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A link betweenT cell proliferation and the protein kinase C (PKC) family of serine/threonine
kinases has been recognized for about 30 years. However, despite the wealth of information
on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the
cell cycle machinery in this cell type remains limited. Studies in other systems have revealed
important cell cycle-specific effects of PKC signaling that can either positively or negatively
impact proliferation. The outcome of PKC activation is highly context-dependent, with the
precise cell cycle target(s) and overall effects determined by the specific isozyme involved,
the timing of PKC activation, the cell type, and the signaling environment. Although
PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1
and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins,
cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however,
evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of
PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins
to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry
into and progression through G1. Analysis of PKC signaling in T cells has largely focused
on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A
prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also
described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in
these cells. As in other cell types, context-dependent effects of individual isozymes have
been noted inT cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC
targets. Future studies are anticipated to take advantage of the similarities between these
various systems to enhance understanding of PKC-mediated cell cycle regulation inT cells.
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An association between protein kinase C (PKC) signaling and T cell
proliferation has been recognized for almost three decades. Over
30 years ago, it was determined that a combination of phorbol
esters and elevated intracellular calcium potently induces prolif-
eration of cells of the T cell lineage (e.g., Whitfield et al., 1973;
Lyall et al., 1980; Sutherland et al., 1981). Shortly thereafter, it was
determined that PKC, then recognized as a calcium-dependent
enzyme, represented the major cellular receptor for phorbol esters
(Castagna et al., 1982) and it was not long before the connection
between these phenomena was made (Isakov et al., 1986; Isakov
and Altman, 1987). Since then, a central role for PKC in T cell
receptor (TCR) signaling has been firmly established. Despite the
long association of PKC with T cell proliferation, details on how
PKC signaling interacts with the cell cycle machinery in this cell
type are only beginning to emerge. In this regard, our knowledge
in T cells lags behind that in other cell types, including other
hematopoietic lineages. In this review, we outline our current
understanding of the proliferative effects of PKC signaling in T
cells within the context of the broader knowledge that has been
gained in other systems.

THE PROTEIN KINASE C FAMILY
Protein kinase C represents a family of serine/threonine kinases
that belong to the AGC (cAMP-dependent, cGMP-dependent, and

protein kinase C) superfamily of protein kinases (Nieto, 2007;
Matsuoka et al., 2009; Black, 2010; Rosse et al., 2010; Ryu et al.,
2010). PKC isozymes are lipid-dependent kinases (requiring phos-
phatidylserine binding for activity) and are grouped into three
subfamilies based on their structure and requirement for addi-
tional co-factors and calcium. Physiological activation of classical
PKCs (PKCα, PKCβI and PKCβII, which are splice variants of the
prkcb gene, and PKCγ) is induced by the lipid second messenger
diacylglycerol (DAG) and calcium, while activation of the novel
PKCs (PKCδ, PKCε, PKCθ, and PKCη) requires only DAG. In
contrast, the atypical PKCs (PKCζ and PKCι/λ) are not depen-
dent on lipid second messengers or calcium for activity. Instead,
their function is regulated by protein–protein interactions medi-
ated by a PB1 domain as well as a carboxyl-terminal PDZ ligand
motif. Engagement of growth factor or cytokine receptors leads
to activation of phospholipase C (PLC) β or PLCγ, which cleave
phosphatidylinositol 4,5-bisphosphate to generate DAG and the
soluble second messenger inositol trisphosphate (which induces
release of calcium from intracellular stores). The production of
DAG recruits classical and novel PKCs to the plasma membrane,
where they undergo a conformational change resulting in full acti-
vation. Unlike other AGC kinases, such as Akt, activation of PKCs
does not require acute phosphorylation of the enzyme: phospho-
rylations necessary for catalytic competence occur shortly after
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synthesis and the enzyme is constitutively phosphorylated at these
sites (Matsuoka et al., 2009; Rosse et al., 2010). As a result, changes
in phosphorylation do not provide an indication of PKC activ-
ity; rather signaling-induced translocation of the enzyme to the
membrane/particulate fraction represents the most reliable means
of monitoring kinase activation. Reversal of signaling can occur by
metabolism of DAG by DAG kinase and release of PKCs from the
membrane, as well as by agonist-induced enzyme degradation or
removal of priming phosphorylation with subsequent rapid degra-
dation (Leontieva and Black, 2004; Newton, 2010). In addition to
activation by growth factor signaling, classical and novel PKCs
can be stimulated by a number of pharmacological agents that
mimic the effects of DAG, such as phorbol esters and macrocyclic
lactone bryostatins. However, in contrast to DAG, these agonists,
which include phorbol 12-myristate 13-acetate [PMA; also known
as 12-O-tetradecanoylphorbol-13-acetate (TPA)], phorbol 12,13-
dibutyrate (PDBu), and bryostatin 1, are not rapidly metabolized
and thus give a more sustained PKC activation.

Despite limitations related to their lack of specificity for
individual PKC isozymes, their ability to promote PKC down-
regulation, and the existence of additional targets for these agents
(Griner and Kazanietz, 2007), use of pharmacological agonists
and membrane permeant DAG analogs has provided significant
insight into the downstream effects of PKC activation. However,
a complete understanding of PKC signaling will require defining
the specific function(s) of individual PKC isozymes, and progress
toward this goal has proved technically difficult. Understanding of
the functions of atypical PKCs, PKCζ, and PKCι, lags behind that
of other members of the PKC family, perhaps largely due to their
insensitivity to pharmacological activators (e.g., phorbol esters
and bryostatins) and synthetic DAGs. In the absence of isozyme-
specific pharmacological PKC agonists and inhibitors, early studies
relied on overexpression strategies to decipher the roles of indi-
vidual isozymes, which can result in non-physiological levels of
expression, activity, and regulation. RNA interference technol-
ogy and genetically altered mice are helping to circumvent these
problems, but are not without drawbacks of their own. Potential
limitations include the need for a high level of silencing to suffi-
ciently deplete enzyme activity (e.g., >80%, Cameron et al., 2008;
M. A. Pysz, A. R. Black, and J. D. Black, unpublished results), and
the fact that knockdown of one PKC isozyme can affect accumu-
lation of other members of the family (M. A. Pysz, A. R. Black,
and J. D. Black, unpublished data). Overlapping roles of different
isozymes means that multiple crosses of transgenic mice may be
needed to observe phenotypes.

An additional source of confusion regarding the functions of
individual PKC isozymes is the fact that many so-called PKC
inhibitors are of questionable specificity (Griner and Kazanietz,
2007; Soltoff, 2007). As an example of particular relevance to T
cell activation, special caution is needed when considering stud-
ies that have used rottlerin to infer effects of signaling from PKCθ.
While this agent was originally considered to be a specific inhibitor
of novel PKCs, recent studies have demonstrated that it does not
inhibit PKCδ (Soltoff, 2007). In keeping with this finding, the IC50

for PKCθ inhibition by rottlerin in the presence of 100 μM ATP
is >300 μM (Villalba et al., 1999), a concentration far in excess of
that used in studies on its cellular effects. In contrast, rottlerin is

a potent inhibitor of other kinases such as PRAK and MAPKAP-
K2 (Soltoff, 2007); thus, any effects of this inhibitor cannot be
ascribed to direct inhibition of PKCθ.

Despite these limitations, our knowledge of the roles of individ-
ual PKCs is emerging. Of note, in addition to the proliferative/cell
cycle effects which are the subject of this review, PKC isozymes
have been found to regulate multiple cellular processes of direct
relevance to T cell development and function, including dif-
ferentiation, migration, survival, apoptosis, endocytosis, and
secretion/exocytosis (Reyland, 2009; Rosse et al., 2010).

THE MAMMALIAN CELL CYCLE
Several excellent reviews have been written on the regulation of
the cell cycle (Sherr and Roberts, 2004; Cobrinik, 2005; Malum-
bres and Barbacid, 2005; Du and Pogoriler, 2006; Satyanarayana
and Kaldis, 2009) and only a brief description will be given here.
The cell cycle has been classically divided into four phases, G1 (or
Gap 1 in which cells prepare for DNA synthesis), S phase (in which
DNA is synthesized), G2 (in which cells prepare for division) and
mitosis (or M phase, in which sister chromatids are separated and
the cell divides; Figure 1). Transit through the cell cycle is regu-
lated by four major classes of cyclins whose expression is strictly
controlled and limited to particular cell cycle phases. Cyclins are
the regulatory subunits for cyclin-dependent kinases (cdks), whose
activity is absolutely dependent on association with specific cyclin
partners. Entry of quiescent cells into the cell cycle and transit
through early G1 is regulated by D-type cyclins, which complex
with cdk4 and cdk6 (Musgrove et al., 2011). There are three D-type
cyclins, D1, D2, and D3, which are expressed to varying degrees in
different tissues; cyclins D2 and D3 appear to be the major players
in T cells. Transit through late G1 and progression into S phase is
regulated by cyclin E complexed with cdk2 (Hwang and Clurman,
2005; Malumbres and Barbacid, 2005). S phase transit and early
G2 are regulated by cyclin A/cdk2 and cyclin A/cdk1 complexes,
whereas cyclin B, complexed with cdk1, regulates progression into
M phase (Malumbres and Barbacid, 2005; Sanchez and Dynlacht,
2005). In addition to being regulated by cyclin binding, the activ-
ity of cdks is under the control of Cip/Kip and Ink4 cdk inhibitor
proteins (ckis; Sherr and Roberts, 1995). Members of the Cip/Kip
family, including p21Cip1, p27Kip1, and p57Kip2, have a dual activity
in cell cycle regulation. They negatively regulate cell cycle progres-
sion by binding to cyclin/cdk2 and cyclin/cdk1 complexes and
inhibiting their enzymatic activity. Conversely, these proteins can
promote progression by enhancing the association of cyclin D
with cdk4 and cdk6 without inhibiting the activity of these com-
plexes (Sherr and Roberts, 1999). The Ink4 ckis, which include
p15Ink4b, p16Ink4a, p18Ink4c, and p19Ink4d, block the activity of
cdk4 and cdk6 by preventing their association with cyclin D. Cdk
activity is also regulated by phosphorylation: positive phosphory-
lation is mediated by cdk activating kinase (CAK or cdk7/cyclin
H; Fisher and Morgan, 1994), while negative phosphorylation
involves the kinases Wee1 and Myt1. Removal of inhibitory phos-
phorylation, by e.g., Cdc25 phosphatases, is necessary for full cdk
activity.

While there are multiple checkpoints that allow cells to undergo
cell cycle arrest in response to various stresses, the most relevant
to normal tissue homeostasis and differentiation is that which
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directs entry and exit from the cell cycle in G1 (Prasad et al.,
1994; Liu et al., 2012). The expression of D-type cyclins is acutely
regulated by mitogenic signals. As such, these proteins are the
main sensors for the growth environment of the cell, and are inti-
mately involved in regulation of the entry of quiescent cells into
the cell cycle. Major targets for cyclin D/cdk complexes include
the retinoblastoma protein (pRb) and related pocket proteins,
p107 and p130 (Cobrinik, 2005). In the hypophosphorylated state,
pocket proteins bind to E2F transcription factors on the pro-
moters of growth-related genes, where they act as transcriptional
repressors and actively block expression of genes necessary for
DNA replication (Trimarchi and Lees, 2002; Du and Pogoriler,
2006; Figure 1). Phosphorylation of pocket proteins relieves this

repression, allowing for transcription of E2F-dependent genes,
one of which is cyclin E. Cyclin E/cdk2 then completes phospho-
rylation of pocket proteins, leading to their release from E2F and
robust transcription of growth-related genes. At early stages of
G1, cells require mitogenic signals to support cyclin expression
and cdk activity; however, once sufficient levels of cyclin E have
accumulated to maintain its own expression, cells have passed the
so-called “restriction point” and are able to proceed through to the
next cell cycle without further mitogenic input. In the face of loss
of mitogenic signals prior to the restriction point or of negative
growth signals, cell cycle progression is halted and cells eventu-
ally withdraw into G0 phase and quiescence (Grana et al., 1998;
Classon and Dyson, 2001).

FIGURE 1 | Continued
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FIGURE 1 |The cell cycle. The cell cycle consists of four phases, G1, S, G2,
and M. In early G1, hypophosphorylated pRb binds the E2F transcription
factor, and recruits histone deacetylase (HDAC) and other factors to actively
repress transcription of E2F-regulated genes important for transition into S
phase and DNA replication (e.g., PCNA, topoisomerase I, c-Myc, cyclin E,
Cdc25c). Progression through early G1 is dependent on growth factors, which
promote expression of D-type cyclins. Formation of cyclin D/cdk4 and
cyclin D/cdk6 complexes, which is facilitated by Cip/Kip ckis, leads to
phosphorylation of pRb at a subset of available sites and release of HDAC
and other inhibitory factors, relieving repression of E2F and promoting
upregulation of cyclin E. Cyclin E/cdk2 complexes, relieved from repression by
Cip/Kip ckis by sequestration of these inhibitory molecules in cyclin D/cdk
complexes, complete pocket protein phosphorylation in mid to late G1,
enabling a wave of E2F-dependent transcriptional activity essential for S
progression. Together, these events drive cells through the restriction point

(large red arrow), which commits cells to the proliferative cycle. If conditions
are not optimal to signal this transition, cells exit the cycle and enter G0 or
quiescence, a reversible non-replicative state. Once cells enter S phase,
cyclin E/cdk2 activity is inhibited by proteasomal degradation of cyclin E in the
cytoplasm. Continued inactivation/hyperphosphorylation of pRb allows the
transcription of cyclin A and cyclin B, required for subsequent phases of the
cell cycle. Cyclin A/cdk2 complexes phosphorylate a number of proteins to
facilitate S phase completion and transit into G2/M. Cyclin B is actively
synthesized during G2 and associates with cdk1 to trigger mitosis. Cdk1 is
maintained in an inactive state by the kinases Wee1 and Myt1. As cells
approach M phase, the phosphatase cdc25 is activated to remove inhibitory
phosphates on Tyr14 and Thr15, driving the cells into mitosis. A checkpoint in
late G2 (large green arrow) prevents cells from entering M phase if the
genome is damaged. This DNA damage checkpoint ensures that cells do not
initiate mitosis until they have repaired damaged DNA after replication.
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PKC SIGNALING AND T CELL PROLIFERATION
T CELL DEVELOPMENT AND TCR SIGNALING
T lymphocytes arise from bone marrow-derived CD34+ stem
cells, which seed the thymus and undergo multistage differenti-
ation to become mature circulating cells (for references, see Koch
and Radtke, 2011). An early event in this process involves VDJ
recombination of the TCR-β chain which then complexes with
pre-Tα to form the pre-TCR. Signaling from the pre-TCR leads
to proliferation of pre-T cells and rearrangement of the TCR-α
chain, which combines with the β chain and CD3 to form the
TCR. Further differentiation, accompanied by negative and posi-
tive selection, eventually leads to the development of mature naïve
T cells, including CD4+ helper T (Th), CD8+ cytotoxic T (Tc),
and regulatory T (Treg) cells. These naïve cells exit the thymus and
remain dormant as they circulate through secondary lymphoid
organs until activated by antigen. These organs, which include
the spleen, lymph nodes, and Peyer’s patches, transiently house
naïve T cells and are the first line of defense against pathogens
that traverse the skin or the epithelial lining of the respiratory,
gastrointestinal, and urogenital tracts.

Activation of T cells requires interaction of the TCR with major
histocompatibility complex (MHC) bound antigen on antigen
presenting cells (APCs), such as dendritic cells, macrophages, and
B cells (for references, see Marsland and Kopf, 2008; Smith-Garvin
et al., 2009; Fooksman et al., 2010; Dustin and Depoil, 2011). The
interface between the T cell and APC is marked by the formation of
a structure, termed the immune synapse or supramolecular acti-
vation cluster (SMAC), which serves to regulate T cell signaling.
Productive activation of T cells requires two signals. The first sig-
nal is provided by the MHC-bound TCR, while the second signal is
provided by co-stimulatory molecules such as CD28 (which binds
to B7 proteins on the APC). Additionally, cytokines such as IL-12
and tumor necrosis factor alpha (TNF-α) can provide a third sig-
nal that regulates the response to T cell activation. A number of
experimental manipulations can activate T cells in the absence of
APC interaction; these include crosslinking of the TCR and CD28
with insoluble antibodies and combined treatment of cells with
phorbol ester and calcium ionophore.

T cell receptor co-activation leads to the engagement of mul-
tiple downstream signaling pathways including those involving
phosphatidylinositol 3-kinase (PI-3K), tyrosine kinases such as
Lck, and PLCγ (for references, see Altman et al., 2000; Mars-
land and Kopf, 2008; Smith-Garvin et al., 2009; Fooksman et al.,
2010; Dustin and Depoil, 2011). Activation of PLCγ results
in production of DAG, which recruits PKCθ to the immune
synapse where it interacts indirectly with CD28 through bind-
ing to Lck (Kong et al., 2011; Isakov and Altman, 2012). PKCθ

then phosphorylates CARMA1, leading to the assembly of the
CARMA1–BCL10–MALT1 (CBM) signalosome. PLCγ-generated
inositol trisphosphate releases calcium from intracellular stores.
The combined action of downstream TCR signaling eventually
leads to activation of NF-κB, AP1, and nuclear factor of acti-
vated T cells (NFAT) transcription factors (Marsland and Kopf,
2008; Smith-Garvin et al., 2009; Fooksman et al., 2010; Dustin
and Depoil, 2011). Together, these events promote functional
activation of T cells which is marked by cell proliferation/clonal
expansion and cytokine secretion. While the majority of the T

cells that arise from activation are eventually cleared from the cir-
culation, a small number develop into memory T cells which are
primed for activation upon subsequent antigen exposure.

Antigen-induced proliferation is a key aspect of both T cell
differentiation and clonal expansion (Koch and Radtke, 2011).
Thus, mechanisms underlying regulation of the T cell cycle
machinery are of critical importance to immune function. As
the signaling pathways involved in T cell activation are being
deciphered, increasing evidence is pointing to the importance
of the PKC family in mediating proliferative responses in these
cells. The following section outlines our current understanding
of the role of individual PKC isozymes in regulating prolifera-
tion in T cells within the context of knowledge gained from other
systems.

PKCs AND THE CELL CYCLE
As our knowledge of the proliferative roles of the PKC family has
developed, it has become increasingly apparent that the effects of
these molecules are highly context-dependent. The fact that PKCs
are activated by tumor promoting phorbol esters and are down-
stream of growth factor receptors initially led to the idea that
they transduce positive mitogenic signals (Castagna et al., 1982;
Kikkawa et al., 1983; Leach et al., 1983). Although a number of
early studies supported this idea (Dicker and Rozengurt, 1978;
Rozengurt, 1986; Takuwa et al., 1988), it soon became clear that
PKCs can negatively and positively regulate cell cycle progression.
Indeed, regulation of proliferation by the PKC enzyme system
exhibits a high degree of complexity, with effects involving mul-
tiple cell cycle regulatory molecules, including cyclins, cdks, and
ckis, and impacting various stages of the cell cycle (Black, 2010).
Furthermore, individual isozymes can have opposing effects on
cell cycle progression in different cell types and even within the
same cell type, depending on the signaling environment. A single
isozyme can target different cell cycle molecules in different cell
types, can have opposite effects on a specific cell cycle target in
different systems, and can modulate the same target to produce
divergent cell cycle responses (for review, see Black, 2010). Thus,
to gain a true understanding of the role of PKCs in regulation
of proliferation in any given system, it is important to study the
mechanisms by which individual isozymes affect specific cell cycle
molecules in that system.

T lymphocytes express all members of the PKC family with the
exception of PKCγ (Koretzky et al., 1989; Chen et al., 1994; Thuille
et al., 2006). A role for PKC isozymes in cell cycle regulation in
CD3+ T lymphocytes was suggested by the early recognition that
phorbol esters, in conjunction with calcium ionophore, are potent
mitogens for these cells (Altman et al., 1990). While studies have
concentrated largely on the role of PKCθ in mediating signaling
from the immune synapse, a role for other PKC isozymes is emerg-
ing. Notably, different isozymes can have pro-proliferative and/or
anti-proliferative functions, arguing that, as in other cell types,
PKC signaling can regulate entry into the cell cycle, transit through
the various cell cycle phases, as well as cell cycle withdrawal in T
cells. The following sections discuss current understanding of the
growth regulatory functions of individual PKC family members,
followed by a summary of the limited information available on
cell cycle-specific effects of these isozymes in T cells.
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PROLIFERATIVE EFFECTS OF INDIVIDUAL PKC FAMILY MEMBERS
PKCα

Use of selective pharmacological inhibitors, antisense technology,
or siRNA has identified an anti-proliferative and differentiation-
inducing role of PKCα in multiple cell types, e.g., intestinal
epithelial cells, keratinocytes, mammary epithelial cells, and
melanoma cells (Black, 2000, 2010). Anti-proliferative effects of
PKCα affecting G1 → S transit include downregulation of cyclin
D1 (Detjen et al., 2000; Hizli et al., 2006; Guan et al., 2007), as well
as induction of p21Cip1 (Frey et al., 1997, 2000; Abraham et al.,
1998; Slosberg et al., 1999; Black, 2000; Detjen et al., 2000; Tibu-
dan et al., 2002; Clark et al., 2004; Matsumoto et al., 2006) and
p27Kip1 (Frey et al., 1997, 2000; Detjen et al., 2000; Tibudan et al.,
2002). Induction of p21Cip1 is also involved in the ability of this
isozyme to delay S phase transit and induce G2/M arrest (Frey
et al., 1997; Oliva et al., 2008). Our analysis in intestinal epithelial
cells indicated that downregulation of cyclin D1 represents one
of the earliest effects of PKCα signaling (Frey et al., 2004; Hizli
et al., 2006): PKCα-induced loss of cyclin D1 results from transla-
tional and transcriptional inhibition, mediated by activation of the
translational repressor 4E-BP1 and downregulation of the Id fam-
ily of transcription factors, respectively (Clark et al., 2004; Hizli
et al., 2006; Guan et al., 2007; Hao et al., 2011). Suppression of
cyclin D1 expression by PKCα can involve different intermediate
signaling events, including activation of the ERK/MAPK pathway
(Clark et al., 2004; Hizli et al., 2006; Guan et al., 2007; Hao et al.,
2011) and RORα-mediated suppression of Wnt/β-catenin signal-
ing (Bird et al., 1998). Consistent with a role of PKCα in growth
inhibition, activation/membrane association of this isozyme is
detected in post-mitotic cells in the intestinal epithelium (Saxon
et al., 1994; Frey et al., 2000) and epidermis (Tibudan et al., 2002)
in vivo. Furthermore, PKCα knockout mice show increased prolif-
erative activity within intestinal crypts, and the tumor suppressive
activity of this isozyme in the intestine has been linked directly
to its effects on the cell cycle machinery (Oster and Leitges, 2006;
Pysz et al., 2009).

Growth-stimulatory effects of PKCα have been reported in
glioma cells, osteoblasts, chick embryo hepatocytes, hepatocel-
lular carcinoma cells, and myoblasts, among others (Black, 2000,
2010). Proliferative effects of PKCα on the cell cycle machinery
include increased levels of cyclin D1 and cdk4, and enhanced
cyclin/cdk2 complex activity (Zhou et al., 2002; Alisi et al., 2004;
Wu et al., 2008; Lovatt and Bijlmakers, 2010). PKCα can also elicit a
p21Cip1-dependent enhancement of proliferation as seen in glioma
cells (Besson and Yong, 2000). The ability of PKCα to promote pro-
liferation has been linked to signaling through the ERK/MAPK
pathway (Schonwasser et al., 1998; Shatos et al., 2008).

Consistent with the cell cycle effects of PKCα described above,
this isozyme is targeted by various physiological stimuli that elicit
changes in proliferation (Bird et al., 1998; Black, 2000, 2010). Inter-
estingly, PKCα can mediate opposing cell cycle-specific effects of
these agents depending on context. For example, PKCα appears
to mediate both proliferative (Buitrago et al., 2003) and growth-
inhibitory (Chen et al., 1999; Bikle et al., 2001) effects of vitamin
D in different systems. This dichotomy has even been observed
in cells of the same tissue origin: decreased PKCα expression
mediates all-trans retinoic acid (ATRA)-induced inhibition of

G1 → S progression in SKRB-3 breast cancer cells (Nakagawa
et al., 2003), whereas PKCα is required for ATRA-induced growth
arrest in T-47D breast cancer cells (Cho et al., 1997).

A role for PKCα in positive regulation of proliferation in T cells
was suggested by the finding that, unlike wild-type cells, T lym-
phocytes from transgenic mice overexpressing PKCα were able
to proliferate in response to soluble anti-CD3 antibody (Iwamoto
et al., 1992). This role was confirmed by studies of PKCα knockout
mice: while PKCα was not required for differentiation of CD4+
and CD8+ cells or activation-induced IL-2 production, PKCα−/−
T cells showed severe defects in TCR-induced proliferation and
IFN-γ production (Pfeifhofer et al., 2006). These effects were spe-
cific to T cells since B cell proliferation was unaffected (Pfeifhofer
et al., 2006; Gruber et al., 2009).

Interestingly, PKCα and PKCθ cooperate in regulation of T
cell proliferation: while PKCα−/− and PKCθ−/− showed only
a mild activation defect in a graft-versus-host model, double
PKCα/PKCθ knockout mice had a severe defect in alloreactive T
cell proliferation (Gruber et al., 2009). This effect is of direct physi-
ological relevance since the double knockout mice had significantly
improved transplant survival compared with single knockout and
control animals (Gruber et al., 2009). These studies further indi-
cated that the cooperative effects of PKCα and PKCθ are due
to a combinatorial effect on NFAT activation. A role for this
pathway in effects of PKCα is also supported by the fact that con-
stitutively active PKCα can activate NFAT (and AP1) in T cells
(Genot et al., 1995). While these studies indicate that PKCα and
PKCθ have overlapping functions in regulation of the alloimmune
response and NFAT activation, these isozymes clearly have non-
redundant functions in T cells. PKCα−/− mice show a defect in
Th1-dependent IgG2a/b switching, indicating that PKCα is partic-
ularly important in Th1 cells (Pfeifhofer et al., 2006), a role which
contrasts with the more prominent function of PKCθ in Th2 func-
tion (Salek-Ardakani et al., 2004). These non-redundant actions
of PKCα may reflect its recently identified role in phosphorylation
of Akt on serine 473 in T cells (Yang et al., 2010). The relevance
of this phosphorylation is supported by the finding that Akt links
mTORC2 to Th1 cells whereas PKCθ regulates mTORC2-mediated
Th2 differentiation (Lee et al., 2010).

PKCβ

The two major splice variants of the PKCβ gene (prkcb), PKCβI
and PKCβII, have different functions; however, the fact that early
studies did not always differentiate between these forms, and
knockdown and knockout strategies can affect both isoforms, has
complicated interpretation of their individual roles.

The cell cycle-specific effects of PKCβII, which have been noted
in both G1 and G2/M phases, appear to be largely stimulatory
(Black, 2010). Effects in G1 have been ascribed to the ability
of PKCβII to enhance transcription of cyclin D1 (Li and Wein-
stein, 2006), promote pRb phosphorylation (Suzuma et al., 2002),
or to stimulate CAK activity through direct phosphorylation
(Acevedo-Duncan et al., 2002). Studies by Fields and colleagues
have established that phosphorylation of lamins contributes to
the effects of PKCβII on G2 → M transition (Goss et al., 1994;
Walker et al., 1995; Thompson and Fields, 1996; Murray and Fields,
1998), while studies by Newton and colleagues (Chen et al., 2004)
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have also determined that PKCβII can affect M phase by regula-
tion of cytokinesis through interaction with pericentrin. However,
PKCβII can also inhibit proliferation and induce differentiation
in some cell types, with induction of p21Cip1 and loss of Cdc25
potentially mediating this activity (Yoshida et al., 2003; Cejas et al.,
2005). The PKCβI splice variant has been implicated in posi-
tive and negative regulation of proliferation in fibroblasts and
colon cancer cells, respectively (Housey et al., 1988; Choi et al.,
1990; Sauma et al., 1996); however, these findings relied exclu-
sively on overexpression and further work will be required to
determine the specific involvement of the PKCβI isozyme in these
effects.

A number of studies indicate that PKCβI and/or PKCβII
are involved in regulation of T cell proliferation. For example,
antisense-mediated knockdown has implicated PKCβ isozyme(s)
in IL-2 signaling (Gomez et al., 1995). Furthermore, PKCβ forms
are likely involved in cytoskeletal changes following T cell acti-
vation. PKCβII localizes to a cytoskeletal aggregate that forms in
close proximity to the microtubule organizing center following
T cell activation (Black et al., 1988; Gregorio et al., 1992, 1994)
and PKCβI has been shown to associate with microtubules in
T cells and to play a role in T cell polarization (Volkov et al.,
2001). Since cytoskeletal changes appear to be an important aspect
of T cell activation (Repasky and Black, 1996; Martín-Cófreces
et al., 2008; Alarcón et al., 2011), these observations are likely
to be relevant to T cell signaling. This idea is supported by the
finding that antisense-mediated knockdown of PKCβI reduced
nuclear translocation of NFAT in TCR/CD28-stimulated Jurkat
T lymphoma cells (Dreikhausen et al., 2003). However, PKCβ

isozymes do not have an essential role in T cell function since
PKCβ−/− mice have no appreciable T cell-related defects. This
contrasts with a critical role for PKCβ in B cell receptor sig-
naling (Thuille et al., 2006) and in dendritic cell differentiation
(Farren et al., 2010). Thus, any role of PKCβI/II association with
cytoskeletal elements is likely to be redundant. In this regard, it is
noteworthy that T cell activation leads to translocation of PKCα

and PKCθ to the same PKCβII-associated cytoskeletal aggregate
described above (J. D. Black and E. A. Repasky, unpublished data;
Wang et al., 1999).

PKCδ

PKCδ broadly inhibits cell cycle progression in G1 in response
to pharmacological agonists and physiological activators such as
ATRA, inositol hexaphosphate (IP6), interferons, and testosterone
(Watanabe et al., 1992; Fukumoto et al., 1997; Ashton et al., 1999;
Uddin et al., 2002; Kambhampati et al., 2003; Nakagawa et al.,
2005; Vucenik et al., 2005; Cerda et al., 2006; Bowles et al., 2007).
Effects on G1 → S phase progression are mediated by direct or
indirect targeting of cyclin D1, cyclin E, cyclin A, p21Cip1, and/or
p27Kip1 (Fukumoto et al., 1997; Vrana et al., 1998; Ashton et al.,
1999; Nakagawa et al., 2005; Cerda et al., 2006; Afrasiabi et al.,
2008). Cyclin D1 expression is downregulated by PKCδ in colon
cancer cells (Cerda et al., 2006; Pysz et al., 2009), as well as in
PKCδ overexpressing vascular smooth muscle cells (Fukumoto
et al., 1997), primary bovine airway smooth muscle cells (Page
et al., 2002), and NIH3T3 cells (Soh and Weinstein, 2003). Consis-
tent with these findings, loss of PKCδ activity resulted in increased

levels of cyclin D1 in colon cancer cells (Cerda et al., 2006) and
bovine airway smooth muscle cells (Page et al., 2002). PKCδ has
also been shown to inhibit mitosis in CHO cells and 3Y1 murine
fibroblasts (Watanabe et al., 1992; Kitamura et al., 2003).

Although the majority of studies have detected a growth-
inhibitory role for PKCδ, it can also act as a positive regulator
of the cell cycle (Kitamura et al., 2003; Cho et al., 2004; Jackson
and Foster, 2004; Czifra et al., 2006). PKCδ can enhance G1 → S
transit through increased expression of cyclin D1, cyclin E, cyclin
A, and/or cdk2 (Kitamura et al., 2003; Santiago-Walker et al., 2005;
Grossoni et al., 2007), destabilization of p21Cip1 (Santiago-Walker
et al., 2005; Walker et al., 2006), reduced nuclear localization of
p21Cip1 (Sipeki et al., 2002; Ranta et al., 2011), and increased
E2F promoter activity (Nakaigawa et al., 1996). In many cases,
these effects are mediated by the ERK/MAPK pathway (Jackson
and Foster, 2004; Grossoni et al., 2007). The opposing effects of
PKCδ on cell cycle progression may be regulated by differential
phosphorylation on Tyr155 (Acs et al., 2000; Steinberg, 2004).

T cells from PKCδ knockout mice are hyperproliferative and
produce more IL-2 cytokine upon stimulation in response to
allogeneic MHC. Thus, consistent with a predominant growth-
inhibitory role of PKCδ in other systems, this isozyme appears
to negatively regulate T cell proliferation, an effect that has been
ascribed to attenuation of TCR/CD3-mediated signaling (Gruber
et al., 2005a). A similar negative effect of PKCδ on proliferation is
also seen in B cells (Miyamoto et al., 2002).

PKCε

PKCε generally mediates pro-proliferative responses, and its effects
appear to be predominantly in G1/S rather than G2/M (Graham
et al., 2000; Balciunaite and Kazlauskas, 2001). The enzyme has
been implicated in mediating PDGF-induced G0/G1 → S pro-
gression (Balciunaite and Kazlauskas, 2001). Loss of PKCε activity
in NSCLC cells is associated with induction of p21Cip1, prolonged
G1 → S transition in response to serum, and reduced activa-
tion of cdk2 complexes (Bae et al., 2007), indicating that this
isozyme suppresses p21Cip1 accumulation to facilitate cell cycle
progression. PKCε can also induce cyclin D1 transcription and
upregulate cyclin D1 and cyclin E protein (Soh and Weinstein,
2003; F. Hao, M. A Pysz, A. R. Black, and J. D. Black, unpub-
lished data). Although PKCε is generally downregulated during
differentiation (e.g., Yang et al., 2003), the enzyme promotes adi-
pogenic commitment and is essential for terminal differentiation
of 3T3-F442A preadipocytes (Webb et al., 2003). Its expression
is also enhanced during myogenic differentiation, resulting in
upregulation of cyclin D3 (Gaboardi et al., 2010).

The ability of constitutively active PKCε to activate NFAT and
AP1 in Jurkat T lymphoma cells points to a role for this isozyme in
T cell activation (Genot et al., 1995). Antisense-mediated knock-
down has also implicated this isozyme in IL-2 signaling in T cells
(Gomez et al., 1995). Furthermore, siRNA-mediated knockdown
of PKCε in CD4+ T cells severely reduced proliferation in vitro and
enhanced the growth-inhibitory effects of transforming growth
factor beta (TGF-β; Mirandola et al., 2011). These findings sup-
port a predominantly growth-stimulatory role of PKCε in T cells,
as seen in other systems (see above). However, PKCε−/− mice
show no defects in T cell differentiation, proliferation or activation,
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indicating that the functions of this isotype may be in large part
redundant, at least in the mouse (Gruber et al., 2005b). In contrast
to this finding, analysis of Hashimoto thyroiditis patients points
to a potential clinical relevance for proliferative effects of PKCε in
T cells. These patients had significantly higher expression of PKCε

in their T cells compared with healthy controls (Mirandola et al.,
2011). Furthermore, while Hashimoto thyroiditis-derived T cells
had diminished TGF-β responses compared with healthy controls,
knockdown of PKCε in these cells restored normal responsiveness
to TGF-β (Mirandola et al., 2011).

PKCη

PKCη has been associated with post-mitotic cells in a number of
tissues including squamous epithelia (Kashiwagi et al., 2002; Bre-
itkreutz et al., 2007), the epidermis (Breitkreutz et al., 2007), and
the intestinal epithelium (Osada et al., 1993). Consistent with this
localization, PKCη upregulated p21Cip1 and p27Kip1, decreased
cdk2 kinase activity, and induced growth arrest in NIH3T3 cells
and keratinocytes (Livneh et al., 1996; Ishino et al., 1998; Cabodi
et al., 2000). However, this isozyme can also enhance proliferation
as seen in MCF-7 breast cancer cells, where it upregulated cyclin D
and cyclin E levels and promoted a redistribution of p21Cip1 and
p27Kip1 from cdk2 to cdk4 complexes (Fima et al., 2001).

PKCη is recruited to the immune synapse, pointing to involve-
ment of this isozyme in T cell activation (Fu and Gascoigne, 2012).
This role was confirmed by the finding that PKCη−/− T cells have
a defective proliferative response to anti-CD3 stimulation in vitro
(Fu et al., 2011). A somewhat more severe proliferative defect was
also observed in response to antigen presentation both in vitro and
in vivo (Fu et al., 2011). Consistent with a role for PKCη in mediat-
ing TCR signaling, activated PKCη−/− T cells showed a reduction
in calcium flux and NF-κB translocation (Fu et al., 2011). While
these effects are largely redundant with PKCθ, specific effects of
PKCη were seen in T cell homeostatic proliferation, which involves
self-antigen recognition and IL-7 and IL-15 signaling (Fu and Gas-
coigne, 2012). Notably, no defect in homeostatic proliferation was
seen in PKCθ−/− mice, indicating that this effect is largely specific
to PKCη, although double knockouts did have a somewhat more
severe phenotype.

PKCθ

PKCθ has been implicated as a positive regulator of prolifera-
tion in a number of cell types including gastrointestinal stromal
tumor cells and breast cancer cells, where it represses expression of
p21Cip1 and/or p27Kip1 (Belguise and Sonenshein, 2007; Ou et al.,
2008), and in capillary endothelial cells, where it promotes G2/M
progression (Tang et al., 1997).

A large body of evidence has emerged to support a critical role
for PKCθ in T cell activation. The functions of this isozyme are
the subject of several excellent reviews in this issue (e.g., Free-
ley and Long, 2012; Isakov and Altman, 2012; Wang et al., 2012)
and will only be discussed briefly here. While PKCθ is dispens-
able for differentiation of CD4+ and CD8+ T cells, it is intimately
involved in T cell activation and transduces pro-proliferative sig-
nals in multiple pathways, including those triggered by the TCR,
CD28, and TNF-α (Altman et al., 2000; So and Croft, 2012). As
mentioned above, PKCθ is recruited to the immune synapse early

in T cell activation, where it is required for formation of the CBM
complex, which plays a central role in mediating downstream sig-
naling during T cell activation (Rawlings et al., 2006). In keeping
with this role, PKCθ signaling activates a number of transcription
factors that regulate T cell activation and proliferation, includ-
ing Ap1, NF-κB, and NFAT (Pfeifhofer et al., 2003). Studies using
prkcq knockout mice have determined that PKCθ plays a central
role in mediating proliferative responses during T cell activation.
PKCθ-deficient T cells lose the ability to proliferate in response to
TCR/CD28 activation in vitro (Sun et al., 2000; Pfeifhofer et al.,
2003). A role for PKCθ in T cell expansion in vivo was also
apparent from the defective proliferation seen in PKCθ−/− mice
during allergic asthmatic reactions and in response to bacter-
ial infection (Salek-Ardakani et al., 2004; Sakowicz-Burkiewicz
et al., 2008).

As seen with PKC isozymes in other cell types, the action of
PKCθ in proliferation appears to be highly context-dependent. For
example, while a clear role for this isozyme in regulation of Th2 cell
proliferation in vivo is seen in the allergic asthmatic response, this
was not the case for Th1 cells (Salek-Ardakani et al., 2004). Fur-
thermore, PKCθ-deficiency does not affect T cell proliferation in
response to viral infection (Giannoni et al., 2005) and can mediate
growth-inhibitory effects of cytokine withdrawal (Li et al., 2006b).
Notably, while PKCθ generally plays a positive role in proliferation
of effector T cells, it has the opposite effect in Treg cells, where
it is sequestered from the immune synapse and promotes growth
inhibition (Zanin-Zhorov et al., 2010).

A recent study has given insight into possible explanations
for divergent functions of PKCθ (Kong et al., 2011). PKCδ and
PKCθ are highly homologous; yet, as noted above, PKCδ is growth
inhibitory in T cells. In keeping with these differences, PKCδ is not
targeted to the immune synapse, disrupts signalosome assembly
and cannot substitute for PKCθ in T cell function. These differ-
ences are due to a proline-rich motif in the V3 region of PKCθ

that mediates indirect interaction with CD28 through Lck. Muta-
tion of this sequence blocks localization of PKCθ to the immune
synapse; conversely, a PKCδ mutant containing this sequence was
targeted to the immune synapse and could substitute for PKCθ

in T cell signaling (Kong et al., 2011; Isakov and Altman, 2012).
These findings point to the importance of alterations in protein–
protein interactions and localization in dictating the effects of
PKC signaling, and offer a mechanism for the divergent roles of
PKC isozymes in different cell types and in different signaling
environments.

Atypical PKC isozymes
While analysis of the functions of atypical PKCs is less advanced
than that of other PKC isotypes, PKCι and PKCζ generally appear
to promote cell cycle progression. Consistent with a cell cycle stim-
ulatory role of PKCζ, keratin-induced blockade of HaCaT cell
cycle progression involved inhibition of PKCζ activity, a reduction
in cyclin D1 and cyclin E levels, and pRb hypophosphorylation
(Paramio et al., 2001). PKCζ can mediate transcriptional activation
of cyclin D1 downstream of Ras (Kampfer et al., 2001), and can
induce phosphorylation and proteasome-dependent degradation
of p21Cip1 downstream of PI-3K (Scott et al., 2002). The ability of
PKCζ to modulate the subcellular distribution of p27Kip1 during
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cell cycle reentry of quiescent MCF7 cells is also downstream of
PI-3K (Castoria et al., 2004). PKCζ may also enhance cdc25 activ-
ity to promote G2/M transit in A549 lung epithelial cells, an effect
associated with changes in cdk2 activity (Lee et al., 2011; Kang
et al., 2012). Exciting studies by Murray, Fields and colleagues have
recently identified PKCι as an oncogene which is required for the
transformed growth of various human cancer cell types (Fields and
Regala, 2007; Murray et al., 2011). Consistent with these findings,
PKCι is upstream of PKCζ in Ras-related upregulation of cyclin
D1 (Kampfer et al., 2001). PKCι also phosphorylates and activates
CAK in response to PI-3K signaling in glioma and neuroblastoma
cells (Acevedo-Duncan et al., 2002; Pillai et al., 2011; Desai et al.,
2012) and may target cyclin E in ovarian cancer (Eder et al., 2005).

In contrast to PKCα and PKCε, constitutively active PKCζ had
no effect on AP1 and NFAT in Jurkat cells (Genot et al., 1995).
However, work of Gruber et al. (2008) points to a role for atypi-
cal PKCs in PKCθ-mediated pro-proliferative signaling in T cells.
These studies found that PKCζ physically interacts with PKCθ in a
yeast two-hybrid screen and that PKCζ is a substrate for PKCθ.
This physical interaction likely occurs in vivo since PKCζ and
PKCι are constitutively localized in lipid rafts to which PKCθ

is recruited following activation of primary T cells and Jurkat
cells. Use of dominant negative mutant proteins further impli-
cated the atypical isozymes in NF-κB induction by PKCθ. In
keeping with their common localization and structure, it appears
that PKCι and PKCζ can substitute for each other in most T cell
functions. Nonetheless, PKCζ function appears to be particu-
larly important for activation of Th2 cells (Martin et al., 2005):
while PKCζ knockout did not result in proliferative or signal-
ing defects in naïve T cells, it dramatically inhibited activation
of Th2 cells. This effect was reflected in disruption of STAT6,
NFAT, and NF-κB activation following stimulation with anti-CD3.
The dramatic upregulation of PKCζ noted during Th2 cell differ-
entiation may account for the inability of PKCι to compensate
for loss of PKCζ in these cells (Martin et al., 2005; Gruber et al.,
2008). The physiological relevance of PKCζ signaling in Th2 cells is
seen in the impaired allergic asthmatic response in PKCζ−/− mice
(Martin et al., 2005).

Summary and discussion
From the above discussion, it is apparent that PKC signaling plays
an important role in regulation of cell proliferation in a broad
spectrum of cell types including T cells. PKC activation can either
promote or inhibit transit through multiple stages of the cell cycle.
The precise effect of PKCs on the cell cycle is highly context-
dependent, and is influenced by the specific isozyme involved,
the timing and duration of PKC activation, the cell type, and the
signaling environment to which the cell is exposed; however, some
themes are beginning to emerge. With regard to individual PKC
family members, accumulating evidence indicates that PKCα can
exert context-dependent inhibitory or stimulatory effects. While
PKCδ can have positive effects on cell cycle progression, its effects
are generally inhibitory. On the other hand, effects of PKCβII,
PKCε, and atypical PKCs appear to be mainly pro-proliferative,
while those of PKCη are generally inhibitory.

In T cells, multiple PKC isozymes mediate proliferative signals
associated with TCR/CD28 engagement (Figure 2). These effects,

which directly impact immune function, involve both redundant
and non-redundant functions of individual PKC family mem-
bers, and a high degree of cooperation between different PKC
isozymes is becoming apparent. As in other systems, the effects
of PKC signaling are highly context-dependent, with the reliance
on individual isozymes differing between T cell subtypes. While
the majority of the characterized effects of PKC signaling in T
cells have been pro-proliferative, negative effects are also seen:
PKCδ appears to play a predominantly inhibitory role and PKCθ

can have negative proliferative effects dependent on the signaling
environment and cell type.

Although effects of PKC signaling have been noted in all stages
of the cell cycle, the predominant actions of PKC isozymes are in
G1 and G2 phases. Similarly, while PKCs can modulate the activity
of multiple cell cycle regulatory molecules, consistent with effects
in G1 and G2, D-type cyclins and Cip/Kip cdk inhibitors (p21Cip1

and p27Kip1) are emerging as important targets of PKC control.
In keeping with the involvement of these proteins in regulation of
quiescence, accumulating evidence indicates that controlling cell
cycle entry and exit is an important role for PKC signaling. The
ability of PKCs to promote G0 → G1 progression has been noted
in several cell types (Chiu et al., 2002, 2003; Santiago-Walker et al.,
2005). PKC signaling has also been shown to promote cell cycle exit
in a number of systems, including intestinal epithelial cells, ker-
atinocytes, PKC-overexpressing fibroblasts, and leukemic cell lines
(Black, 2000, 2010). Studies in leukemia cells (Zhang and Chellap-
pan, 1996; Vrana et al., 1998; Wang et al., 1998), non-transformed
intestinal epithelial cells (Frey et al., 2000), pancreatic cancer cells
(Detjen et al., 2000), and keratinocytes (Tibudan et al., 2002) indi-
cate that PKC family members are capable of activating a complete
program of cell cycle withdrawal, which can include downregula-
tion of cyclin D1, upregulation of p21Cip1 and p27Kip1, alterations
in the expression and phosphorylation of the pocket proteins
p107, pRb, and p130, and changes in E2F expression and complex
formation (Zhang and Chellappan, 1996; Saunders et al., 1998).
While the ability of PKC signaling to promote exit from quiescence
following TCR/CD28 and pre-TCR engagement is established, fur-
ther studies are required to define its role in promoting cell cycle
exit during T cell development and the establishment of quiescent
memory T cells.

SPECIFIC CELL CYCLE TARGETS OF PKC SIGNALING IN T CELLS
Antigen-induced proliferation is a key aspect of both T cell differ-
entiation and clonal expansion (Koch and Radtke, 2011). Thus, the
mechanisms underlying PKC isozyme-specific effects on the cell
cycle machinery in T cells are of critical importance to immune
function. As noted above, the cell cycle is tightly regulated by
coordinated actions of cyclins, cdks and ckis, which modulate
the activity of the retinoblastoma family and thus expression of
E2F-dependent genes (Figure 1). Proliferative T cell signaling
affects multiple members of this control network. For example,
proliferation induced by TCR/CD28 costimulation is associated
with increased pRb phosphorylation by cyclin D2/3 and cyclin
E, and enhanced transcription of E2F-dependent genes such as
cyclins E and A (Colombetti et al., 2006). Analysis of mechanisms
underlying these changes has pointed to a particularly impor-
tant role for cyclin D3, cdk6, and p27Kip1 in regulation of T
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FIGURE 2 | Proliferative effects of PKC isozymes inT cells. Positive and
negative proliferative effects of individual PKC isozymes are indicated by
green arrows and red barred lines, respectively. Proposed cell cycle targets
in the growth-inhibitory and growth-stimulatory effects of PKCθ are shown.

These targets reflect the importance of D-type cyclins and Cip/Kip ckis as
targets for PKC signaling, as seen in other systems (note that in pre-T cells,
cyclin D1 appears to be the target for PKCθ). The dashed lines indicate the lack
of knowledge of specific cell cycle targets for other PKC isozymes in T cells.

cell proliferation. For example, cyclin D3 and cdk6 knockout
mice show defects in T cell proliferation, whereas cdk4 and cdk2
knockout mice do not (Sicinska et al., 2003; Hu et al., 2009), and
p27Kip1 null T cells show reduced mitogen requirements and are
resistant to anergy (Mohapatra et al., 2001; Rowell et al., 2005; Li
et al., 2006a).

While PKC activation mediates TCR signaling to NF-κB, NFAT,
and Ap1, transcription factors that have been shown to have a
direct role in regulation of the cell cycle machinery in T cells, the
function of specific PKCs in these effects remains largely unex-
plored. However, limited information is emerging to indicate that,
as in other cell types, D-type cyclins and Cip/Kip proteins are

Frontiers in Immunology | T Cell Biology January 2013 | Volume 3 | Article 423 | 10

http://www.frontiersin.org/T_Cell_Biology/
http://www.frontiersin.org/T_Cell_Biology/archive


“fimmu-03-00423” — 2013/1/17 — 10:57 — page 11 — #11

Black and Black PKC and the cell cycle

important targets of PKC in these cells. In keeping with the greater
attention that has been paid to PKCθ, this evidence primarily
concerns the effects of this isozyme. For example, saikosaponins
inhibit PKCθ translocation and cause a G0/G1 arrest in activated T
cells through downregulation of cdk6 and cyclin D3 and upregula-
tion of p27Kip1 protein levels (Leung et al., 2005; Sun et al., 2009).
A link to p27Kip1 is also supported by the finding that PKCθ loss
leads to anergy (Deenick et al., 2010), a process that involves upreg-
ulation of this cki (Li et al., 2006a; Wells, 2007, 2009). Through its
role in assembly of the CBM signalosome, PKCθ has also been
implicated in regulation of cyclin E stability in T cells (Srivastava
et al., 2012).

Evidence also points to an ability of PKCθ to regulate cyclin D3
and p27Kip1 in pre-T cells. These molecules are downstream of the
pre-TCR and PKCθ is an important mediator of signaling from
this receptor (Felli et al., 2004; Aifantis et al., 2006; Talora et al.,
2006). Pre-TCR activation of PKCθ cooperates with Notch3 to
induce cyclin D1 in lymphomagenesis, indicating that this cyclin
can also be a target for PKCθ in these cells.

Surprisingly, p27Kip1 also appears to be involved in PKC-
mediated cell cycle arrest following cytokine withdrawal in T cells.
IL-7 withdrawal from the D1 thymocyte cell line results in G1
arrest due to upregulation of p27Kip1 (Li et al., 2006b). Notably,
PKCθ is activated by IL-7 withdrawal in these cells and the upreg-
ulation of p27Kip1 could be blocked by a general PKC inhibitor.
While these studies do not exclude other PKCs, p27Kip1 upreg-
ulation was not blocked by the classical PKC inhibitor Gö6976,
indicating that the effect was mediated by novel or atypical
isozyme(s) (Li et al., 2006b).

SIGNALING DOWNSTREAM OF PKC IN REGULATION OF THE CELL CYCLE
While cell cycle-specific effects of PKCs can involve direct phos-
phorylation of cell cycle regulatory molecules (Goss et al., 1994;
Acevedo-Duncan et al., 2002; Scott et al., 2002), the effect of PKCs
on the cell cycle is generally indirect and involves downstream
signaling cascades. Several signaling pathways, including those
involving PI-3K/Akt (e.g., Belguise and Sonenshein, 2007; Bakker
et al., 2008; Ou et al., 2008) and Wnt-β-catenin (e.g., Gwak
et al., 2009; Murray et al., 2009), have been implicated in PKC
proliferative signaling. However, analysis of multiple systems
has highlighted the Ras/Raf/MEK/Erk pathway as a particularly
important mediator of proliferative effects of PKCs. Most mem-
bers of the PKC family, including PKCα, PKCβ, PKCλ, PKCδ,
PKCε, PKCζ, and PKCθ, can target this pathway in many cell types
(Kampfer et al., 2001; Chiles, 2004; Clark et al., 2004; Jackson and
Foster, 2004; Koike et al., 2006; Bakker et al., 2008). Activation
can occur at multiple steps in the Ras–Raf–MEK–Erk cascade. For
example, PKCα can intersect the pathway at the level of Ras (Clark
et al., 2004) or downstream of Ras through direct phosphorylation
of Raf (Kolch et al., 1993). Erk activation mediates the effects of
PKC signaling on several cell cycle regulatory molecules, including
D-type cyclins and Cip/Kip ckis (Kampfer et al., 2001; Clark et al.,
2004; Koike et al., 2006; Matsumoto et al., 2006; Black, 2010; Ranta
et al., 2011). Interestingly, Erk signaling can facilitate both positive
and negative effects of PKC on cell cycle targets and cell prolifer-
ation, and can mediate divergent effects on individual cell cycle
molecules even within a single cell type. For example, our analysis

has determined that Erk signaling is required for both PKCα-
induced cyclin D1 downregulation and PKCε-induced cyclin D1
upregulation in intestinal epithelial cells (Clark et al., 2004; F. Hao,
M. A Pysz, A. R. Black and J. D. Black, unpublished data). Thus,
in keeping with the complexity associated with the proliferative
consequences of PKC activation in general, the effects mediated
by Erk signaling are highly context-dependent. While it has been
proposed that the duration of activation dictates the proliferative
outcome of Erk signaling (cf. Yasuda and Kurosaki, 2008), the
anti-proliferative effects of PKCα and the pro-proliferative effects
of PKCε both require prolonged Erk activation, with differences in
the localization of activated Erk providing a possible explanation
for the divergent effects (Clark et al., 2004).

Erk signaling is important for pre-T cell and T cell prolifera-
tion (Yasuda and Kurosaki, 2008), pointing to the possible role of
a PKC–Erk signaling axis in these cells. It has been proposed that
Sos and RasGRP1 cooperate to regulate the sensitivity, duration,
and amplitude of Erk signaling in T cells (Yasuda and Kurosaki,
2008). Although analysis of the roles of PKC isozymes in Erk acti-
vation in this system is complicated by the fact that RasGRP1 is
also a DAG/phorbol ester activated protein (Yasuda and Kurosaki,
2008), siRNA-based analysis has led to the suggestion that PKC
may mediate RasGRP1-independent Erk activation in T lympho-
cytes (Warnecke et al., 2012). This idea opens the possibility that
the proliferative response in T cells may be regulated by the coor-
dinated effects of PKC isozymes, Sos-GRB2 and RasGRP1 on Erk
activation.

SUMMARY AND PERSPECTIVES
Although understanding of the impact of PKC signaling on the
cell cycle machinery in T cells remains limited, several similar-
ities with other cell types are beginning to emerge (Figure 2).
As in other cell types, D-type cyclins and Cip/Kip ckis appear to
be major targets of PKC signaling in T cells, pointing to effects
in G1 and G2. To date, the majority of findings have indicated
positive effects of PKCs on cell cycle progression in T cells. How-
ever, it should be noted that this may largely reflect a focus on
the consequences of T cell activation, which would bias find-
ings in that direction. Evidence for anti-proliferative effects of
PKC signaling is indeed accumulating, with PKCδ emerging as
a negative regulator. Further analysis is required to identify cell
cycle targets which mediate these inhibitory effects. The con-
text-dependence of PKC isozyme-mediated cell cycle regulation
observed in other systems has also been noted in T cells, exem-
plified by the ability of PKCθ to both promote and inhibit T cell
proliferation/cell cycle progression. Despite these advances, it is
clear that understanding of the cell cycle-specific effects of indi-
vidual PKC isozymes in T cells is still in its infancy. In addition
to delineation of the cell cycle roles of individual PKC isozymes
and identification of specific cell cycle targets, issues that remain
to be addressed include (a) how the different signaling environ-
ments in T cell subsets affect PKC cell cycle signaling, (b) whether
PKC signaling plays a role in maintenance of quiescence in T
cells and in control of quiescence-related regulators such as FOXO
and Krüppel-like transcription factors (Black et al., 2001; Wu and
Lingrel, 2004; Vucenik et al., 2005; Hart et al., 2012; Warnecke
et al., 2012), and (c) what mechanisms underlie the differential
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involvement of individual PKCs in T cell proliferation in vitro and
in vivo. Given the emerging importance of mTOR in immune
function (Powell et al., 2012), an area of particular interest is the
interplay between PKC and mTOR signaling in control of T cell
proliferation under the metabolic conditions in which activation
occurs in vivo. Other areas that remain to be addressed are the
relative contribution of direct activation by TCR/CD28 and of
activation by secreted cytokines to PKC-mediated proliferative
responses, as well as the role of cell survival in the proliferative
effects of PKC manipulation, especially in vivo. With increasing
knowledge of TCR and cytokine signaling and the availability
of mouse models for analysis of PKC isozyme function in vivo,
it is anticipated that a link between PKC and growth-inhibitory

signaling in T cells will be confirmed, and that the molecu-
lar details underlying the effects of individual PKC isozymes on
the cell cycle in T cell subsets will be elucidated in the near
future.
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