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Ştefania Silvia Balea1, Alina Elena Pârvu2*, Marcel Pârvu3*, Laurian Vlase4,
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The pathophysiology of inflammation and oxidative stress generated during different types
of cancers and anticancer treatments is well documented. Traditionally, grape pomace is
used for animal feed, organic fertilizers, ethanol production or is disposed as waste.
Because grape pomace is a rich source of antioxidant compounds, the purpose of the
study was to evaluate the antioxidant, anti-inflammatory, and antiproliferative effects of
fresh and fermented grape pomace extracts of two Vitis vinifera L. varieties Fetească
neagră and Pinot noir cultivated in Romania. Firstly, grape pomace phytochemical analysis
and in vitro antioxidant tests were performed. Secondly, the effect of a seven-day
pretreatment with grape pomace extracts on the turpentine oil-induced inflammation in
rats was assessed by measuring total oxidative status, total antioxidant response,
oxidative stress index, malondialdehyde, total thiols, nitric oxide and 3-nitrotyrosine.
Thirdly, the antiproliferative properties were evaluated on human lung carcinoma (A549),
human breast adenocarcinoma (MDA-MB-231), murine melanoma (B164A5), and
keratinocyte (HaCat) cell lines. Fetească neagră and Pinot noir grape pomace extracts
have a rich content of polyphenols and in vitro antioxidant effect. Fermented samples had
higher polyphenol content, but fresh samples had better antioxidant activity. Pretreatment
with grape pomace extracts reduced inflammation-induced oxidative stress in a
concentration-dependent way, fresh samples being more efficient. The malignant cells’
proliferation was inhibited by all grape pomace extracts, fermented Fetească neagră
extracts having the strongest effect. Conclusion: fresh and fermented pomace extracts of
Vitis vinifera L. varieties Fetească neagră and Pinot noir cultivated in a Romanian wine
region have antioxidant, anti-inflammatory and antiproliferative effects.
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INTRODUCTION

During tumor development tissue hypoxia occurs, which
activates signaling pathways stimulating cell proliferation,
angiogenesis, and death. Hypoxia in the tumor microenvironment
causes tumor cells to secrete chemokines, such as interleukin-1
(IL-1), tumor necrosis factor alpha (TNF-alpha), or interleukin 8
(IL-8), which activates neutrophils to produce more pro-
oncogenetic and immunosuppressive factors (Ardi et al., 2007).
Lymphocytes are an important part of the immune response to
tumors because they inhibit tumorigenesis and kill cancer cells.
However, in a proinflammatory tumor state, neutrophils can
suppress the efficient lymphocyte-mediated immune response.
Moreover, there are tumor-derived factors that induce
myelopoiesis, accumulation, and differentiation of tumor-
associated macrophages (TAMs). These TAMs produce ROS
and RNS in the tumor microenvironment, triggering a tumor-
induced inflammation, and creating a vicious cycle between
inflammation and cancer (Ardi et al., 2007; Reuter et al., 2010;
Andrisic et al., 2018; de Souza et al., 2018). As for platelets,
thrombocytosis is common in cancer because tumor cells secrete
thrombopoietic cytokines, such as interleukin-6 (IL-6). In turn,
platelets can promote angiogenesis through vascular endothelial
growth factor (VEGF) secretion and thus protect tumor cells
from the immune response. Cancer cells’ adaption to hypoxia is
part of the malignant phenotype and aggressive tumor
progression mechanism (Bambace and Holmes, 2011; Petrillo
et al., 2018).

Another issue related to the tumor-induced inflammation is that
it modulates cancer responsiveness or resistance to anticancer
therapies. In some cancers, elevated basal nuclear transcription
factor NF-kB activity and inflammatory mediator production were
associated with tumor resistance to chemotherapy and radiation.
Chemotherapy with cisplatin, daunomycin, doxorubicin, 5-
fluorouracil, paclitaxel, tamoxifen, vinblastine, and vincristine may
cause chemoresistance by activating the NF-kB, and NF-kB
inhibition acts as radiosensitizer of the tumor cells (Silva et al.,
2018). Because oxygen is the best radiosensitizer, tumor-induced
hypoxia is considered to be the most important cause of
radioresistance (Reuter et al., 2010; Kim et al., 2018).

In order to interrupt the vicious circle between inflammation,
nitro-oxidative stress, and cancer, the endogenous enzymatic and
nonenzymatic antioxidant molecules may be supplemented with
exogenous antioxidant molecules, such as plant-derived
polyphenolic compounds. In high concentrations, high pH, and
the presence of redox-active metals, polyphenolic compounds can
exert a pro-oxidant effect with cytotoxic consequences (Pizzino
et al., 2017).

Grape pomace (GP) is a residue of the winemaking process and
represents an important ecological and economic problem of waste
management, since around 20% of the grapes weight remains as
GP (Beres et al., 2017). Due to the incomplete extraction during the
winemaking process, around 70% of polyphenolic compounds
remain in fermented GP. Traditionally it is mainly used for
animal feed, organic fertilizers, ethanol production or is disposed
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as waste. Over the last decades many products were obtained from
grape pomace, and the most common approach was to prepare GP
extracts (Garcıá-Lomillo and González-SanJosé, 2017). In some
countries GP is included in functional foods and cosmetic
preparations. Due to its polyphenol content with strong
antioxidant effect, GP seemed to be efficient for the prevention of
disease-associated oxidative stress. Other GP effects are
the antimicrobial and anti-inflammatory activities (Teixeira
et al., 2014).

The aims of the study were to evaluate the antioxidant, anti-
inflammatory, and antiproliferative effects of the fresh and
fermented GP ethanol extracts from two Vitis vinifera L.
varieties, Fetească neagră and Pinot noir, cultivated in Romania.
MATERIALS AND METHODS

Reagents and Cell Cultures
Sulfanylamide (SULF), N-(1-Naphthyl) ethylenediamine
dihydrochloric acid (NEDD), vanadium chloride (III) (VCl3),
methanol, diethyl ether, xylenol orange [o-cresosulfonphthalein-
3,3-bis (sodium methyliminodiacetate)], orthodianisidine
dihydrochloric acid (3-3′-dimethoxybenzidine), ferrous
ammonium sulfate, hydrogen peroxide (H2O2), sulfuric acid,
hydrochloric acid, glycerol, trichloroacetic acid (TCA),
ethylenediaminetetra-acetic acid, sodium dodecal, sulfate
butylated hydroxytoluene, thiobarbituric acid, 1,1,3,3-
tetraethoxypropane, 2,4-dinitrophenylhydrazine (DNPH), 5,5′-
dithionitrobis 2-nitrobenzoic acid (DTNB), 1,1-diphenyl-2-
picrylhydrazyl (DPPH), o-phthalaldehyde (Darmstadt, Germany)
were purchased from Merck and Sigma-Aldrich (Taufkirchen,
Germany), 96% ethanol (SA, Iași, Romania), ascorbic acid (Lach-
Ner, Czech Republic). All chemicals were of analysis grade.

A549—human lung carcinoma, MDA-MB-231—human breast
adenocarcinoma, B164A5—murine melanoma cell lines, and
HaCat keratinocyte cell lines were purchased from the European
Cell Culture Collection (ECACC). Dulbecco’s Modified Eagle
Environment (DMEM), fetal calf serum (FCS) and resazurine
sodium salt were purchased from Sigma Aldrich (Munich,
Germany). The phosphate buffer solution (PBS) and the mixture
of penicillin/streptomycin and trypsin-EDTA antibiotics were
purchased from Gibco (Karlsruhe, Germany).

The ELISA kit for 3-nitrotyrosine (3NT) (KA0445) was
purchased from ABNOVA EMBLEM (Heidelberg, Germany).

Grape Samples
The Vitis vinifera L. variety Fetească neagră (clone 762 grafted on
rootstock SO4, Austria), and Vitis vinifera L. variety Pinot noir
(clone 828 grafted on rootstock SO4, France) planted in 2006, in
Mureș County, Mica parish, part of Târnavelor Plateau (46°21′
44.5″N and 24°23′55.7″E; 330–350 m above sea level), Romania,
were used in our study. Grapes were harvested manually at full
maturity level during the 2018 vintage. The GP samples were
collected in two winemaking stages: the fresh unfermented GP
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was supplied immediately after pressing the grapes, and the
fermented GP was supplied after 20 days of fermentation at 20°C
and must separation. The samples were stored in vacuum bags at
−22°C prior to the analysis and use in the experiments.

Plant Extract Preparation
Fetească neagră and Pinot noir fresh and fermented GP extracts
were obtained with 70% ethanol (Merck, București, Romania) by
a modified Squibb repercolation method (1/1 g/ml) (Andreicut
et al., 2018).

Determination of Total
Polyphenols Content
The total polyphenol content (TPC) of the extracts was measured
using the Folin–Ciocâlteu method, with some modifications. The
absorbance was measured at 760 nm using a JASCO UV-VIS
spectrophotometer. Standard curve was prepared using different
concentrations of gallic acid (GAE). TPC was expressed as mg
GAE/g dry plant material (Toiu et al., 2018).

LC/MS Analysis of Polyphenolic
Compounds
A HPLC-MS method was used for the qualitative and quantitative
polyphenol determination. The analysis was carried out with an
Agilent 1100 Series HPLC system (Agilent, USA) consisting of a
G1322A degasser, G1311A binary gradient pump and a G1313A
autosampler, and a UV detector. The chromatographic separation
was performed using a reversed-phase analytical column (Zorbax
SB-C18 100 mm × 3.0 mm i.d., 3.5 µm particle) maintained at 48°
C. The mobile phase consisted of a binary gradient: methanol and
acetic acid 0.1% (v/v). The mobile phase was delivered with a flow
rate of 1 ml/min and the injection volume was 5 µl. Polyphenol
detection was performed on UV (330 and 370 nm) and MS mode.
The MS system operated using an ion trap mass spectrometer with
electrospray negative ionization. The chromatographic data were
processed using Chem station and Data Analysis software from
Agilent, USA. The calibration curves in the 0.5–5 µg/ml range
showed good linearity (R2 < 0.999) for a five point plot (Toiu et al.,
2018; Farcaș et al., 2019).

For the LC/MS profile polyphenolic compounds standards
were: caftaric acid, hyperoside, isoquercitrin, rutoside, miricetol,
quercitrin, quercetol, and kaempferol.

In Vitro Antioxidant Activity Analysis
The antioxidant activity (AOA) of the extracts was evaluated by
DPPH radical scavenging assay (Blois, 1958). DPPH is
considered a stable radical because of the paramagnetism
conferred by its odd electron. DPPH solution in ethanol 96%
with a concentration of 1 mMwas used as a standard antioxidant
stock solution. In each reaction, 0.5 ml of the GP extracts was
mixed with 0.5 ml of 1 mM DPPH and with 2 ml of 0.167 mM
ascorbic acid in ethanol 96%. The mixture was analyzed using a
UVI Line 9400 spectrophotometer (SI Analytics), for 20 min at
10 s intervals. Ascorbic acid was used as positive control. The
reduction of DPPH free radicals was measured by reading the
Frontiers in Pharmacology | www.frontiersin.org 3
absorbance at 516 nm. DPPH is a purple colored stable free
radical and when reduced, it becomes yellow. The AOA-
percentage was calculated with the following formula:

AOA %ð Þ = 100 −
A  sample
A  control

� 100

where: AOA = antioxidant activity (%); A control = absorbance
of DPPH measured at 516 nm, for 20 min at an interval of 10 s
(without sample); A sample = absorbance of the sample
measured at 516 nm, for 20 min at an interval of 10 s.

Animals and Experimental Protocol
The experiments were performed in triplicate on 14 groups (n =
5) of male albino Wistar rats, weighing 200–250 g that were bred
in the Animal Facility of the Iuliu Hațieganu University of
Medicine and Pharmacy, Cluj-Napoca, Romania. The animals
were housed in standard polypropylene cages (five per cage)
under controlled conditions (12 h light/dark cycle at an average
temperature of 21–22°C) and with ad libitum access to standard
pellet diet (Cantacuzino Institute, Bucharest, Romania) and
water. Experimental protocols have been approved by the
Ethics Committee (nr. 26/16.12.2015) of the Faculty of
Veterinary Medicine, University of Agricultural Sciences and
Veterinary Medicine, Cluj-Napoca, Romania. Four ethanolic
extracts of GP were tested: FNfr—Fetească neagră fresh GP
extract; FNfe—Fetească neagră fermented GP extract; PNfr—
Pinot noir fresh GP extract; PNfe—Pinot noir fermented GP
extract. The extracts were administered orally by gavage (1 ml/
animal/day) in three dilutions, respectively 100, 50, and 25%, for
seven days. Animals from the negative control group
(CONTROL) and the inflammation group (INFLAM) received
tap water (1 ml/animal/day) by gavage for seven days (He and
Mu, 2015). On day eight, except for the CONTROL group,
inflammation was induced by injecting turpentine oil (6 ml/kg
b.w.) intramuscularly (Toyohara et al., 2013). On day nine,
under general anesthesia induced by pentobarbital (50 mg/kg
IP) (Zatroch et al., 2017), blood was withdrawn by retro-orbital
puncture, serum was separated and stored at −80°C until use,
and animals were euthanized by cervical dislocation.

In Vivo Oxidative Stress Assessment
Oxidative stress was assessed using global and specific tests. The
global oxidative stress tests were total oxidative status (TOS),
total antioxidant reactivity (TAR), and the oxidative stress index
(OSI). Specific oxidative stress tests were malondialdehyde
(MDA), total thiols (SH), total serum nitrates and nitrates
(NOx), and 3-nitrotyrosine (3NT) (Balea et al., 2018b; Farcas
et al., 2019).

Alamar Blue Cell Proliferation Assay
The four cell lines were seeded on 96-well microplates (1 × 104
cells/well). After 24 h incubation (37°C, 5%CO2 and 95%
humidity), 200 µl of medium containing DMEM supplemented
with 10% FCS, 1% mixture of penicillin/streptomycin (100 U/ml
penicillin and 100 pg/ml streptomycin) and ethanolic extracts of
July 2020 | Volume 11 | Article 990
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GP (1,000 µg/L) were added to each well and incubated for 48 h
(Lo et al., 2011). After 48 h incubation, 20 µl of Alamar blue (AB)
was added to each well, and cells were incubated for 4 h at 37°C.
AB staining was used to determine the cell viability of both
cancer cells (A549, MDA-MB-231, B164A5) and healthy HaCat
cells after they were stimulated with GP extracts. The plate
was then placed under a microplate reader to determine the
absorbance value of each well at 570 and 600 nm; untreated cell
wells were used as controls. All in vitro experiments were
performed in triplicate (Sadej and Skladanowski, 2012). Cell
proliferation was calculated by the formula:

% AB reduction

=
eOXð Þl2 Al1ð Þ − eOXð Þl1 Al2ð Þ

eREDð Þl1 A ° l2ð Þ − eREDð Þl2 A ° l1ð Þ � 100

where: eOX = the molar extinction coefficient of the oxidized AB
form (blue), A = absorption of test wells, A° = absorption of the
positive growth control well (cells without tested compounds),
l1 = 570 nm, l2 = 600 nm.

Statistical Analysis
All results were expressed as mean ± standard deviation (SD)
whenever data were normally distributed. Comparisons between
the different experimental groups were performed using the
ANOVA test and the post hoc Bonferroni–Holm test. The
correlation analysis was performed with the Pearson test.
Values of p < 0.05 were considered statistically significant. The
analysis was performed using IBM SPSS Statistics, version 20
(SPSS Inc. Chicago, IL, USA).
RESULTS AND DISCUSSION

Cancer remains a leading cause of death worldwide despite
considerable progress in basic research and clinical studies.
Early diagnosis and chemoprevention are essential for
reducing the incidence of cancers. In addition, the side
effects of conventional therapies contribute to diminishing
patients’ life quality and imply the need to develop a safe and
effective therapeutic alternative. Although research has been
conducted to combat cancer in terms of natural therapy,
Frontiers in Pharmacology | www.frontiersin.org 4
a satisfactory and complete therapeutic agent has not
been found.

Polyphenols Analysis
The differences between the polyphenol content depend on the
grape variety, grape maturity, environmental factors, and the
technological processes used during the vinification (Xu et al.,
2016). The TPC of the extracts varied with the GP product, FNfe
having the higher TPC (15.03 ± 0.84 mg GAE/g), followed by
PNfe (9.23 ± 0.85 mg GAE/g), PNfr (8 ± 0.10 mg GAE/g), and
FNfr (6 ± 0.75 mg GAE/g).

The LC/MS analysis identified the compounds from the GP
extracts and confirmed the TPC results, respectively fermented
GP samples had a higher content of polyphenols than the
fresh GP samples, FNfe having the highest concentration
of polyphenols.

Caftaric acid is a phenolic acid found in grapes and gives the
white wine color (Song et al., 2018a). In this study, caftaric acid
was below the limit of detection (LOD) for all analyzed samples
(Table 1, Figures 1–4).

Kaempferol is a dietary antioxidant flavonol that reduces the
risk of chronic diseases, including cancer. At the molecular level,
kaempferol has been reported to modulate a number of key
elements in cell signal transduction related to apoptosis,
angiogenesis, inflammation, and metastasis (Chen and Chen,
2014; Beres et al., 2017). It was found that exposure to solar
radiation increase kaempferol concentration. It was detected
only in the FNfr (3.679 ± 0.04 µg/ml) and Fnfe (5.740 ± 0.78
µg/ml) GP extracts, and the concentration was comparable to the
one determined in South African Shiraz (0.36 mg/100 ml) and
Cabernet Sauvignon (0.35 mg/100 ml), but higher than the
concentration from three Calabrian red wines (Gidaro et al.,
2016) (Table 1, Figures 1–4).

Miricetol is a flavonol with potent antioxidant, anticancer,
analgesic, antidiabetic, hepatoprotective and anti-inflammatory
activities. Extensive research into the anticancer activities of
miricetol has shown that the compound is cytotoxic to a
number of human cancer cell lines, including liver, skin, colon,
and pancreas cancer cells. The antioxidant property of miricetol
was higher than that of vitamin E. The anti-inflammatory
activity of miricetol has been demonstrated in acute and
chronic in vivo animal models by preventing NF-kB activation,
NO, proinflammatory cytokines and PGE2 production (Semwal
TABLE 1 | The: polyphenolic compounds content in the Fetească neagră and Pinot noir grape pomace extracts.

Compound (µg/ml) FNfr FNfe PNfr PNfe

Caftaric acid NF NF NF NF
Kaempferol 3.679 ± 0.04 5.740 ± 0.78 NF NF
Miricetol 0.341 ± 0.01 1.029 ± 0.12 NF NF
Isoquercitrin 2.429 ± 0.18 65.698 ± 7.11 3.685 ± 0.35 42.042 ± 1.35
Hyperoside 0.804 ± 0.06 10.813 ± 0.18 NF NF
Rutoside NF NF NF 2.136 ± 0.21
Quercitrin NF 14.952 ± 1.54 NF 3.272 ± 0.169
Quercetol 8.407 ± 0.54 15.637 ± 1.18 2.473 ± 0.22 3.936 ± 0.27
July 2020 | Volume
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pomace extract; NF, not found, below the Limit of Detection. Values are expressed as mean ± SD (n = 3).
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FIGURE 1 | The UV chromatogram of fresh Pinot noir 2015 grape pomace extract. 1, Isoquercitrin; 2, Rutoside; 3, Quercitrin; 4, Quercetin.
FIGURE 2 | The UV chromatogram of frtmented Pinot noir 2015 grape pomace extract. 1, Isoquercitrin; 2, Quercetin.
FIGURE 3 | The UV chromatogram of fresh Fetească neagră 2015 grape pomace extract. 1, Hyperoside; 2, Isoquercitrin; 3, Miricetol; 4, Quercitrin; 5, Quercetin; 6, Kaempferol.
Frontiers in Pharmacology | www.frontiersin.org July 2020 | Volume 11 | Article 9905
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et al., 2016). In the Pinot noir GP extracts, kaempferol and
miricetol were under the LOD, in FNfe moderate amounts of
kaempferol and small amounts of miricetol were detected, and in
FNfr only small amounts of miricetol were found (Table 1,
Figures 1–4).

Quercetin exists mostly in its quercetin glycosides,
which occur naturally and are among the most common
flavonoids in the human diet. They have neuroprotective,
cardioprotective, chemopreventive, antioxidant, anti-
inflammatory, and antiallergic effects. The antioxidant and
anti-inflammatory effects were associated with reduced
expression of iNOS and inhibition of NF-kB expression (Dai
et al., 2013). Quercetin has poor bioavailability, but quercetin
glycosides have the same in vivo therapeutic effects and better
bioavailability. The quercetin glycosides evaluated in our
study were quercitrin, isoquercetin, hyperoside, and rutoside
(Song et al., 2018b). Quercitrin was above the LOD only in
the fermented GP samples, FNfe having a significantly
higher concentration of quercitrin than PNfe (p < 0.001).
Isoquercetin was present in all the samples, having a
significantly higher concentration in FNfe and PNfe (p <
0.001). Hyperoside was found above the LOD only in
Fetească neagră samples, FNfe having a more important
content of hyperoside than FNfr (p < 0.001). Rutoside has
been shown to have immunomodulatory (Ganeshpurkar and
Saluja, 2017), antioxidant (Shahid et al., 2016), anti-
inflammatory, neuroprotective (Song et al . , 2018b),
antitumor (Chen et al., 2015), and cardioprotection (Wang
et al . , 2017) effects . As flavonol , rutoside has low
bioavailability due to poor absorption, high metabolism, and
rapid excretion, which limits its potential therapeutic use
(Martinez-zapata et al., 2016). Rutoside was detected only in
the PNfe samples (Table 1, Figures 1–4).

Quercetol has antioxidant properties by inhibing lipid
peroxidation and xanthine oxidase, by scavenging ROS in vitro
and can inhibit cancer (Ali et al., 2016). Quercetol was found in
Frontiers in Pharmacology | www.frontiersin.org 6
all GP samples, FNfe having the higher concentration (Table 1,
Figures 1–4).

In a previous study we found significant concentrations of
resveratrol in the Fetească neagră and Pinot noir GP extracts, the
fresh GP extracts having a higher concentration (Balea et al.,
2018a; Balea et al., 2018b). Several in vitro studies have shown
that resveratrol has antitumor, antioxidant, anti-inflammatory,
cardioprotective and antiplatelet activity, and glycosylated
stilbenes have antifungal and antioxidant effects (Flamini et al.,
2013). Studies conducted with resveratrol showed that it
improves the effectiveness of cisplatin and doxorubicin
chemotherapy, suggesting that it can be used in cervical cancer
treatment (Silva et al., 2018).

In conclusion, the polyphenol analysis of the fresh and
fermented pomace of Vitis vinifera L. var. Fetească neagră and
var. Pinot noir extracts performed in the present and previous
studies (Balea et al., 2018b) suggested antioxidant, anti-
inflammatory and antiproliferative activities.

In Vitro Antioxidant Activity
All ethanolic extracts of GP proved to have lower antioxidant
effects compared to the ascorbic acid. The fresh extracts had a
higher AOA after 1,200 s than in the initial moment, FNfr
increasing AOA to around 65%, and PNfr increasing AOA to
around 60%. The PNfe extracts initially had no antioxidant
effects, but after 1,200 s AOA increased to 50%. The FNfe was
the single sample that revealed a slight decrease of the AOA
after 1,200 s, from around 44% initially to 40%. The AOA
results do not correlate with the polyphenol content because
the fresh GP samples had a higher AOA and the fermented GP
samples had a higher polyphenol concentration (Figure 5).

In Vivo Antioxidant Effects
Polyphenols can reduce oxidative stress directly by preventing
free radical formation and indirectly by increasing the activity of
key antioxidant enzymes (Annunziata et al., 2020). While some
FIGURE 4 | The UV chromatogram of fermented Fetească neagră 2015 grape pomace extract. 1, Hyperoside; 2, Isoquercitrin; 3, Miricetol; 4, Quercetin; 5, Kaempferol.
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studies have shown that natural extracts have antioxidant
properties both in vitro and in vivo, other studies have shown
that in vitro antioxidant activity does not always apply to in vivo
models because polyphenols may also act as prooxidants
(Veskoukis et al., 2012). Therefore, after demonstrating the
antioxidant capacity by DPPH test, the in vivo antioxidant
activity was tested on a turpentine-induced acute inflammation
model (Lim et al., 2013). Because ROS have a short life, the in
vivo oxidative stress assessment is generally based on the
measurement of indirect markers. There are global parameters,
like TOS, TAR, OSI, and NOx, and specific tests, such as
molecules modified by free radicals, antioxidant enzymes, and
transcription factors (Alam et al., 2013).

Turpentine administration resulted in a significant increase in
TOS and OSI (p < 0.001) plus a TAR reduction (p < 0.001).
Overall, the global oxidative stress parameters revealed
important antioxidant properties for the evaluated GP extracts.
The GP extract effects on TOS and OSI were concentration-
dependent and decreased significantly TOS and OSI (p < 0.001),
but there were no important changes of TAR (p > 0.05). Related
to TOS and OSI, between the two Vitis vinifera L. varieties or
between fresh and fermented GP extracts, there were no
significant differences. The fermented GP samples had higher
polyphenol content but that did not correlate with TOS and OSI
changes (Table 2).

An important cellular effect of ROS is peroxidation of the
phospholipids and fatty acids in the membrane, resulting in
modified membrane fluidity, protein structure, and cell signaling.
Such a lipid peroxidation product is MDA. Some studies
indicated that MDA has mutagenic and tumor promoter
potential. Therefore, we evaluated the effects of GP extracts on
Frontiers in Pharmacology | www.frontiersin.org 7
the MDA formation induced by the experimental inflammation.
Turpentine administration increased MDA significantly (p <
0.01). All GP extracts had moderate inhibitory effect on MDA
formation (p < 0.01). These results may be linked to the finding
that flavan-3-ols monomers reduce LDL oxidizability through
their incorporation into the LDL particles and the radical
trapping effects (Annunziata et al., 2018; Annunziata et al.,
2019) and to our previous study which reported an important
content offlavan-3-ols monomers in the GP extracts (Balea et al.,
2018b; Balea et al., 2018a). There were no significant differences
between the effects onMDA of the two grape varieties or between
fresh and fermented GP extracts of the same variety (p > 0.05)
(Table 3).

In the plasma there are two major groups of thiols: protein
thiols, mainly albumin thiols, and nonprotein thiols or small
molecules thiols, such as cysteine (Cys), cysteinylglycine,
glutathione, homocysteine and g-glutamylcysteine. Under
oxidative stress conditions Cys residues are oxidized resulting
in mixed disulphides between protein thiol groups and small
molecules thiols, preventing protein thiol oxidation (Yang and
Guan, 2015). These disulphide bonds are reversible, creating a
dynamic thiol–disulphide homeostasis which is important
in antioxidant protection. The dynamic thiol–disulphide
dysbalance is implicated in the pathophysiology of many
diseases, including cancer (Emre et al., 2017). Turpentine-
induced oxidative stress significantly reduced SH (p < 0.001).
The pretreatment with GP extracts increased SH (p < 0.001) in a
concentration-dependent way. The fresh GP extracts were more
efficient, with no significant differences between the two Vitis
vinifera L. varieties (Table 3).

In inflammation NF-kB is a pleiotropic transcription factor that
regulates the expression of genes like those for chemokines,
cytokines, cell adhesion molecules, growth factors, antioxidant
enzymes, iNOS, and others (Silva et al., 2018). NO produced
under these conditions is an effector molecule that may have
beneficial or harmful effects. At nontoxic concentrations, NO is
FIGURE 5 | Antioxidant activity evaluation with DPPH test. FNfe, Fetească
neagră fermented grape pomace extract; FNfr, Fetească neagră fresh grape
pomace extract; PNfe, Pinot noir fermented grape pomace extract; PNfr,
Pinot noir fresh grape pomace extract.
TABLE 2 | In vivo antioxidant global tests results.

GROUP OSI TOS (µM H2O2/L) TAR (mM TROLOX/L)

CONTROL 0.25 ± 0.02 26.92 ± 10.30 1.09 ± 0.0005
INF 0.37 ± 0.03 40.51 ± 3.34 1.09 ± 0.0008
FNfe 100% 0.26 ± 0.05 28.06 ± 5.39 1.09 ± 0.0009
FNfe 50% 0.21 ± 0.03 23.38 ± 2.80 1.09 ± 0.0007
FNfe 25% 0.27 ± 0.08 29.35 ± 8.25 1.09 ± 0.0001
FNfr 100% 0.26 ± 0.04 28.84 ± 4.44 1.09 ± 0.0005
FNfr 50% 0.24 ± 0.04 25.72 ± 4.64 1.09 ± 0.0006
FNfr 25% 0.29 ± 0.08 31.41 ± 8.25 1.09 ± 0.0012
PNfr 100% 0.26 ± 0.03 28.08 ± 3.39 1.09 ± 0.0004
PNfr 50% 0.27 ± 0.03 29.41 ± 2.87 1.09 ± 0.0006
PNfr 25% 0.28 ± 0.02 30.16 ± 1.97 1.09 ± 0.0003
PNfe 100% 0.26 ± 0.02 28.05 ± 2.82 1.09 ± 0.0010
PNfe 50% 0.28 ± 0.05 30.21 ± 4.93 1.09 ± 0.0010
PNfe 25% 0.29 ± 0.06 31.31 ± 7.01 1.09 ± 0.0007
July 2020 |
FNfe, Fetească neagră fermented grape pomace extract; FNfr, Fetească neagră fresh
grape pomace extract; PNfe, Pinot noir fermented grape pomace extract; PNfr, Pinot noir
fresh grape pomace extract; TOS, total oxidative status; TAR, total antioxidant reactivity;
OSI, oxidative stress index.
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an effective antioxidant in vitro and in vivo. If the synthesis is
excessive, NO reacts with O2

− producing high quantities of
peroxynitrite (ONOO−), a strong oxidant, which can induce
oxidative stress, nitrosative stress, and nitration stress (Lacza
et al., 2009). The toxicity hypothesis indicates that high levels
of NO induce mitochondrial respiratory inhibition, ATP depletion,
DNA deamination, oxidation, and nitration. The hypothesis of the
cytoprotective role of NO states that NO protects cells against lipid
peroxidation by reaction with sulfhydryl groups in proteins (Jiang
et al., 2018). Because flavonols inhibit NO production (Semwal
et al., 2016) and NO accumulation (Dai et al., 2013), the reduction
of NO may be correlated with the polyphenol content. It was
reported that polyphenols can suppress NF-kB activation and
translocation into the nucleus of the activated B cells
(Annunziata et al., 2020). Plant extracts with anti-inflammatory
effects mediated by iNOS inhibition and nitro-oxidative stress
reduction may be an adjuvant alternative therapeutic option for
tumor cells proliferation and metastasis inhibition (Jiang et al.,
2018). Turpentine administration significantly increased NOx (p <
0.001), and pretreatment with GP extracts caused a concentration-
dependent reduction of NOx, the fresh GP extracts having a
stronger inhibitory effect than the fermented GP extracts. These
results correlated with the DPPH test. There were no significant
differences between the two Vitis vinifera L. varieties in the case of
fresh GP extracts (Table 3).

3NT is a product of tyrosine nitration mediated by RNS, and
it is a marker of inflammation, NO production, nitrative stress,
and oxidative stress induced cellular damage (Knight et al.,
2018). Induction of inflammation increased 3NT significantly
(p < 0.001), and pretreatment with GP extracts reduced 3NT in a
concentration-dependent way. There were no important
differences between the Vitis vifera L. varieties or fresh and
fermented GP samples. 3NT correlated with TOS and OSI
(Table 3).

Because a vicious circle between inflammation, oxidative
stress, and ROS formation develops, (Park et al., 2015), the
Frontiers in Pharmacology | www.frontiersin.org 8
antioxidant therapy involves consecutive anti-inflammatory
effects and the analysis of the antioxidant activity indirectly
analyzes the anti-inflammatory effects (Shahid et al., 2016).
That is the reason why the antioxydant activity of the tested
GP extracts can be also considered an anti-inflamatory activity.

Antiproliferative Effects
Previous data on the effect of GP extracts on cancer cells are
limited and the mechanisms are not fully understood. Studies
performed on colon cancer cells proved that GP extracts rich in
polyphenols had cytotoxic and antiproliferative effects (De Sales
et al., 2018; Pérez-Ortiz et al., 2019). Their activity depends on
the concentration, target molecule, and environmental
conditions. GP extracts have cytoprotective effects toward
normal cells and cytotoxic effects toward cancerous cells
(Brglez Mojzer et al., 2016). Many data show that polyphenols
have anticancer effects due to their antioxidant and anti-
inflammatory effects. Their ROS scavenging effects decrease
cell proliferation and DNA oxidative damage (Lizarraga et al.,
2011). Through the prooxidative effect polyphenols may induce
apoptosis of the cancer cells. By inhibiting angiogenesis,
polyphenols reduce tumor growth, and by reducing the
adhesiveness and invasiveness of cancer cells, reduce the
metastatic potential (Brglez Mojzer et al., 2016). Moreover,
polyphenols such as resveratrol, quercetin, catechin, and
curcumin, proved to influence mitochondrial function.
Because cancer cells are high ATP consumers in order to
support accelerated proliferation and associated processes,
mitochondrial energy metabolism seems to be a proper target
in order to cause dysfunction in cancer cells (De Sales et al.,
2018). A study performed with Pinot noir GP extract from
Brazil, rich in polyphenols with high antioxidant activity, on
human hepatocarcinoma HepG2 cells showed that a short-term
incubation increased mitochondrial respiration and antioxidant
capacity and lowered glycolytic metabolism, and a long-term
incubation was cytotoxic and cells died by necrosis (Brglez
TABLE 3 | In vivo antioxidant specific tests results.

GROUP MDA (nM/L) SH (mM GSH/L) NO (µM/L) 3NT (nmol/L)

CONTROL 1.09 ± 0.22 0.54 ± 0.06 33.31 ± 4.50 29.78 ± 2.39
INF 4.46 ± 0.50 0.47 ± 0.11 40.04 ± 5.44 34.76 ± 6.32
FNfe 100% 4.15 ± 0.71 0.68 ± 0.18 28.97 ± 1.76 37.80 ± 3.14
FNfe 50% 4.45 ± 0.97 0.47 ± 0.14 36.59 ± 3.79 41.80 ± 6.48
FNfe 25% 3.95 ± 0.65 0.59 ± 0.16 39.77 ± 6.29 50.40 ± 7.42
FNfr 100% 3.84 ± 0.62 0.58 ± 0.09 44.07 ± 6.20 30.70 ± 2.42
FNfr 50% 3.74 ± 0.40 0.43 ± 0.10 47.31 ± 2.41 40.50 ± 5.01
FNfr 25% 3.97 ± 0.49 0.51 ± 0.15 48.96 ± 7.64 60.20 ± 7.92
PNfr 100% 3.90 ± 0.40 0.65 ± 0.11 29.73 ± 2.91 35.54 ± 4.83
PNfr 50% 3.86 ± 1.15 0.66 ± 0.10 38.59 ± 12.02 39.87 ± 5.61
PNfr 25% 4.65 ± 0.71 0.61 ± 0.05 41.13 ± 9.27 61.55 ± 2.98
PNfe 100% 4.46 ± 1.14 0.59 ± 0.12 41.18 ± 7.11 40.52 ± 4.03
PNfe 50% 4.78 ± 0.40 0.70 ± 0.11 45.72 ± 9.98 42.30 ± 3.74
PNfe 25% 4.87 ± 1.08 0.50 ± 0.10 43.01 ± 5.48 55.21 ± 4.91
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Mojzer et al., 2016). There are pieces of evidence that the
antiproliferative activity of the polyphenol involves also
epigenetic mechanisms, such as DNA methylation, histone
changes, and micronucleotic acids (miRNAs) that modulate
gene expression in cancer (Arora et al., 2019). Therefore, the
antiproliferative activity of our fresh and fermented GP extracts
with a rich polyphenol content and antioxidant activity was
tested on cancer cell lines A549, MDA-MB-231, B164A5, and
normal cells HaCat using the Alamar blue viability test.

Proliferation of all four cell lines treated with FNfr was
significantly reduced: HaCat (42.58%), A549 (57.27%), MDA-
MB-231 (48.89%), and B164A5 (46.59%). FNfe greatly reduced
cell proliferation of all cell lines too: HaCat (26.17%), A549
(33.32%), MDA-MB-2 (41%), and B164A5 (29.95%). The
antiproliferative effects of FNfe were significantly higher than
those of FNfr. PNfr inhibited all cell line proliferation: HaCat
(2.39%), A549 (72.36%), MDA-MB-231 (64.47%), and B164A5
(53.75%). Normal cells were found to be more sensitive to
stimulation with PNfr. The smallest reductions in cell
proliferation were observed for all four cell types after
exposure to PNfe: HaCat (89.74%), A549 (98.82%), MDA-MB-
231 (90.32%), and B164A5 (101.23%). The antiproliferative
effects of PNfr proved to be much stronger than those of PNfe
(Figure 6). These results were correlated with the polyphenols
identified in the GP extracts, respectively FNfe had the highest
polyphenol content and the strongest antiproliferative effect.
Because the antioxidant activity of the GP extracts was better
in the fresh samples, we hypothesized that the prooxidant
properties of the GP fermented extracts were involved in the
better anti-proliferative effect.
CONCLUSIONS

The phytochemical analysis revealed rich polyphenol content in
the Vitis vinifera L. var. Fetească neagră and var. Pinot noir
Frontiers in Pharmacology | www.frontiersin.org 9
pomace extracts, the fermented GP samples having the higher
polyphenol concentration. The Vitis vinifera L. var. Fetească
neagră and var. Pinot noir pomace extracts have antioxidant
and anti-inflammatory effects, and the in vitro and in vivo
antioxidant activity were better in the fresh pomace extracts. In
vivo NO reduction seems to be the cause of a stronger
antioxidant effect for the fresh GP extracts. Vitis vinifera L.
var. Fetească neagră and var. Pinot noir pomace extracts have
antiproliferative effects on tested cancer cells and normal cells,
and these effects correlate with the higher polyphenol content in
the fermented pomace samples.

In conclusion, due to the antioxidant, anti-inflammatory and
antiproliferative effects of the Vitis vinifera L. var. Fetească
neagră and var. Pinot noir pomace extracts, these products can
be considered potential agents for nutraceutical formulation in
cancer prevention and treatment. Due to the higher polyphenol
content the fermented GP extract might be better nutraceuticals.
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