Rxlist

3 Hypersensitivity Drugcentral, MetaADEDB 11 Pleural Drugcentral, MetaADEDB

4 Edema Drugcentral, MetaADEDB 12 Myalgia Drugcentral

5 Thrombocytopenia Drugcentral, Rxlist 13 Pneumonia Drugcentral

6 Chest pain Drugcentral, Rxlist 14 Paresthesia unconfirmed

7 Asthenia Drugcentral, MetaADEDB 15 Heart failure Drugcentral

8 Stomatitis Drugcentral, MetaADEDB

Ziprasidone 1 Dystonia Drugcentral, MetaADEDB, Rxlist 9 Dysphagia Rxlist

2 Jaundice Rxlist 10 Dysarthria Literature47

3 Amenorrhea Rxlist 11 Hyperventilation Literature48

4 Confusion Rxlist 12 Hypertension MetaADEDB, Rxlist

5 Erythema multiforme Drugcentral, MetaADEDB 13 Manic reaction Rxlist

6 Somnolence Drugcentral, MetaADEDB, Rxlist 14 Vasodilation Rxlist

7 Abdominal pain MetaADEDB, Rxlist 15 Glaucoma Literature49

8 Insomnia Drugcentral, MetaADEDB, Rxlist
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d METHOD DETAILS

B Dataset

B Construction of drug-side effect dual-view heterogeneous graphs

B Extracting semantic subgraphs based on meta-paths

B Meta-path-based node representation learning by relational transformer

B Meta-path-based node representation update by knowledge distillation
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B Pairwise attribute encoding based on CNN with adaptive convolution kernels

B Final fusion and optimization

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.109571.
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METHOD DETAILS

We developed a deep learning model called RKDSP, which combines two types of drug similarities and side effect similarities predict drug

candidate side effects. First, based on drugs and side effect similarities, bi-perspective heterogeneous graphs are constructed. Then, bi-

perspective fusion representations and adaptively enhanced pairwise attributes are learned separately. Finally, by integrating these two rep-

resentations, the association scores of drugs and side effect nodes are computed.

Dataset

The chemical structures of drugs may provide the information of the chemical positions, the atomic arrangements and the functional groups.

Two drugs with more similar chemical structures are usually more similar, thus the drug similarities are calculated based on their chemical

structures. The drugs with similar functions are more likely to be involved the similar disease processes, the drug similarities were also calcu-

lated based on their association diseases. The dataset originally extracted the 80,164 pairs of drug and side effect nodes which cover 708

drugs and 4,192 side effects. The dataset for drug-related side effect association prediction was derived from the method53 and it contains

the drug-side effect associations, the drug-disease associations, and the drug-drug similarities based on chemical substructures. The dataset

originally extracted the 80,164 pairs of drug and side effect nodes from the SIDER (RRID:SCR_004321)54 which cover 7 drugs and 4,192 side

effects. The method also obtained the 199,214 associations among the 708 drugs and 5,603 diseases from the Comparative Toxicogenomics

Database (CTD) (RRID:SCR_006530).55

Construction of drug-side effect dual-view heterogeneous graphs

To deeply integrate multiple data sources to facilitate the study, we constructed the drug-side effect association matrix S˛RNr3Ns , chemical

substructure-based matrix of drug-drug similarity Mcs ˛RNr3Nr , associated disease-based matrix of drug-drug similarity Mad ˛RNr3Nr , and

side effect similarity matrixMse ˛RNs3Ns . It is more likely that the side effects of the drugs ri and rj will be similar if their chemical substructures

are more similar. We used this biological premise to construct the chemical substructure-based drug-drug similarity matrix Mcs. In addition,

the similarity between two drugs tends to be higher when they have been associated with other diseases that are comparable. After revising

our estimates of drug similarity based on the diseases connected with each drug,56 we built the matrix of drug-drug similarity based on these
iScience 27, 109571, June 21, 2024 11
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related diseasesMad . Similarly, using the directed acyclic network of drugs related to side effects, we computed the side effect similarity ma-

trixMse. In addition, we built the drug-side effect associationmatrix S. If biological research has shown an association between the use of drug

ri and the incidence of side effect sj, then the value of Sij is 1. Otherwise, it is 0.

Drug-side effect bi-perspective heterogeneous graphs were built to fully integrate data from various sources on drugs and side effects.

Two heterogeneous graphs from varying perspectives may be represented as Gcs = ðV ;EcsÞ and Gad = ðV ;EadÞ given the node set V, which

contains all drug nodes Vdr and side effect nodes Vse, and the edge set E consisting of edges Ecs on graphGcs and edges Ead on graphGad .

The weights on the edges Ecs and Ead are represented by adjacency matrices Acs and Aad , respectively,

Acs =

�
Mcs S
ST Mse

�
;Aad =

�
Mad S
ST Mse

�
; (Equation 1)

where ST represents the transpose matrix of S.
Extracting semantic subgraphs based on meta-paths

We constructed heterogeneous graphs Gcs and Gad based on the drug’s chemical substructure and the disease that it associated with,

respectively. These two heterogeneous graphs are built based on drug similarities from different perspectives and, therefore, have specific

topological information. Dual perspective heterogeneous graphs Gcs and Gad contain drug ðrÞ and side effect ðsÞ nodes. The graphs also

include multiple relationships, where r � r, r � s, and s � s indicate drug-drug similarity, the association between drugs and side effects,

and side effect-side effect similarity, respectively. A heterogeneous graph might have several nodes connected by pathways that indicate

many connections; these paths are referred to as meta-paths. Various meta-paths contain varying semantic information. We extract the se-

mantic subgraphs by projecting the bi-perspective heterogeneous graphs according to each meta-path m˛M. Given the heterogeneous

graph Gcs and the meta-path r � r, we project Gcs into the semantic subgraph Gcs
r� r . The node feature matrix of Gcs

r� r is denoted as Xr� r .

If the meta-path is specified as r � s � r, the node feature matrix of the generated semantic subgraph is Xr� s� r ,

Xr � s� r = AM$AMT : (Equation 2)

Meta-path-based node representation learning by relational transformer

We constructed a subgraph Gcs
m containing semantic information and topology specific to the meta-path m. Faced with multiple semantic

subgraphs, we built multi-layer relational transformers learn the meta-path-based node representation of drug and side effect nodes.

Relational transformer

Inspired by the success of transformer in natural language processing, we propose the relational transformer for learning meta-path-based

node representations. The query matrix Qn;l
m , key matrix Kn;l

m , and value matrix Vn;l
m are obtained for the n-th attention head in the process

described below,

Qn;l
m = Wn;l

m;Q$X
l� 1
m ; (Equation 3)
Kn;l
m = Wn;l

m;K$X
l� 1
m ; (Equation 4)
Vn;l
m = Wn;l

m;V$X
l� 1
m ; (Equation 5)

wherem refers to the meta-path, l is the number of layers of the transformer, andWn;l
m;Q,W

n;l
m;K , andWn;l

m;V are the weight matrices correspond-

ing to the different meta-paths and attention heads. X0
m is the node attribute matrix Xm. Then, we computed the attention weights between

nodes in the subgraph and multiplied by Vn;l
m to obtain the hidden matrix Hl

m,

Hl
m = kNan

n = 1

l
Qn;l

m ;Kn;l
m

m
$Vn;l

m ; (Equation 6)

where
l
Qn;l

m ;Kn;l
m

m
= exp

�
QTK
d

�
is the exponential scale dot product function, d is the dimensionality of each attention head, and k is the

concatenation operation. To ensure a smoother representation learning process, we apply a gatingmechanism.We obtain thematchingma-

trix Tl
m as follows,

Tl
m = sig

�
Wt $

h
Hl

m;X
l� 1
m

i�
; (Equation 7)

where ½$; $� is the splicing operation, and sig refers to the sigmoid activation function. Finally, we obtain the meta-path-based node represen-

tation matrix Zl
m,

Zl
m = tanh

�
Hl

m

�
5Tl

m + Xl� 1
m 5

�
I � Tl

m

�
; (Equation 8)

where 5 is the Hadamard product operation. Zl
m is the learned node representation matrix based on meta-path m at layer l.
12 iScience 27, 109571, June 21, 2024
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Meta-path-based node representation update by knowledge distillation

Each node in the semantic subgraphGcs
m has a specific connectivity relationship with its neighbor nodes, reflecting the local knowledge within

the meta-path. The different connection relations in the subgraphs corresponding to different meta-paths contain the global knowledge

among the meta-paths. Therefore, we need not only to extract the topology of the subgraph but also to learn the local knowledge within

meta-paths and the global knowledge between meta-paths. We propose intra-meta-path and inter-meta-path knowledge distillation,

inspired by knowledge distillation, to update the meta-path-based node representation.

Intra-meta-path knowledge distillation

Knowledge distillation in meta-paths is done to update the node representation by extracting the local knowledge from each meta-path.

Given a semantic subgraph Gcs
m , we define the neighbor topology representation as eim,

ei
m = sig

 
1

K

XK
j = 1

zjm

!
; (Equation 9)

whereKdenotes thenumberofneighbornodes, i refers to the targetnode,and j is thesourcenode.Meta-path representation tm isobtainedthrough

tm = s

 
1

A

XA
i = 1

zim

!
; (Equation 10)

whereA refers to the number of target nodes, and s represents the ReLU function.57 Wemeasure distillation by mutual information based on

meta-paths node embedding zim, neighbor topology e
i
m, and meta-path representation tm. The loss of knowledge distillation within a meta-

path Ltra is defined as follows,

Ltra = �
X
m˛M

 XjAj
i

�
MI
�
zim;e

i
m

�
+ MI

�
zim; tm

��!
: (Equation 11)

Inter-meta-path knowledge distillation

The purpose of knowledge distillation between meta-paths is to extract the global knowledge between different meta-paths. We distill with

neighbor topology with different meta-paths, meta-path representations to update the node representations. The loss of knowledge distil-

lation between metapaths Lter is defined as follows,

Lter = �
XjAj
i

 X
m˛M

X
n˛M;nsm

MI
�
zim; e

i
n

�
+ MI

�
zim; tn

�!
: (Equation 12)

Meta-path level attention

Considering that different meta-path node representations have varying significance for predicting drug-side effect associations, we devel-

oped a meta-path-level attention mechanism to learn the attention scores of each representation and adaptively combine them. Given the

updated meta-path based node representation bzim, the attention weight sim is defined as follows,

sim = qmpl$tanh
�
Wmplbz im + bmpl

�
; (Equation 13)

where bmpl represents the bias vector, and Wmpl refers to the weight matrix. The normalized score is ai
m,

ai
m =

exp
�
sim
�P

n˛M

exp
�
sin
� : (Equation 14)

The level of the attention score reveals the importance of the corresponding meta-path. After a meta-path-based attention mechanism,

the semantic representation zsemi;cs can be obtained as follows,

zsemi;cs =
X
m˛M

ai
mbz im: (Equation 15)

From the dual-view heterogeneous graphs Gcs and Gad , we obtain two semantic representations, zsemcs and zsemad . To include more valid

information, we use 1*1 convolution to aggregate them and get a dual-view fusion representation zfus.
Pairwise attribute encoding based on CNN with adaptive convolution kernels

Attribute embedding of drug-side effect node pair

If drug node ri and side effect node sj are similar or related tomore commondrugs and side effects, then ri and sj aremore likely to be related.

Based on this biological premise and the similarity of the two drugs, we propose an embedding strategy to obtain the attribute embedding

Xcs and Xad of two drug-side effect node pairs.
iScience 27, 109571, June 21, 2024 13
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Given the similarity matrixMcs based on chemical substructures, side effect similarity matrixMse, and associationmatrix S, we combine the

i-th row of Mcs and the j-th column of S to form xleft ,

xleft =
h
Mcs

i;�; Sj;�
i
; (Equation 16)

where; is the stacking operation.Mcs
i;� denotes the similarity of ri to all drugs. Sj;� refers to the association of sj with all drugs. The association

between ri and all side effects are contained in Si;�, which is obtained from the i-th row of S.Mse
j;� is the j-th rowofMse that covers the similarity of

sj and all side effects. They are stacked to form xright ,

xright =
h
Si;�;M

se
j;�
i
: (Equation 17)

We define property embedding based on drug chemical substructures as Xcs,

Xcs = ½ xleft xright �: (Equation 18)

Likewise, given the drug similarity matrix Mad , the association matrix S, and the side effect similarity matrix Mse, we can obtain another

perspective of the ri-sj pairwise attribute embedding Xad .

Dual-view attribute encoding

Traditional CNNs use uniform convolutional kernels for feature extraction at different locations in the feature map, even though these

locations contain information of varying importance. With adaptive convolution, the convolution kernels can adjust their adaptive weights

according to the local content. Convolutional kernels at locations containing important information receive greater weights, and those at lo-

cations containing edge information are assigned smaller weights. In addition, each of two drug-side effect heterogeneous graphs (Gcs and

Gad ) has its own specific features. Thus, we propose a pairwise attribute encodingmodule to obtain and aggregate the dual-view attributes of

drug-side effect node pairs from Xcs and Xad . The encoding process is similar, and for brevity, we will only discuss the case where the input

is Xcs.

First, we sendpairs of attributesXcs to the convolutional layer with the LeakyReLU activation function to extract their shallow features. Then,

shallow features are passed through a fully connected layer with a sigmoid activation function to learn the weightsWcs.Wcs can perceive the

potential relationship between each position in the node pair attribute. Finally, we reshape Wcs to Wcs, which we use as a scaling factor for

each convolution kernel. We denote the scaled convolution kernel as Kcs,

Kcs = Wcs1Kcs; (Equation 19)

where 1 represents the dot product operation. The network can consider the local content inconsistency of the feature map based on the

obtained local background adaptive kernel.We performed zero padding onXcs to preserve edge information. The number of zero padding is

1. The feature map zcs after convolution is defined as zcs,

zcs = ~Xcs � Kcs; (Equation 20)

where � is the convolution operation, and ~Xcs is the paired attribute embedding after performing zero padding. Similarly, we can obtain

feature maps zad by node pair embedding Xad . zenh is obtained by splicing zcs and zad , which indicates adaptive enhancement of pairwise

attributes.
Final fusion and optimization

Given the dual-view fusion representation zfus and the adaptive enhancement pairwise attribute zenh, we connect and flatten the two to form a

combined representation zcom. We obtain the probability distribution of whether ri is associated with sj by applying the fully connected layer

to zcom,

p = softmax ðWzcom + bÞ; (Equation 21)

where the bias vector and weight matrices, respectively, are denoted by b andW. The difference between the labels and the predicted score

distribution is measured using the cross-entropy loss function as loss,

loss =
XN
i = 1

XD
j = 1

Rj log
�
p
�
j
+ Ltra + Lter ; (Equation 22)

where D = 2. Rj represents the true label, indicating whether there is a true association between a pair of nodes. The Adam algorithm58 op-

timizes the loss function loss.
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To verify whether RKDSP outperforms the comparison method, we performed the PairedWilcoxon Test. In terms of each prediction method,

its AUC and AUPR were obtained for each drug, and it have 708 AUCs and AUPRs. For RKDSP and one the compared methods, 708 AUC

(AUPR) pairs went through the Paired Wilconxon Test. Compared to other approaches (Table ST1), RKDSP performs significantly better

(p-value < 0.05).
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