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Addressing the “minimum parking” 
problem for on‑demand mobility
Dániel Kondor1*, Paolo Santi2,3, Diem‑Trinh Le1, Xiaohu Zhang1,2, Adam Millard‑Ball4 & 
Carlo Ratti2

Parking infrastructure is pervasive and occupies large swaths of land in cities. However, on-demand 
(OD) mobility has started reducing parking needs in urban areas around the world. This trend 
is expected to grow significantly with the advent of autonomous driving, which might render 
on-demand mobility predominant. Recent studies have started looking at expected parking 
reductions with on-demand mobility, but a systematic framework is still lacking. In this paper, 
we apply a data-driven methodology based on shareability networks to address what we call the 
“minimum parking” problem: what is the minimum parking infrastructure needed in a city for given 
on-demand mobility needs? While solving the problem, we also identify a critical tradeoff between 
two public policy goals: less parking means increased vehicle travel from deadheading between 
trips. By applying our methodology to the city of Singapore we discover that parking infrastructure 
reduction of up to 86% is possible, but at the expense of a 24% increase in traffic measured as vehicle 
kilometers travelled (VKT). However, a more modest 57% reduction in parking is achievable with 
only a 1.3% increase in VKT. We find that the tradeoff between parking and traffic obeys an inverse 
exponential law which is invariant with the size of the vehicle fleet. Finally, we analyze parking 
requirements due to passenger pick-ups and show that increasing convenience produces a substantial 
increase in parking for passenger pickup/dropoff. The above findings can inform policy-makers, 
mobility operators, and society at large on the tradeoffs required in the transition towards pervasive 
on-demand mobility.

Cities currently devote a large amount of space and resources to provide parking, primarily used by private cars 
that are idle 95% of the time1. For example, in Los Angeles County, where there are 3.3 parking spaces per car, 
the total area of parking spaces is equal to 14% of total incorporated land area and is 1.4 times larger than the 
total area used by roads2. In dense city centers, parking can account for an even larger share—the total floor area 
dedicated to parking is between 25 and 81% of land area3 and can be larger than the floor area of office or retail 
use that it serves4. Using floor area as a metric counts each level of a parking garage separately, and so the spatial 
footprint of parking is less, but it can still account for over 5% of total urban land areas5,6. Similar levels of park-
ing are mandated in many Asian cities7. Provision of parking contributes to urban sprawl and high energy use 
associated with private car use and building and maintaining an excessive road infrastructure3,8,9.

However, changes are starting to be apparent with the increased popularity of shared mobility services pro-
vided by on-demand vehicle (OV) fleets, such as ridehailing services, which can increase vehicle on-road time 
and reduce parking needs10–12. Further opportunities are foreseen with the gradual transition to autonomous 
vehicles (AVs)13–15, which are expected to reduce the number of privately-owned cars and further popularize 
shared mobility16–18 due to being more cost-effective than both taxis and private vehicles1,19,20. OV fleets could 
reduce a city’s parking needs through several mechanisms. First, thanks to vehicle and/or ride sharing, OVs are 
expected to reduce the size of the vehicle fleet by 40–90%1,21–24, accompanied by similar reduction in the demand 
for parking25–28. Furthermore, OVs have no need to park at their destination, and can return home, park remotely, 
or even cruise (circle) around29,30, resulting in increased utilization of a smaller amount of parking. AVs can 
further reduce the spatial footprint of parking facilities by exploiting better maneuvering capabilities and the 
fact that individual vehicles need not be accessible to humans when parked31–33. While autonomous mobility is 
still forthcoming, most of the benefits related to the use of shared, on-demand mobility could be realized today. 
For this reason, in this study, we use the generic term OV, with the understanding that the model and results 
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presented here apply to both autonomous and chauffeured vehicles, but might only be realized with AVs due to 
economic reasons. Nevertheless, we note that cities have policy tools to enforce more optimal fleet operations for 
OV vehicles today50,51. We do not account for the potentional additional benefits due to better maneuverability 
of AVs mentioned above, that could further decrease the physical footprint of parking spaces.

Despite the initial studies mentioned above, a precise mathematical solution to the minimum parking problem 
is still missing. We can phrase the problem as follows: given a number NT of private vehicle trips, what is the 
minimum parking infrastructure needed to support this demand? In this paper, we use shareability networks and 
related optimal dispatching algorithms24,28 and derive the minimum number of parking spots NPov needed in a 
city, for a given size NVov of the fleet used to serve the NT trips. Clearly, on demand vehicles could be moving all 
the time, reducing the number of parking spots to zero. Hence, we introduce a parameter rmax that bounds the 
number of empty kilometers a vehicle can drive in-between trips, and show how NPov varies as a function of rmax . 
Finally, we measure the total additional travel distance TDextra needed to serve the NT trips with NVov vehicles 
and NPov parking spots, and formally characterize a tradeoff between the three quantities at stake (number of 
vehicles, parking infrastructure, and traveled distance) in a case study of the city of Singapore.

Results
Parking demand for OD mobility.  For the present study, we need to capture overall vehicular mobility 
demand in Singapore. We use data from SimMobility, probably the most precise and comprehensive simulator 
for urban mobility which incorporates a detailed model of people’s movements in Singapore34. We concen-
trate on the trips made in private vehicles and investigate the scenario in which all of these trips are served by 
on-demand vehicles instead. Investigating changes in mode choice due to availability of OV or AV as a travel 
option is an important question, but is beyond the scope of the current work as it has been studied extensively 
elsewhere16,18,35–38. Our methodology could however be easily scaled and applied to cases with other assumptions 
of travel demand28. We use a methodology based on bipartite matching of vehicles to trips and parking spaces to 
arrive at an estimate of NVov , NPov , and TDextra

24,28—see Fig. 1 (left panel) for an illustration and the “Methods” 
and “Supplementary Material” for a detailed description. We compare our results to an estimation of parking 
supply based on land-use data, parking requirements and constraints based on the SimMobility trip dataset, that 
yields a total of 1.37 million parking spaces, of which at least 25,740 are curb parking (see the Supplementary 
Material Sect. 4 and Table S4 for the description of parking types and estimation methodology).

Figure 1.   Tradeoff between parking demand and vehicle travel. The left panel shows an illustration of the 
problem and the process used to estimate parking requirements. It shows a simplified case with two on-demand 
vehicles, several available parking spaces and two passengers requesting a ride: the red vehicle is just dropping 
off a passenger and would need to find parking or a next passenger, while the green vehicle is already parked 
and would be available for new trips. We show search radiuses of rmax = 200 m and 400m for each vehicle; note 
that these values are used here for illustration purposes only as these are smaller than the values of rmax used in 
the actual simulations. Also, this illustration shows Euclidean distances, while the actual simulations use real 
distances calculated along the road network. For rmax = 200m , the red vehicle cannot find any parking, while 
the green vehicle can only serve one of the passengers. In this case, we would need to add further parking for the 
red vehicle and one additional vehicle to serve the passenger farther away. For rmax = 400m , the red vehicle has 
a choice of parking or serving one passenger, while the green vehicle could serve either passenger. Performing 
a maximum matching in this case will assign the two vehicles to the two passengers, thus resulting in a solution 
with less vehicles and parking, but more extra travel. On the right panel, we show estimation results with 
different values of rmax , ranging from 500m to unlimited, with each point corresponding to one possible value. 
We display relative demand for parking and vehicle fleet size as compared to our current estimate of available 
parking and fleet size on the y-axis as a function of additional VKT on the x-axis. The fitted line suggests that 
increase in VKT grows exponentially as a function of decrease in fleet size and parking requirements (see SI for 
discussion). Left panel was edited with Inkscape, version 0.92.3, available at https​://inksc​ape.org/; right panel 
created with Gnuplot, version 5.2, available at http://gnupl​ot.info/.

https://inkscape.org/
http://gnuplot.info/
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The right panel in Fig. 1 reports the main results of the analysis. We find that parking could be reduced by 
as much as 86% from the current estimate of around 1.37 million to about 189 thousand. At the same time, the 
number of vehicles would be reduced by a similar ratio, from around 676 thousand to below 89 thousand.

However, savings in parking come at a cost: in our minimum parking scenario, the OV fleet has about 24.2% 
more travel (total VKT) than the baseline case of people making the same trips in private vehicles. (Note that 
this estimate relies on the assumption that private car users can find parking exactly at their destination which 
is not true in all cases. Thus, we see our estimate of VKT increase as an upper bound.) We note that in this 
paper, we use VKT as a proxy for negative externalities of vehicular travel and thus view the increase in VKT 
as a measure of potential negative outcomes from an adoption of OVs; we acknowledge that the relationship 
between VKT and pollution, energy use, traffic congestion, accidents and noise can be non-linear and will be 
affected by independent factors such as vehicle propulsion and form factor, driving style and safety measures 
for both chauffeur-driven and autonomous vehicles39,40. Nevertheless, our results regarding the increase in total 
VKT highlight a tradeoff between parking reduction and increased vehicle travel. We control this tradeoff via 
the parameter rmax , that determines the maximum distance OVs are allowed to travel to reach parking or the 
next passenger. While in practice, rmax will be a parameter determined by economics of fleet operations or regu-
lations set by governments, for the purpose of the current study, we treat it as a design parameter that allows 
us to explore the tradeoff between parking, fleet size and vehicle travel. If human mobility flows were perfectly 
balanced and evenly distributed throughout the day, no such tradeoff would occur—i.e., if for each passenger 
delivered at a destination, there were another passenger at the same location available for immediate pickup. In 
practice, however, there is overwhelming literature showing that human flows are highly unbalanced spatially 
and temporally35,41–43; thus, it is important to observe that, unless sharing of rides is considered, the sharing of 
vehicles cannot directly reduce the total traveled distance.

In Fig. 1 (right panel), each point represents one realization of our estimation with values of rmax ranging 
from 500m to infinity. The first striking observation is that relative reductions in parking demand closely track 
relative reductions in fleet size. In fact, there is an almost constant ratio of ∼ 2 between the two quantities (see SI 
Table S2). Intuitively, this is explained by the fact that each OV uses parking in two locations: close to residential 
areas where people start their commute in the morning, and in the city center where parking is necessary to 
be able to serve trips in succession (where moving to park in a remote location would take up too much time). 
Enforcing a strict separation between short-term waiting areas used for pick-up and drop-off and long-term park-
ing can change this picture however, as we show in Supplementary Material (Sect. 3.3, SI Fig. S11). Nevertheless, 
such a strict separation will force OVs to travel even longer distances to find parking during the day and result 
in further increases in VKT, up to 35%, as shown in Fig. S11 in the Supplementary Material, where the number 
of parking spaces tends to 1, while an additional 0.4 “waiting space” is required on average per vehicle to handle 
passenger pick-ups and drop-offs. Additionally, as shown in Fig. S6 in the Supplementary Material, and in the 
discussion below, the number of pick-up and drop-off areas is highly dependent on the spatial discretization of 
trip start and end locations.

A second important observation is that the relationship between the extra distance traveled TDextra and the 
unified variable Nov = (NVov ,NPov) can be empirically described by an exponential function

where a = 9.6 ( R2
= 0.976 ). This result implies a law of diminishing return for the control parameter rmax . A 

short search radius of 500 m is already sufficient to absorb many inefficiencies related to asymmetric and unbal-
anced mobility flows, achieving over 57% reductions in both fleet size and parking needs compared to the base-
line scenario. At the same time, TDextra is limited to about 1.3%. On the other hand, if higher reductions in fleet 
size/parking infrastructure are sought, the search radius should be significantly increased, up to 5 km or above. 
Despite the 10-fold increase in search radius, Nov is reduced by only 82% (2.45-fold reduction), while empty 
travel kilometers are increased to about 18% over TDcur (over 13-fold increase). This highlights that additional 
gains might not be worth the cost of additional VKT after some point and that cities and fleet operators might 
have very different interests in this regard, thus the outcomes will depend to a large extent on the regulatory 
environment and the tools local governments are given to influence fleet operations.

One way to offset additional VKT is to encourage sharing of rides. As we show in the Supplementary Material, 
Figs. S4 and S5, increase in VKT could be compensated if some of the trips were shared, with multiple passengers 
using the same vehicle. In accordance with our previous finding of the exponential nature of the tradeoff between 
parking and VKT, the ratio of trips that need to be shared to offset VKT increases is highly dependent on the 
rmax control parameter: only a few percent of trips need to be shared in the case of rmax = 500 m , while the ratio 
of shared trips need to be up to 30–50% to compensate VKT increases for the cases of rmax = 5 km and 10 km . 
Given that the basis of our analysis is trips currently made in private vehicles, i.e. trips where convenience is likely 
an important factor, and also that the ratio of shared rides is typically lower than these values for ridesourcing 
operators44,45, it is questionable whether completely eliminating VKT increases with ridesharing will be feasible.

The significance of rmax is even more evident when looking at the utilization of the fleet during the day as 
displayed in Fig. 2. For small values of rmax , fleet usage is limited by the ability of vehicles to reach trip requests. 
For large values of rmax , fleet size is determined by the need to serve peak hour demand which is significantly 
higher than at other times.

The role of waiting areas.  The analysis so far considers only parking demand, i.e. storage for OVs that are 
not in service. In the following, we further investigate pick-up demand, i.e. space for OVs to wait while picking 
up a passenger. If users prefer short or zero wait times for an on-demand trip, the vehicle will need to (at least 
in expectation) arrive prior to a trip’s start time and wait in a suitable area. Ordering a vehicle in advance can 

TDextra = e
−aNVov ,
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ensure this, but can introduce an uncertainty in how long the vehicle needs to wait for the passenger. This is cur-
rently discouraged by operators by charging extra fees for vehicles waiting and presenting a user interface that 
emphasizes the immediate availability of vehicles. Especially with the adoption of AVs, the economics of this 
situation could change, with the cost of vehicles waiting decreasing, and operators realizing the value of receiv-
ing trip requests early that allows more optimized dispatching and the appeal of passengers not having to wait, 
essentially creating incentives to order a vehicle early even if the exact departure time is not known yet. Such 
vehicles will need to wait in a convenient location, that we term waiting areas in general and which could be 
interchangeable with long-term parking or be required to be separate from them.

We incorporate demand for such waiting areas in our model via the passenger “convenience” parameter TW 
and require vehicles to arrive at least TW time before the start of each trip, with the need to provide parking for 
them for this time. Using this assumption, we calculate the number of short-term waiting spots needed to acco-
modate this additional demand as the sum of the maximum number of waiting vehicles at each discrete location 
and interpret it as the “price of convenience”. As displayed in Fig. 3 (left panel), total demand for waiting areas can 
be as large as 6% of our current estimate of parking supply (for TW = 10min ). Since this demand is assumed to 
be at the exact location passengers start their trips, it is also highly affected by how such locations are discretized 
in space—i.e., the extent to which pick-up locations are consolidated in a central point on each block or groups of 
blocks (see Fig. S6 in the Supplementary Material and the discussion in the “Methods” section for more details).

How much pick-up demand will add to the total parking demand of a city will depend on the policies related 
to use of short-term and long-term waiting areas, i.e. whether waiting areas can be used for long-term parking 
as well. We investigate two scenarios for this; in Fig. 3 we show that if there is a strict separation between short-
term waiting areas and long-term parking (“separate case”), combined demand is significantly higher than if 
waiting areas are available for long-term parking as well (“mixed” case). The assumptions used in this estima-
tion are further discussed in the Supplementary Material, Sect. 3, along with more detailed results for each case 
(Figs. S6–S10).

Discussion
Our results show that a drastically reduced fleet of OVs could serve all private vehicle trips in Singapore, freeing 
up tremendous amount of space currently dedicated to parking. Parking lots could be redeveloped for housing 
and other productive uses, in turn stimulating the creation of dense, walkable neighborhoods and reducing 
urban sprawl and the associated societal and environmental costs9,46. In the minds of some planners, OVs and 
AVs have the potential to spur an evolution towards a more pedestrian-oriented society and make urban living 
more attractive47,48. At the same time, reducing the size of the vehicle fleet has been linked to the potential of 
reducing lifecycle emissions from vehicle manufacture and disposal39,49.

We do, however, identify four major limitations to the potential to reduce the amount of urban land devoted 
to parking.

First, the more urban land is freed up through parking consolidation, remote parking, and a shared fleet 
model, the more vehicle travel will result from deadheading and other vehicle relocation activity, e.g. vehicles 
moving to and from the remote lots. While parking demand can be reduced to as little as 14% of the baseline, 
this comes at the expense of a 24% increase in VKT.

Second, human mobility is temporally concentrated, particularly in the morning and afternoon peak com-
mute periods41–43. Most vehicles will be idle at night, and many during the middle of the day, and require park-
ing. While such parking facilities could be in remote locations, this would further increase vehicle travel from 
deadheading.

Third, there is a spatial mismatch between the places where reduced parking is most beneficial, and the 
places where OVs can most efficiently contribute to parking reductions (see Figs. S13–S16 in the Supplementary 

Figure 2.   Utilization of fleet during the day for rmax = 500m (left), 2 km (middle) and unlimited (right). The 
upper limit of the y-axis scale indicates the total fleet size necessary, ranging from ∼ 300,000 vehicles in the left 
panel to ∼ 100,000 in the right panel. Figures were created with the ggplot2 R package, version 3.3.0, available 
at https​://ggplo​t2.tidyv​erse.org/, running on R version 3.6.3, available at https​://www.r-proje​ct.org/. Additional 
editing was performed in Inkscape, version 0.92.3, available at https​://inksc​ape.org/.

https://ggplot2.tidyverse.org/
https://www.r-project.org/
https://inkscape.org/
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Material and “Supplementary Videos” for the spatial distribution of parking). Most of the freed-up spaces are in 
residential areas, while the most valuable land is in the central business district.

Fourth, pick-up demand can constitute a large amount of the total parking demand of an OV fleet, up to 25% 
in highly optimized scenarios (see SI Fig. S9). As these locations need to be easily accessible to passengers, their 
placement and design is less flexible and can thus hamper the efficient parking solutions provided in the future 
by autonomous vehicles. At the same time, we expect that the size of pick-up areas can be limited if we assume 
on-demand vehicles to be identical and thus interchangeable. Passengers could start their trip in any available 
vehicle which are replaced by cars from long-term parking areas.

In conclusion, our results show that very large swaths of urban land currently used for parking could be freed 
thanks to OD mobility. Furthermore, a range of trade-offs between parking reductions and increase in VKT 
have been quantified. While the equilibrium condition of a given city will depend on the actions of private fleet 
operators, governments have several tools to influence the latter’s behaviors. Deadheading can be discouraged 
by increasing the cost of vehicle travel through higher fuel taxes, congestion pricing or fleet-wide controls on 
vehicle utilization for operators50,51. Parking can be discouraged in central areas through parking taxes or manda-
tory price increases10 and land-use planning; at a minimum, cities can eliminate distortionary regulations that 
require a minimum amount of parking4,7, or establish maximums instead52. Planning ahead using data-driven 
decision-making—as enabled by approaches such as the one outlined in this paper—is especially important 
when considering future scenarios where shared AV fleets might make OD mobility the predominant mode of 
transport36,37,53,54.

Methods
To estimate parking needs and travel of a fleet of OVs, we investigate the hypothetical scenario where every 
person currently using a private car for trips in the city–state of Singapore is willing to switch to using a shared 
mobility service; we are thus exploring solutions which serve all current trips made by private vehicles. We esti-
mate such trips using SimMobility, an integrated agent-based simulation platform for urban mobility capable of 
giving realistic estimates of trips made by the target population and calibrated to represent Singapore in 201234. 
Our methodology extends on our previous work focusing on a model of commuting28 and methods employed 
by Santi et al.24,55 with regards to ride-sharing and taxi fleet size estimation; now we focus on general trips for the 
whole population that are based on an extensive simulation of urban mobility in Singapore34. Our main goal is 
to estimate the number of vehicles NVov , parking spaces NPov and extra travel TDextra needed to accommodate 
all trips made in private vehicles under ideal conditions. We then compare our results to the current number of 
cars, parking and travel distance, denoted by NVcur , NPcur , and TDcur , respectively. Note that TDcur is defined 
as the sum of the travel distance of the NT given trips along shortest routes, under the assumption that there is 
always a parking spot available at the destination of a trip. Thus, TDcur can be considered as a baseline minimum 
distance that needs to be traveled to transport all passengers from respective origin to destinations. In this paper, 

Figure 3.   Estimating short-term parking requirements. Left: pick-up demand (i.e. parking spaces used as 
waiting areas) relative to the baseline parking demand as a function of the passenger convenience parameter 
( TW ). For TW = 10min , this number reaches almost 6% of the baseline (current parking demand), i.e. about 
80,000 spaces. Note that this number is independent of the simulation parameter rmax , since in all cases, waiting 
cars need to be present at the trip start nodes; compared to the long-term parking demand, this number will 
correspond to increasingly larger ratio as rmax is increased. Note that the curve starts from TW = 1 s , where the 
pick-up demand is the sum of the maximum number of trips starting at the same time at each discrete location, 
i.e. about 8,000 parking spaces. Right: total parking demand ( NPov ) including pick-up demand as a function of 
increase in VKT ( TDextra ) considering different expected extra required wait times ( TW ) and usage policies for 
short-term parking. Note that these numbers also include the increased demand due to fleet size increases to 
compensate for the extra time spent idle. Results for TW = 0 are the same as displayed in Fig. 1. Figures were 
created with Gnuplot, version 5.2, available at http://gnupl​ot.info.

http://gnuplot.info
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we consider the variables representing OV system performance—NVov , NPov , and TDextra—as normalized vs. the 
current system parameters. Formally:

Our approach for fleet size estimation is in contrast to most previous work, which analyzed the operational char-
acteristics of autonomous mobility on demand (AMOD) services under pre-determined fleet sizes1,21,22,26,35; our 
main interest is providing lower bounds on fleet size, parking requirements and travel and explore the tradeoffs 
among these bounds. In this goal, our work is most similar to that of Spieser et al.23 and Vazifeh et al.24. The 
main difference from Ref.23 is that our approach also results in an idealized dispatching strategy which satisfies 
all trips without delay, while the estimate presented in23 is an absolute minimum that does not take into account 
operational characteristics, resulting in a need for a much larger fleet to provide adequate service to most pas-
sengers. In contrast, the work of Vazifeh et al.24 only focused on serving taxi trips and on ideal fleet size and did 
not consider parking or extra travel.

Our focus on parking demand is most similar to the aims of the previous study by Zhang and Guhathakurta26; 
the main difference again is that instead of running the simulation based on a presumed fleet size and parking 
availability, we aim to calculate the minimum numbers based on our constraints. Our work is complementary to 
recent work by Millard-Ball30, who present a detailed simulation of parking strategies on privately-owned AVs 
and to Xu et al.27 who investigate parking needs of ridesourcing vehicles. In contrast, we are explicitly interested 
in the scenario where the adoption of shared mobility brings along a shift in vehicle ownership as well.

Trip data and estimate of current parking supply.  The input for our analysis is a dataset of trips made 
by private vehicles generated by SimMobility, a complex platform for generating and simulating urban mobility 
realistically, based on a thorough process of calibration and verification using data including household travel 
surveys from the 2010 to 2015 period34. Our dataset focuses on Singapore which is currently the main target of 
SimMobility. The data includes 1.44 million private car trips made by 676 thousand individuals over the course 
of one day in the simulation. Trips have a median distance of 7.2 km , average distance of 8.9 km with a standard 
deviation of 6.6 km . The number of trips is realistic for Singapore, a city-state of about 5 million people with one 
of the lowest number of private vehicles per capita in the developed world, but still suffering from the effects of 
congestion in peak periods and dedicating significant resources and space to road infrastructure. The trip data 
is generated by SimMobility’s mid-term simulator module as trip chains taken by the agents in it, based on a 
calibrated model of present-day Singapore. Due to the nature of the modeling, this process results in one day’s 
data, that can be considered as a typical workday in Singapore. We are not using SimMobility’s capabilities to 
evaluate changes in mode share due the introduction of ride-hailing and AVs35,37; instead, we are assuming that 
every trip made in private vehicles today would be substituted with a ride in an OV, thus we can investigate what 
are the implications of such a setup under simplified conditions.

Besides trip data, SimMobility includes a database of buildings in Singapore56,57. We estimate current parking 
supply from this database and publicly available data from official sources: the minimum parking requirements 
published by the Land Transport Authority (LTA)58, the list of parking spaces managed by the Urban Redevelop-
ment Authority (URA)59, and the aggregate number of parking spaces managed by the Housing Development 
Board (HDB)60. We further combine this data with results for parking occupancy from the trip data itself. This 
process results in an estimate of 1,369,576 parking spaces, or 2.03 parking spaces per person. We note that the real 
number is potentially even higher as our estimate is based on minimum requirements and the minimum amount 
needed to satisfy current trips made in private vehicles; in practice, developers may exceed the minimums. For 
comparison, parking supply for cities in the USA is estimated at between 2.49 and 3.3 spaces per vehicle2,5,6. We 
note there are significant policy and land use differences between Singapore and the USA, thus it is reasonable 
that the Singapore levels are lower. Furthermore, as of 2019, Singapore has started significantly reducing mini-
mum parking requirements and imposing maximum limits on parking for new development52; nevertheless, 
since our simulations were calibrated based on data in the 2010–2015 period, it is reasonable that we use the 
prevailing minimum parking requirements at that time58. We describe the procedure for estimating the number 
of parking spaces in more detail in the Supplementary Material, in Sect. 4, with numbers of different types of 
parking displayed in Supplementary Table S4 and the spatial distribution of estimated parking supply in Fig. S13.

Trip estimation based on bipartite matching and heuristics.  Our main methodology for assigning 
vehicles to trips and parking is given in detail in the Supplementary Material as Algorithms 1 and 2. It proceeds 
by first separating trips into start and end “events” and then processing these events sequentially (“greedy heu-
ristic”, Algorithm 1) or in batches (“bipartite matching”, Algorithm 2). In both cases, an event is considered to be 
successfully processed if either (1) the end of a trip is matched to the start of a consecutive trip such that the same 
vehicle is able to serve the later trip after finishing the earlier one; (2) the start of a trip is matched to a parked 
vehicle, that is available to serve it; (3) the end of a trip is matched to an unoccupied parking location, meaning 
that the vehicle will park there after finishing the trip. Events that are not matched are then satisfied by adding 
more cars and parking to the simulation, similarly to previous works28,61. This way, processing starts with zero 
cars and parking, creating only a minimal number of both over the course of processing all trips. We note that 
the parking spaces counted by this methodology are assumed to be used exclusively by OVs, but obviously, any 
specific parking space will be typically used by multiple vehicles during the day. This methodology also naturally 
allows us to keep track of vehicle utilization over the course of the simulation. We display the results of this in 
Fig. 2.
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The main results of this paper were obtained by the bipartite matching methodology presented as Algorithm 2 
in the Supplementary Material. Comparison of different methodologies is presented in Fig. 4; results fit on the 
same trend as the main results displayed in Fig. 1. A further variation is that each maximum matching problem 
can be performed as a weighted maximum matching by weighting the edges in the graphs by the distance of 
the connection. In this way, the result will minimize the connection distances while maximizing the number of 
matches. This results in general better results (see Fig. 4); we note that this comes at the cost of longer runtimes. 
We note that the greedy heuristic estimate (Algorithm 1) is an extension of our previous work28, while the main 
idea of performing a matching among trips in batches is similar to the online solution for taxi dispatching given 
by Vazifeh et al.24 and the online matching problem studied in detail by Lowalekar et al.62; the main difference 
and thus a necessary extension is to consider parking for vehicles not in use at any point in time.

Beside matching trip requests in an online fashion or in batches, we also incorporated the global shareability 
network approach of Vazifeh et al.24. This corresponds to a model, where an “oracle” has knowledge of all trip 
demands in a day in advance and can decide on an optimal dispatching strategy based on that. We combined 
this approach with Algorithms 1 and 2 to be able to keep track of parking usage as well.

Effect of discretization of space.  The main results of the paper were obtained by considering a set of 
4,529 discrete “nodes” that can be the start and end locations of trips, with parking possibly present at any of 
these nodes. Travel distances and travel times were estimated between all node pairs based on the real road net-
work and travel data. This raises the question if this discretization can affect the result of the simulation. We note 
that the discretization is present in a real city as well as there are a discrete set of buildings and associated parking 
locations and garages that can act as trip origins and destinations. Nevertheless, using only 4,529 nodes is still an 
approximation. To test this, we also implemented a version of the main simulation in a continuous space model, 
where trips can start and end at any location, distances are taken as the Euclidean distance between points and 
travel times are calculated assuming a constant average travel speed. In this case, we adjusted the random start 
and end location of trips independently, by adding a variation to their coordinates chosen at uniformly random 
in an interval between [−167m, 167m] . We find that the results of this modified simulation agree well with the 
main results presented in this paper and increased fleet VKT can be modeled as an exponential function of the 
fleet size on an increased range of possible realizations. We display these results in the Supplementary Material 
in Figs. S2 and S3.

Discretization in space can further significantly affect results for the number of parking spaces used as wait-
ing areas, since these need to be provided at the exact trip start locations. To account for this, we have carried 
out further tests, where trip start and end events were disaggregated randomly among Ns discrete locations for 
each of the original nodes in our dataset. The results of this analysis show that the number of spaces used as such 
waiting areas is highly dependent on the choice of Ns , showing an approximate linear growth with increasing Ns 
(i.e. increasing number of distinct location), as we display in Fig. S6 in the Supplementary Material. Even when 
only counting the absolute minimum required pick-up locations (the case of TW = 1 s , i.e. “instant” pick-ups), 
these correspond to 3% of the baseline parking demand for Ns = 10 and over 10% of the baseline for Ns = 40 , 
a case where each building in Singapore is assumed to have its own waiting area (see “Supplementary Material” 
for more explanation). This latter value is already comparable to the total long-term parking demand for the 
highly optimized cases among our results. Requiring longer pick-up or waiting times of cars for passengers (i.e. 
higher TW values) results in even higher demand for waiting areas.

This highlights that policies regarding the allocation of waiting and pick-up areas for on-demand mobility can 
affect total parking demand and urban space use. Some pick-up areas will indeed need to be provided reserved 

Figure 4.   Comparison of results achieved with different approaches of assigning vehicles to trips and parking. 
Left: results for parking demand. Right: results for fleet sizes. For smaller fleet sizes, the approaches based on 
weighted matching tend to significantly outperform the other variations. Figures were created with Gnuplot, 
version 5.2, available at http://gnupl​ot.info.

http://gnuplot.info
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space, while in other cases, pick-ups could happen curbside, using traffic lanes, or via a more flexible use of road 
space. These questions will need to be addressed in more detail, using microscopic simulation of vehicles arriv-
ing, waiting and meeting passengers that is beyond the scope of the current work.
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