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Abstract

We assess the relationship between epidemic size and the scaling of epidemic growth of Ebola
epidemics at the level of administrative areas during the 2014–16 Ebola epidemic in West
Africa. For this purpose, we quantify growth scaling parameters from the ascending phase
of Ebola outbreaks comprising at least 7 weeks of epidemic growth. We then study how
these parameters are associated with observed epidemic sizes. For validation purposes, we
also analyse two historic Ebola outbreaks. We find a high monotonic association between
the scaling of epidemic growth parameter and the observed epidemic size. For example, scal-
ing of growth parameters around 0.3–0.4, 0.4–0.6 and 0.6 are associated with epidemic sizes
on the order of 350–460, 460–840 and 840–2500 cases, respectively. These results are not
explained by differences in epidemic onset across affected areas. We also find the relationship
between the scaling of epidemic growth parameter and the observed epidemic size to be
consistent for two past Ebola outbreaks in Congo (1976) and Uganda (2000). Signature fea-
tures of epidemic growth could become useful to assess the risk of observing a major epidemic
outbreak, generate improved diseases forecasts and enhance the predictive power of epidemic
models. Our results indicate that the epidemic growth scaling parameter is a useful indicator
of epidemic size, which may have significant implications to guide control of Ebola outbreaks
and possibly other infectious diseases.

Introduction

When an infectious disease pathogen is spreading in a population, public health officials rely
on indicators of epidemic growth to assess the risk of observing a major outbreak. Here, we
argue that efforts to identify the signature features of epidemic growth could be utilised to
assess the risk of observing a major outbreak, generate improved diseases forecasts and
enhance the predictive power of epidemic models. These epidemic features are expected to
vary across different infectious diseases in part influenced by the mode of transmission. For
instance, Ebola is spread by direct contact via body fluids or indirect contact with contami-
nated surfaces. In contrast, influenza can be transmitted through the airborne route. For a
given disease system, epidemic growth characteristics will vary across populations with differ-
ent socio-demographic composition, resources for mitigating disease transmission, ethnicities
and customs or traditions. While the growth profile of infectious disease outbreaks has been
studied extensively assuming exponential growth, the growth dynamics have been shown to
vary substantially across historic and contemporary epidemics of various diseases, including
influenza, Ebola and HIV/AIDS [1–8]. For instance, the cumulative number of HIV/AIDS
cases in the USA followed a cubic polynomial trajectory, likely as a result of population mixing
mechanisms [4, 9]. Similarly, the Ebola epidemic in West Africa displayed varied polynomial
(sub-exponential) growth patterns across affected administrative areas, whereas national aggregate
incidence patterns appeared to follow exponential growth over short-time intervals [1, 10–12].

The above findings suggest that mathematical models of disease transmission need to
incorporate flexible mechanisms that capture an appropriate range of the scaling of epidemic
growth for the population and disease of interest [13–15]. The epidemic profile can be modu-
lated by a combination of mechanisms and population characteristics including (1) heteroge-
neities in population structure stemming from social network patterns, (2) configurations of
population susceptibility and infectiousness and (3) systematic changes in transmission rates
over time as a result of changes in behaviour and/or the rapid implementation of public health
interventions including cancellation of mass gatherings and school closings.
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A number of factors influenced the dynamics of the 2014–16
Ebola outbreak including movement patterns often influenced
by interventions (e.g. movement restrictions), use of quarantine
for exposed individuals and unsafe funerals involving a large
number of people [16]. The Ebola epidemics across administrative
areas of Guinea, Liberia and Sierra Leone followed early sub-
exponential growth rather than exponential growth over several
generations of disease transmission [1]. The generalised growth
model (GGM) [2] incorporates a scaling of growth parameter
( p) in order to capture a range of epidemic growth patterns, ran-
ging from constant growth, sub-exponential growth, to exponen-
tial growth. Essentially, a value of p closer to one indicates a
higher threat level (more rapid growth) compared with smaller
values. Thus, the GGM provides a useful tool to gain quantitative
insights on the likely signature feature of the threat level. When
applied to spatially disaggregated data, the model can, therefore,
reveal variable transmission dynamics, which is useful for plan-
ning intervention measures (e.g. type and intensity of mitigation
measures) as well as mobilising of resources. The 2-parameter
GGM is given by the following differential equation [2]:

dC(t)
dt

= C′(t) = rCp(t),

where C′(t) represents incidence at time t, r ϵ (0, ∞) is the growth
rate per time unit and, p ϵ(0, 1) is the scaling of growth parameter
that models constant incidence ( p = 0), sub-exponential growth
(0 < p < 1) and exponential growth dynamics ( p = 1).

Empirical studies that link the scaling of growth of infectious
disease outbreaks with epidemic size and then relate this rela-
tionship with underlying population characteristics, such as popu-
lation density and urbanisation as well as response capacity, could
shed light on key drivers of disease transmission and control
across different pathogens and population settings. In this direc-
tion, we examine the variation in epidemic growth profiles of
the devastating 2014–16 West African Ebola epidemic across
administrative areas of the three most affected countries, namely
Guinea, Liberia and Sierra Leone. We also quantify the relation-
ship between the estimated scaling of growth parameter and the
observed epidemic size across local outbreaks of Ebola.

Materials and methods

Data

A total of 28 610 cases and 11 308 deaths were reported during the
2014–16 Ebola epidemic in West Africa [17]. However, spatial
heterogeneities in case burden and epidemic timing were
observed across administrative areas [1]. For the three most
affected countries, we retrieved the time-series of weekly cases
of Ebola stratified at the level of administrative areas from the
WHO Ebola patient database [17]. The data were collected and
reported by national health authorities of Guinea, Liberia and
Sierra Leone following national and/or WHO guidelines on case
definitions for the period 5 January to 17 December 2014 [18].
In this study, we focus on characterising the early ascending
phase of 24 sub-national Ebola outbreaks that comprise at least
7 weeks of epidemic growth. For these outbreaks, the number
of weeks from onset to peak ranged from 7 to 21 weeks while
the peak size of the weekly incidence curve ranged from 17 to
290 cases. Epidemic onset is defined as the week at which the per-
iod of sustained epidemic growth starts in each area. For

validation purposes, we also analyse two sub-national Ebola out-
breaks that occurred in Congo (1976), which affected the village
of Yambuku [19] and in Uganda (2000), which mostly affected
the district of Gulu [20].

Parameter estimation

For each Ebola outbreak, we estimate parameters r and p by fitting
the GGM to weekly early incidence growth data. Since the dur-
ation of onset-to-peak varied greatly among the study areas, we
use onset-to-peak data so as to maximise usage of available
data. It is worth noting that parameters can be estimated from
the early phase (using data before peak) at the expense of quality
of estimates. Indeed, other studies have shown that the uncer-
tainty of parameter estimates improves when more data are
used in fitting the model [2]. In sensitivity analyses, we also con-
sider ascending phases from the onset until up to 1–3 weeks pre-
ceding the epidemic peak.

We estimate parameters r and p jointly through a maximum
likelihood framework using an ordinary differential equation
solver. Let yt denote, in a given area, the case count at time t.
Given the count nature of cases, we model yt using a negative
binomial (NB) distribution to incorporate the possibility of over-
dispersion (variance of data greater than the mean),

yt � NB
u

u+ rCp(t) , u
( )

,

where θ ϵ (0, ∞) is the dispersion parameter, which we also esti-
mate together with parameters r and p. Under this parameterisa-
tion we have that, E(Yt|C(t)) = rCp(t). The likelihood function is
given by,

L(Q|yt) =
∏T
t=1

G(yt + u)
yt!G(u)

u

u+ rCp(t)
( )u rCp(t)

u+ rCp(t)
( )yt

,

where Θ is the set of parameters: {r, p, θ} and, T is the length of
the observed vector of case counts. The likelihood function can be
maximised in a non-Bayesian or Bayesian framework. We per-
form Bayesian maximum likelihood estimation using the publicly
available and free WinBUGS Differential Interface [21]. We assign
minimally-informative priors to the parameters (supplement).
The posterior distribution P(Θ|yt) is given by,

P(Q|yt) = L(Q|yt)p(Q)�
Q
L(Q|yt)p(Q)dQ ,

where p(Θ) represents the product of independent priors for
{r, p, θ}. We obtain point estimates by calculating the mean of
the converged posterior samples. The code is provided in the sup-
plementary material.

Characterising the association between observed epidemic size
and p

The growth rate r in the GGM is an innocent parameter since it
can be eliminated by rescaling time in the equation [22]. Hence,
our focus is on the scaling of epidemic growth parameter p. To
study the association between the observed epidemic size
(denoted by z) and the estimated value of p, we conduct
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correlation and regression analyses. Note that the validation data
are not used in studying the association between epidemic size
and p. We use the index i to denote the ith area.

Spearman’s rank correlation coefficient
The Spearman’s rank correlation coefficient measures the strength
and direction of the monotonic relationship between two vari-
ables, in this case between z and p. It is calculated as,

r = 1−
6
∑
i
d2i

n(n2 − 1) ,

where di = rank(zi) – rank(pi). Its value lies between −1 and 1; the
closer the magnitude of ρ to 1, the stronger the relationship indi-
cating that the relationship between z and p can be described
using a monotonic function [23]. We use the spearman.ci() func-
tion in R [24] to estimate ρ and its 95% confidence interval.

Negative binomial regression
Given the count nature of epidemic size, we also assume that zi
can be modelled as,

zi � NB
w

w+ mi
,w

( )
,

where, w ϵ(0, ∞) is the dispersion parameter, μi = exp(β0 + β1*pi)
and pi is the vector containing scaling of growth parameter values
estimated across the administrative areas. Under this parameter-
isation we have that, E(Zi|pi) = μi and, Var(Zi|pi) = μi + μ2i /w.
Small values of w indicate that the variance is greater than the
mean (over-dispersion) and, w =∞ indicates that the mean and
variance are equal (equi-dispersion). In this context, the parameter
w can be viewed as representing effects of unobserved variables or
other sources of pure randomness that may determine the epi-
demic size (see e.g. [25]). Estimation proceeds in a Bayesian max-
imum likelihood framework as before, replacing rCp(t) by μi and
taking Θ = {β0, β1, w}. The posterior distribution is also evaluated
in WinBUGS. We obtain point and interval estimates by summar-
izing converged posterior samples. The code is provided in the
supplementary material.

Results

For the 24 studied subnational Ebola outbreaks in West Africa and
for the two validation outbreaks, our estimates of the scaling of
growth parameter for four lengths of the ascending growth phase
and the corresponding epidemic size are summarised in Table 1.

Correlation analyses

Correlation analyses indicate a high monotonic association
between the scaling of growth parameter and the observed epi-
demic size (Table 2) – specifically, the greater the estimated
value of p, the greater the observed epidemic size.

The strength of the association appears to decline as the num-
ber of data points comprising the ascending phase decreases
below the epidemic peak. This is to be expected as the quality
of p estimates can be affected by the amount of available data
as well as the quality of information contained in the data.
Hence, this association tends to be weaker as the number of
data points of the ascending phase is reduced due to biased

and/or high-uncertainty estimates of the scaling of the growth
parameter.

Regression analyses

Table 3 shows parameter estimates obtained when observed
epidemic size is regressed on p using estimates derived for differ-
ent lengths of the ascending outbreak phase as explained above.
These results are in-line with correlation analyses – areas with
greater deceleration parameters have greater epidemic sizes and
vice-versa. More specifically, e.g. using onset to peak data, for a
δ unit increase in p, the expected epidemic size increases by a
multiplicative factor of exp(δ*β1) = exp(δ*3.201) with a corre-
sponding confidence given by (exp(δ*1.119), exp(δ*5.249)). In
other words, denoting the expected epidemic size of a deceler-
ation parameter equal to p by zp, the expected epidemic size of
a deceleration parameter equal to p + δ (zp+δ) equals the product
of exp(δ*3.201) and zp (Fig. 1). As already observed in the correl-
ation analyses, this positive effect appears to decline as the num-
ber of data points are reduced.

Our negative binomial regression analyses indicate significant
over-dispersion (w) within the data. Indeed, since p is estimated
it is prone to pure randomness especially during the early trans-
mission stages. Moreover, it is prone to possibly non-random
variability that is unobservable, observable and quantifiable, or,
observable but difficult to quantify (w represents random and/
or non-random heterogeneity). Indeed, several factors are under-
stood to have shaped the dynamics of the 2014 West Africa Ebola
outbreak, e.g. intervention measures, under-reporting, delayed
reporting, environmental factors (see, e.g. [26]).

Overall, there is a positive monotonic relationship between
observed epidemic size and the estimated growth scaling param-
eter, indicating the parameter p is predictive of epidemic size.
Moreover, the regression model predicts epidemic size for the his-
torical outbreaks in Uganda (2000) and Congo (1975) well within
the 95% prediction interval (Fig. 1).

Discussion

In this paper, we analyse the relationship between observed epi-
demic size and epidemic growth scaling of major Ebola outbreaks
at the subnational level of the three most affected countries during
the devastating 2014–16 Ebola epidemic in West Africa. We find
a statistically significant relationship between epidemic size and
scaling of epidemic growth parameter. Specifically, when an epi-
demic shows sustained growth, the expected epidemic size is
exponentially related to scaling of growth – epidemics with lower
scaling of growth have smaller epidemic sizes and vice-versa. For
example, scaling of growth parameters around p = 0.3–0.4, p =
0.4–0.6 and p > 0.6 were associated with epidemic sizes on the
order of 350–460, 460–840 and 840–2500 cases, respectively.
Moreover, the timing of epidemic onset (calendar week at which
epidemic starts to show sustained growth) did not explain differ-
ences in epidemic growth scaling across affected areas.

We find that this relationship also holds for two past Ebola
outbreaks in Congo (1976) and Uganda (2000). Specifically, our
model calibrated using data from the 2014–16 Ebola epidemic
in West Africa predicts the expected epidemic sizes to be approxi-
mately equal to 541 and 824, against observed values equal to
256 and 418, respectively. Note that our model predictions are
affected by some outlying data points, hence the overestimation.
Predictions closer to observed values are obtained when some
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outlying data points are excluded from the model calibration stage
(see supplement). It is also worth noting that an Ebola outbreak
recently occurred in the Democratic Republic of Congo, however,
the number of cases is rather limited or the epidemic growth
phase is very short [27].

Empirical studies characterising the relationship between the
scaling of growth parameter and final epidemic size are needed
for diseases beyond Ebola and should connect this relationship to

underlying population characteristics such as population density,
urbanisation as well as local capacity to prevent or mitigate the
spread of diseases. Indeed, in the context of the 2014–16 Ebola

Table 1. Observed epidemic sizes for the 24 Ebola outbreaks; p estimates and 95% credible intervals obtained when the GGM is fitted, per area, for varying
ascending phase lengths

Country Area
Observed

epidemic size

p estimates (95% credible interval) at x weeks before peak

0 1 2 3

Guinea Conakry 548 0.873 (0.589–1.000) 0.638 (0.248–0.999) 0.595 (0.182–0.990) 0.389 (0.011–0.881)

Guinea Forécariah 468 0.514 (0.333–0.682) 0.489 (0.284–0.670) 0.473 (0.263–0.664) 0.471 (0.248–0.694)

Guinea Guéckédou 380 0.353 (0.184–0.511) 0.291 (0.150–0.432) 0.319 (0.159–0.467) 0.301 (0.155–0.460)

Guinea Kérouané 140 0.421 (0.327–0.541) 0.404 (0.295–0.531) 0.531 (0.358–0.691) 0.622 (0.374–0.880)

Guinea Kindia 110 0.485 (0.233–0.711) 0.344 (0.086–0.593) 0.467 (0.161–0.764) 0.445 (0.082–0.758)

Guinea Macenta 702 0.772 (0.668–0.878) 0.798 (0.645–0.945) 0.933 (0.827–1.000) 0.803 (0.474–1.000)

Guinea Nzérékoré 245 0.368 (0.287–0.454) 0.360 (0.279–0.449) 0.366 (0.275–0.462) 0.359 (0.267–0.472)

Sierra Leone Bo 1498 0.773 (0.718–0.830) 0.794 (0.729–0.854) 0.797 (0.704–0.873) 0.771 (0.643–0.881)

Sierra Leone Bombali 1070 0.886 (0.796–0.990) 0.930 (0.860–1.000) 0.972 (0.923–1.000) 0.949 (0.868–1.000)

Sierra Leone Kailahun 741 0.521 (0.456–0.604) 0.528 (0.444–0.626) 0.548 (0.440–0.673) 0.571 (0.491–0.700)

Sierra Leone Kambia 296 0.327 (0.179–0.479) 0.248 (0.111–0.379) 0.247 (0.106–0.390) 0.236 (0.105–0.391)

Sierra Leone Kenema 537 0.457 (0.402–0.518) 0.459 (0.398–0.525) 0.469 (0.396–0.546) 0.484 (0.402–0.577)

Sierra Leone Kono 564 0.527 (0.334–0.689) 0.450 (0.287–0.609) 0.461 (0.280–0.626) 0.418 (0.257–0.596)

Sierra Leone Moyamba 297 0.545 (0.206–0.955) 0.160 (0.001–0.398) 0.230 (0.000–0.554) 0.121 (0.000–0.337)

Sierra Leone Port Loko 2179 0.548 (0.500–0.598) 0.536 (0.480–0.588) 0.527 (0.466–0.581) 0.527 (0.465–0.592)

Sierra Leone Tonkolili 617 0.920 (0.811–1.000) 0.739 (0.509–0.987) 0.791 (0.499–1.000) 0.367 (0.097–0.754)

Sierra Leone Western rural 1711 0.561 (0.504–0.615) 0.565 (0.501–0.622) 0.581 (0.519–0.636) 0.601 (0.548–0.653)

Sierra Leone Western urban 3152 0.595 (0.543–0.637) 0.574 (0.533–0.613) 0.582 (0.539–0.623) 0.577 (0.529–0.629)

Liberia Bomi 195 0.315 (0.236–0.413) 0.297 (0.211–0.400) 0.317 (0.209–0.428) 0.376 (0.260–0.514)

Liberia Bong 168 0.243 (0.140–0.372) 0.223 (0.103–0.350) 0.241 (0.120–0.378) 0.261 (0.128–0.409)

Liberia Grand Cape Mount 139 0.406 (0.172–0.619) 0.205 (0.025–0.392) 0.227 (0.026–0.434) 0.241 (0.012–0.446)

Liberia Lofa 465 0.451 (0.344–0.582) 0.408 (0.302–0.534) 0.378 (0.269–0.505) 0.361 (0.249–0.516)

Liberia Margibi 830 0.805 (0.680–0.925) 0.836 (0.700–0.957) 0.868 (0.745–0.998) 0.893 (0.750–1.000)

Liberia Montserrado 2683 0.821 (0.777–0.865) 0.835 (0.786–0.879) 0.844 (0.769–0.900) 0.831 (0.706–0.927)

Congo Bumba 256 0.455 (0.313–0.597) 0.406 (0.252–0.564) 0.440 (0.261–0.588) 0.418 (0.253–0.600)

Uganda Gulu 418 0.586 (0.500–0.670) 0.592 (0.482–0.693) 0.596 (0.458–0.722) 0.532 (0.390–0.695)

Table 2. Spearman correlation coefficient (ρ) between the scaling of epidemic
growth parameter p and the observed epidemic size (z) calculated using p
estimates from varying ascending phase lengths

Weeks before peak ρ 95% confidence interval

0 0.756 (0.548–0.854)

1 0.820 (0.633–0.903)

2 0.746 (0.507–0.875)

3 0.673 (0.332–0.867)

Table 3. Parameter estimates of the NB regression model: observed epidemic
size is regressed on the scaling of epidemic growth parameter p using data
from varying ascending phase lengths

Weeks before peak Effect Estimate (95% credible interval)

0 β1 3.201 (1.119–5.249)

w 1.670 (0.820–2.600)

1 β1 3.267 (1.797–4.862)

w 2.097 (1.028–3.197)

2 β1 2.925 (1.378–4.746)

w 1.780 (0.968–2.841)

3 β1 2.941 (1.322–4.583)

w 1.874 (0.973–2.927)
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epidemic, prior studies have suggested the role of population dens-
ity and its impact on transmission potential [28] and outbreak size
[5, 29]. More broadly, our results suggest that epidemic growth
indicators could contain useful information to characterise epi-
demic growth dynamics and their likely epidemic size. These results
also point to the need to design mathematical models that incorp-
orate characteristics of the epidemic growth dynamics, which is
likely to enhance forecasting and predictive power of mathematical
models. In fact, models that incorporate the generalised-growth
dynamics have shown promising forecasting performance when
confronted against real and synthetic epidemics [3, 7, 8].

Our results also confirm the spatial heterogeneity of growth
patterns of the 2014–16 Ebola epidemic in West Africa ranging

from very slow to nearly-exponential growth [1]. We have previ-
ously noted that epidemic incidence patterns encompassing large
spatial scales (e.g. national) can mask substantial heterogeneities
that are only evident at smaller spatial scales (e.g. county or
administrative area) [1]. During the 2014–16 Ebola epidemic,
national incidence curves for Guinea, Sierra Leone and Liberia
displayed short-lived exponential growth periods. Yet, local epi-
demics at the level of administrative areas were asynchronous
and early incidence growth largely followed polynomial dynamics
during 3–4 generations of disease transmission [1]. It is also
worth pointing out that epidemic growth patterns are partially
influenced by intrinsic factors relating to the natural history of
the disease (e.g. transmission mode, the variability of the

Fig. 1. The relationship between epidemic size and the scaling of epidemic growth parameter p across 24 administrative-level Ebola outbreaks comprising at least 7
weeks of epidemic growth, for varying ascending phase lengths. The relationship between epidemic size and scaling of epidemic growth parameter is consistent for
two past Ebola outbreaks that occurred in Congo in 1976, which affected the village of Yambuku [18] and in Uganda (2000), which mostly affected the district of
Gulu [19]. The relationship was extrapolated from our highest estimate of p (around 0.93; vertical dashed line) to p = 1.
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incubation period) [30] and the particular characteristics of the
geographic setting where the epidemic takes place [6].

In summary, our findings indicate that the generalised growth
model is convenient and advantageous in characterising differ-
ences in patterns of epidemic growth scaling, which we found to
be statistically related to epidemic size. Our results suggest that the
epidemic growth scaling parameter is a useful indicator of epi-
demic impact, which may have significant implications to guide
outbreak control for Ebola and possibly for other infectious dis-
eases. Our results should motivate further studies to characterise
differences in growth scaling across different disease systems and
how these and other local factors drive epidemic size. From a
public health perspective, our study could have significant impli-
cations for informing control interventions and public health
resources allocation, e.g. prioritise control in areas that exhibit
exponential or near-exponential growth dynamics.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818002819.
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