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Abstract

Identification of prokaryotic transposases (Tnps) not only gives insight into the spread of antibiotic resistance and virulence 
but the process of DNA movement. This study aimed to develop a classifier for predicting Tnps in bacteria and archaea using 
machine learning (ML) approaches. We extracted a total of 2751 protein features from the training dataset including 14852 
Tnps and 14852 controls, and selected 75 features as predictive signatures using the combined mutual information and least 
absolute shrinkage and selection operator algorithms. By aggregating these signatures, an ensemble classifier that integrated 
a collection of individual ML- based classifiers, was developed to identify Tnps. Further validation revealed that this classi-
fier achieved good performance with an average AUC of 0.955, and met or exceeded other common methods. Based on this 
ensemble classifier, a stand- alone command- line tool designated TnpDiscovery was established to maximize the convenience 
for bioinformaticians and experimental researchers toward Tnp prediction. This study demonstrates the effectiveness of ML 
approaches in identifying Tnps, facilitating the discovery of novel Tnps in the future.

DATA SUMMARY
All the protein sequences used in this study were obtained 
from the National Centre for Biotechnology Information 
(NCBI) RefSeq, Swiss- Prot, and ISfinder databases. The 
TnpDiscovery program is publicly available at https:// github. 
com/ ying- jc/ TnpDiscovery.

INTRODUCTION
Transposons (Tns) are DNA elements that can move from the 
DNA molecule to other places on the same DNA or other DNA 
molecules [1]. In bacteria, Tns are divided into four catego-
ries: insertion sequence (IS), composite Tns, non- composite 
Tns, and transposable phage Mu [2, 3]. Tns can transfer from 
a plasmid to other plasmids or from a DNA chromosome to 
a plasmid and vice versa that cause the transmission of antibi-
otic resistance genes in bacteria [4, 5]. Drug resistance genes 

carried by Tns and their transmission among bacteria is the 
most serious challenge in the treatment of infectious diseases 
[6]. In addition to antibiotic resistance, Tns can also cause an 
increase and decrease of bacterial virulence [7]. Transposase 
(Tnp) is an enzyme that binds to the end of a transposon and 
catalyses the movement of DNA segments and the associ-
ated genes, to new DNA sites by a cut and paste mechanism 
or a replicative transposition mechanism [1, 8]. Tnps have 
dramatic biological and evolutionary consequences that shape 
the genomes of organisms [8]. Identification of Tnps is a key 
process to understanding the role of Tns in the spread of 
antibiotic resistance and virulence. It is an important task to 
accurately and rapidly identify Tnps from large- scale proteins.

At present, several bioinformatics methods have been 
proposed to identify and annotate Tnps, which are mainly 
based on the sequence search of the Tnp library. ISfinder 
[9] is a dedicated database for bacterial ISs as well as Tnp 

OPEN

ACCESS

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://github.com/ying-jc/TnpDiscovery
https://github.com/ying-jc/TnpDiscovery


2

Wang et al., Microbial Genomics 2021;7:000611

protein sequences and is commonly used for Tnp identifica-
tion by searching with the blast program. A web application 
termed ISSaga [10] was developed to automate IS annotation 
in complete genomes using blast seeded with the ISfinder 
sequences and classify them into families. IScan [11] is another 
application that makes use of blast to scan whole genomes 
for ISs and includes in its prediction pipeline searches for 
transposases and inverted and direct repeats. TnpPred [12] is 
a web service that provides HMM profiles of 19 prokaryotic 
transposase families and uses the HMMER search method for 
Tnp prediction. The library- based method has some limita-
tions in identifying transposable elements. First, the efficiency 
of the library- based method is critically dependent on the 
quality and the exhaustiveness of the database used. Second, 
library- based methods are unable to identify new families that 
display no similarities with existing families [13]. For these 
reasons, the de novo method which relies on the structural 
properties of the transposable elements and does not require 
a set of reference sequences to work becomes an alternative 
method. Kamoun et al. [13] took advantage of the structural 
properties of the elements and combined with profile HMM 
searches to improve the discovery of ISs and miniature 
inverted- repeat transposable elements.

With the advent of the era of big data, machine learning 
(ML) techniques have been increasingly used as a powerful 
approach to identify important proteins in biology [14]. 
Although this method cannot replace biological experi-
ments, it improves the accuracy of prediction and provides 
more clues for biological experiments [15]. There are many 
examples of protein identification using ML approaches, and 
most of them show good predictive performance. ACP- DL 
was developed based on deep learning to predict anticancer 
peptides and remarkably outperformed other comparison 
methods with high accuracy and satisfied specificity on 
benchmark datasets [16]. Han et al. applied support vector 
machine and random forest methods to predict ion chan-
nels and their types from protein sequences [17]. Hou et al. 
proposed a model combining 188D features with random 
forest to identify ABC transporters [15].

Considering that ML approaches have not been used for 
Tnp identification, we sought to explore their applicability 
in the development of classifiers for this behaviour. In this 
study, we extracted a wide variety of protein features, and 
further performed feature selection to select signatures for 
Tnp prediction based on ML algorithms. A set of ML- based 
classifiers was developed for these signatures and then inte-
grated as an ensemble classifier to identify potential Tnps. To 
the best of our knowledge, this is the first study to construct 
an ML- based classifier for Tnp prediction. We envisage this 
classifier will be widely used to facilitate the discovery of novel 
Tnps.

METHODS
Data collection and preprocessing
Tnp protein sequences were obtained from the ISfinder [9] 
database and by retrieving Swiss- Prot (https://www. uniprot. 

org/) and NCBI RefSeq (https://www. ncbi. nlm. nih. gov/ 
refseq/) databases using ‘transposase’ as the keyword. The 
resulted sequences were filtered and only sequences belonging 
to the archaea and bacteria were retained. We used all reviewed 
complete protein sequences of archaea and bacteria from 
Swiss- Prot as the control sequences by removing the Tnps. 
The following measures were taken to obtain reliable high- 
quality datasets. Firstly, the protein sequences containing 
blurred disabilities, such as those with amino acids ‘X’, ‘Z’, 
‘B’, ‘J’, ‘O’, and ‘U’, as well as ‘*’ were discarded. Secondly, the 
sequences of protein fragments were removed. Thirdly, to 
avoid any similarity bias in the following analysis, CD- HIT 
[18] program was used for protein clustering to maximally 
remove redundant data. All the collected proteins were clus-
tered with a 40 % sequence identity as the cut- off. The clusters 
containing both Tnps and controls were excluded because 
of their ambiguity, and the representative sequences in each 
of the remaining clusters were extracted to form the final 
dataset. This procedure produced a total of 18 565 Tnps and 
33 457 controls (Table S1, available in the online version of this 
article). Given the imbalance between the number of Tnps 
and controls, we randomly selected 14 852 (80 %) of the Tnp 
group and the same number of controls as the training dataset 
(n=29 704). Then, the remaining Tnps and 3713 randomly 
selected controls from the remaining 18 605 controls formed 
a validation dataset (n=7426). This operation was conducted 
ten times and ended up with ten validation datasets. To make 
a relatively unbiased comparison of the various methods, we 
further generated a testing dataset containing 3530 Tnps that 
are not from the training dataset or ISfinder database, as well 
as 3530 controls. In this way, the number of Tnps and controls 
in each dataset is the same, and the sequences in the training 
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and validation/testing datasets do not overlap. In order to 
test the predictive performance of the proposed classifier for 
Tnp fragments, we randomly truncated the 3713 complete 
Tnp sequences in the validation dataset to set up a dataset. 
The sequences with a length less than 31 aa were removed 
according to the requirement of feature extraction. This whole 
process was repeated ten times, and a total of ten Tnp frag-
ment datasets were obtained. The prokaryotic genomes used 
for speed and memory testing of the stand- alone tool were 
downloaded from the NCBI Genome database.

Data standardization is a common requirement for many 
ML algorithms, which might behave badly if the individual 
features do not conform to the standard normal distribution. 
In this study, all features of the training dataset were standard-
ized by the Z- score method, that is, removing the mean and 
scaling to unit variance, then the same mean and standard 
deviation were stored to be used for validation and testing 
datasets using transform.

Feature extraction and visualization
A protein’s amino acid sequence contains important intrinsic 
information that dictates its properties, such as composition, 
permutation, and combination modes of amino acids, orders 
of amino acids, and physicochemical properties, etc. [19]. 
Considering that each type of protein feature may contribute 
to the identification of Tnps, we incorporated a wide range 
of properties in this study to explore the optimal feature set 
for Tnp prediction. Through the implementation of iFeature 
[20], we extracted a comprehensive profile of 18 protein 
descriptors that encompass 2751 sequence features. These 
descriptors contain amino acid composition [21] (AAC), 
dipeptide deviation from expected mean [22] (DDE), and 
dipeptide composition [21] (DPC) in the category of amino 
acid composition; composition of k- spaced amino acid group 
pairs [23] (CKSAAGP), grouped amino acid composition 
[24] (GAAC), grouped dipeptide composition [20] (GDPC), 
and grouped tripeptide composition [20, 21] (GTPC) in the 
category of grouped amino acid composition; geary [25], 
moran [26], and normalized Moreau- Broto [27] (NMBroto) 
in the category of autocorrelation; composition [28] (CTDC), 
transition [28, 29] (CTDT), and distribution [28, 29] (CTDD) 
in the category of C/T/D; conjoint triad [30] (CTriad) in the 
category of conjoint triad; quasi- sequence- order descriptors 
[31] (QSOrder), and sequence- order- coupling number [32] 
(SOCNumber) in the category of quasi- sequence- order; 
amphiphilic pseudo- amino acid composition [33, 34] 
(APAAC), and pseudo- amino acid composition [33, 34] 
(PAAC) in the category of pseudo- amino acid composition.

The t- distributed stochastic neighbour embedding [35] 
(t- SNE), a dimensionality reduction tool based on non- 
linear manners, is particularly good at the visualization of 
high- dimensional datasets. Therefore, we used t- SNE to 
reduce the features of protein sequences to two- dimensional 
features and then visualized them in 2D. t- SNE was imple-
mented in R- package Rtsne with dims=2 and perplexity=50. 
Unsupervised hierarchal clustering of sequences according 

to the pattern of selected features was performed using the 
R- package pheatmap, and the chi- square test was used to 
examine the significance of differences in sequence type 
between the clustered groups.

Feature selection
Since not all features contribute to the identification of Tnp 
proteins, aggregating all features may even decrease the 
predictive performance of the classifier [36]. For this, feature 
selection is a common method to obtain a panel of features 
with satisfying predictive performance. In this study, we 
applied a strategy that combines the results of two ML- based 
selection methods, mutual information (MI) and least abso-
lute shrinkage and selection operator (LASSO), to select the 
features for classifier development. MI [37] is a univariate 
filtering method used to capture any relationship between each 
feature and label, including linear and non- linear relationship. 
It is equal to zero if and only if the feature is independent 
of the label, and higher values mean a stronger correlation. 
The features with an estimated MI value higher than 0 were 
retained for the following analysis. LASSO was employed to 
further select the feature set in the R- package glmnet, and the 
tuning parameters were determined according to the expected 
generalization error estimated from ten- fold cross- validation 
(CV). Since the results of LASSO were strongly dependent on 
the arbitrary choice of a random sample split for the data, we 
reduced this randomness by conducting this step ten times 
and averaging the error curves to achieve robust results.

Classifier construction
The optimal set of features were analysed using three popular 
classification algorithms, including deep learning (DL), 
gradient boosting machine (GBM), and extreme gradient 
boost (XGB). In this section, DL is based on a multi- layer 
feedforward artificial neural network that is trained with 
stochastic gradient descent using back- propagation. As one 
of the most common types of deep neural networks, it is 
suitable for tabular data. GBM is an ML technique for clas-
sification problems, which produces a prediction model in 
the form of an ensemble of weak prediction models, typically 
decision trees. It can obtain good predictive results through 
increasingly refined approximations. XGB, a supervised 
learning algorithm based on the GBM algorithm, implements 
a process called boosting to yield accurate models. It can 
provide parallel tree boosting that solves many data science 
problems in a fast and accurate way. All these three algorithms 
were implemented in the H2O program (https:// github. com/ 
h2oai/ h2o- 3) which is an open- source, in- memory, distrib-
uted, fast, and scalable ML and predictive analytics platform. 
For each algorithm, a ten- fold CV is used to validate a clas-
sifier internally, and a random grid search was performed to 
optimize the hyperparameters. This process was performed 
ten times and ended up with a total of 30 classifiers for these 
three algorithms. It is noteworthy that the classifier’s CV 
metrics were computed based on the combination of the ten 
holdout predictions from each CV step, rather than taking 
the average of the ten validation metrics. The ensemble ML 
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method uses multiple learning algorithms to obtain better 
predictive performance than could be obtained from any of 
the constituent learning algorithms. Hence, we tried to find 
the optimal combination of a collection of prediction algo-
rithms using a process called stacking.

Performance comparison and evaluation
Two commonly used methods for Tnp prediction - TnpPred 
[12] database with HMM search (termed TnpPred method) 
and ISfinder [9] database with blast search (termed ISfinder 
method) - were included in the method comparison using the 
testing dataset. In detail, hmmscan (HMMER 2.3.2, http:// 
hmmer. org/) was used for searching the Hidden Markov 
Model (HMM) profiles of TnpPred for homologs of protein 
sequences, and for making sequence alignments. BLASTp 
(blast 2.6.0+, https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) was 
deployed to compare protein sequences to the ISfinder data-
base and calculate the statistical significance of matches.

To evaluate the performance of the features (or classifiers) in 
the prediction of Tnps, the Receiver Operating Characteristic 
(ROC) analysis was performed, and the area under curve 
(AUC) was calculated using the R- package pROC. Here, we 
assumed that the larger AUC of the ROC curve implies the 
better. In the section of performance comparison, the AUCs of 
different methods were compared with the bootstrap method. 
As the evaluation metrics of the classifier may rely on the 
selection of the cut- off point, we used the Youden method to 
determine the best cut- off value in the ROC curve and then 
applied it to sequence grouping. The confusion matrix was 
generated to describe the performance of the classifier in the 
Tnp prediction. The predictive performance was also evalu-
ated by five metrics, including prediction accuracy (ACC), 
sensitivity (SN), specificity (SP), F- value, and Matthews 
correlation coefficient (MCC). These evaluation metrics are 
defined as follows:

 ACC = TP+TN
TP+TN+FP+FN   

 SN = TP
TP+FN   

 SP = TN
TN+FP  

 F− value = 2TP
2TP+FN+FP  

 
MCC = TP×TN−FP×FN√(

TP+FN
)
×
(
TN+FP

)
×
(
TP+FP

)
×
(
TN+FN

)
  

where TP, TN, FP, and FN indicate the numbers of true 
positives, true negatives, false positives, and false negatives, 
respectively.

RESULTS

Identification of feature signatures for predicting 
Tnps
After the preprocessing procedure, the training dataset 
(n=29704) enrolled in this study contains 14852 Tnp and 
14852 control protein sequences. A total of 18 structural and 
physicochemical descriptors, including 2751 protein features, 

were extracted from these sequences. To explore the predic-
tive utility of these features in the classification of Tnps, each 
feature was assessed by ROC analysis (Fig.  1a, Table S2). 
There are 483 features with an AUC value greater than 0.60, 
among which the AUC value of three features even exceeded 
0.80, indicating that these features have a certain potential 
for predicting Tnps.

Nevertheless, we further explored whether feature combina-
tions have better predictive power than these single features. 
We reduced the dimensions of all features to two using the 
t- SNE algorithms, such that they could be projected and visu-
alized in 2D. The differences of Tnp and control sequences 
in the higher- dimensional space can be represented by their 
mutual distances in the 2D space. As shown in Fig. 1B, the 
distribution of Tnp and control sequences is generally aggre-
gated separately, suggesting that the combined features could 
indeed provide informative characteristics and patterns for 
Tnp classification.

Considering the limited contribution of some features to the 
characteristics of Tnps, it may even reduce the predictive 
performance of classification. Therefore, it is necessary to 
conduct a feature selection to determine the optimal feature 
set for Tnp prediction. We first used the MI method to examine 
the correlation between each feature and the sequence type, 
retaining 2695 features with positive MI values. Subsequently, 
the LASSO method was applied for further selection based 
on these 2695 features. This process was performed ten times 
to stabilize the results, which yields 75 features from 15 
descriptors (Fig. 1c, Table 1). Of these descriptors, DDE had 
the highest frequency (19 features), followed by CKSAAGP 
(18 features) and CTriad (ten features). The three descrip-
tors (APAAC, NMBroto, and SOCNumber) had no selected 
features in this study. As expected, the Tnps and controls were 
almost separated clearly through the visualization based on 
these 75 features (Fig.  1d). Obviously, the aggregation of 
different sequences based on the selected features is more 
concentrated than that based on all features. This suggests 
that these features contain enough information to distinguish 
Tnps from other proteins. Moreover, unsupervised hierar-
chal clustering of the training cohort sequences according 
to the pattern of these 75 features was performed, and the 
heatmap showed that most of the same types of sequences 
clustered together apart from a few exceptions (Chi- square 
test P<0.001, Fig. 1e). These results indicate that these 75 
features may serve as signatures for Tnp prediction.

Construction of the classifiers for predicting Tnps
To develop a classifier with the best performance for discrimi-
nating Tnps from other proteins, three ML algorithms, 
including DL, GBM and XGB were applied to the training 
dataset in this section. For each algorithm, we trained ten 
prediction classifiers based on the 75 feature signatures with 
optimally- tuned parameters using the random grid search. 
All these 30 classifiers were subjected to ten- fold CV, which 
was then evaluated by ROC analysis and other classification 
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Fig. 1. Predictive potential of the 2751 protein features in the classification of Tnps. (a) ROC curves for the top ten features with the best 
predictive performance in the training dataset. (b) Embedding of 2751 features from 18 descriptors using t- SNE. The red and blue dots 
represent Tnps and controls, respectively. (c) Statistics of the features selected by both MI and LASSO methods. The number at the top 
of the bar represents the number of the selected features in each protein descriptor. (d) Embedding of 75 features from 15 descriptors 
using t- SNE. The red and blue dots represent Tnps and controls, respectively. (e) Unsupervised hierarchical clustering and heatmap of 
the training dataset based on the 75 features selected.
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metrics. As can be seen, all these three algorithms performed 
well in the CV test, with their average AUC greater than 0.940, 
exceeding the performance of any single feature (Figs  1a 
and 2a). Notably, the GBM algorithm performed best in 
terms of AUC (0.950±0.002), ACC (0.883±0.002), F- value 
(0.885±0.002), and MCC (0.766±0.005) (Fig.  2a), which 
suggests that it may be the most suitable modelling method 
for Tnp prediction. Thus, the GBM classifier with the best 
performance termed GBM- best was chosen as the best candi-
date. Besides that, we also constructed two stacked ensemble 
classifiers (ECs) - one based on all trained individual clas-
sifiers (termed EC- all), another one on the best classifier of 
each algorithm (termed EC- best). Unexpectedly, the ECs 
performed better than GBM- best, and EC- all achieved the 
optimal overall performance with AUC of 0.956, ACC of 
0.891, SN of 0.903, SP of 0.880, F- value of 0.893, and MCC 
of 0.783 (Fig. 2b). Based on the entire training dataset, the 
AUC values of all three classifiers reached or exceeded 0.994 
(Fig. 2c). Subsequently, the best point for each classifier was 
determined according to the ROC curves for the sequence 
classification of the training dataset. From the plots of the 

confusion matrix, the overall correct classification rates of 
GBM- best, EC- all, and EC- best were 97.2, 96.1 and 96.0%, 
respectively (Fig. 2d).

Validation and evaluation of the Tnp classifiers
GBM- best, EC- all, and EC- best were further validated using 
the ten validation datasets. Similar to the CV test results of 
the training dataset, EC- all (AUC: 0.955±0.001) performed 
slightly better than GBM- best (AUC: 0.951±0.001) and 
EC- best (AUC: 0.954±0.001) (Fig. 3). According to the cut- 
off values identified from the training dataset, the average 
evaluation metrics of EC- all reached 0.891 (ACC), 0.876 (SN), 
0.906 (SP), 0.889 (F- value), and 0.782 (MCC), respectively 
(Fig. 3, Table S3). Therefore, EC- all was chosen as the optimal 
classifier for predicting Tnps from all our constructed classi-
fiers in this work.

Subsequently, ROC curve analysis was performed on the 
testing dataset to compare the predictive power of EC- all 
with two existing prediction methods - TnpPred and 
ISfinder (Fig. 4A). As shown in Fig. 4B, the AUC of EC- all 

Table 1. The 75 feature signatures selected in this study

Descriptor Dimension Selection Selected features

AAC 20 3 H, R, V

APAAC 80 0 –

CKSAAGP 150 18 uncharger.postivecharger.gap5, postivecharger.aromatic.gap0, uncharger.postivecharger.gap2, 
postivecharger.uncharger.gap0, postivecharger.uncharger.gap2, aromatic.postivecharger.gap4, alphaticr.
negativecharger.gap3, alphaticr.alphaticr.gap3, postivecharger.uncharger.gap4, negativecharger.alphaticr.

gap4, alphaticr.negativecharger.gap5, postivecharger.postivecharger.gap1, postivecharger.aromatic.
gap1, uncharger.postivecharger.gap1, aromatic.postivecharger.gap0, alphaticr.alphaticr.gap2, uncharger.

postivecharger.gap3, postivecharger.uncharger.gap3

CTDC 39 2 solventaccess.G3, polarizability.G2

CTDD 195 7 charge.2.residue100, charge.3.residue25, charge.2.residue75, hydrophobicity_FASG890101.1.residue75, 
polarity.3.residue100, charge.3.residue75, polarity.3.residue75

CTDT 39 2 charge.Tr1221, hydrophobicity_ENGD860101.Tr1221

CTriad 343 10 g3.g3.g4, g5.g4.g3, g5.g3.g5, g3.g5.g3, g5.g5.g3, g2.g5.g5, g3.g5.g4, g4.g5.g5, g2.g5.g3, g5.g5.g4

DDE 400 19 DR, RL, KR, RC, HL, HR, DI, VI, GE, RQ, RT, RK, RS, CL, RR, YS, PF, GD, RW

DPC 400 1 YN

GAAC 5 1 postivecharge

GDPC 25 3 postivecharger.aromatic, aromatic.postivecharger, postivecharger.uncharger

Geary 240 1 CHAM810101.lag3

GTPC 125 2 negativecharger.negativecharger.alphaticr, aromatic.negativecharger.alphaticr

Moran 240 1 CIDH920105.lag4

NMBroto 240 0 –

PAAC 50 3 Xc1.I, Xc1.V, Xc1.F

QSOrder 60 2 Grantham.Xr.C, Grantham.Xr.W

SOCNumber 100 0 –

Total 2751 75
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was significantly higher than that of TnpPred and slightly 
higher than that of ISfinder. This result demonstrates that 
EC- all is a novel classifier with better predictive ability than 
these commonly used approaches. It is worth noting that 
the combination of multiple methods also performed well. 
The combination of EC- all and ISfinder achieved an AUC 
of 0.966, which was significantly higher than that of other 
methods, indicating that EC- all can help to improve the 
predictive accuracy for the existing methods (Fig. 4B).

Considering that there may be a large number of Tnp frag-
ments in prokaryotic genomes, it is also important to be able 

to identify these incomplete Tnps. Ten datasets were estab-
lished by randomly splitting the complete Tnp sequences to 
test the predictive performance of EC- all for Tnp fragments. 
The results showed that EC- all could identify about 84 % of 
these Tnps, indicating that this classifier could be used for the 
prediction of Tnp fragments (Table S4).

Implementation of a stand-alone tool of Tnp 
classifiers
To facilitate the processing of large- scale protein sequences 
obtained from prokaryotic genomes or metagenomes, a 

Fig. 2. Classifier construction for predicting Tnps using the training dataset. (a) Classification metrics for evaluating the performance 
of DL, GBM, and XGB algorithms based on ten- fold CV. (b) Classification metrics for evaluating the performance of the best performing 
classifier (GBM- best) and two ensemble classifiers based on ten- fold CV. The red star indicates the best performance amongst these 
algorithms or classifiers. ROC curves (c) and the confusion matrix plots (d) of GBM- best and two ensemble classifiers based on the entire 
training dataset. On the confusion matrix plot, the rows correspond to the predicted class and the columns correspond to the true class. 
The green cells correspond to observations that are correctly classified. The red cells correspond to incorrectly classified observations. 
Both the number of observations and the percentage of the total number of observations are shown in each cell. The column on the far 
right of the plot shows the percentages of all the samples predicted to belong to each class that are correctly (precision) and incorrectly 
(false discovery rate) classified. The row at the bottom of the plot shows the percentages of all the samples belonging to each class that 
are correctly (recall) and incorrectly (false negative rate) classified. The cell at the bottom right of the plot shows the overall accuracy.
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standalone command- line tool called TnpDiscovery has 
been developed with built- in EC- all as well as GBM- best. 
TnpDiscovery takes any number of amino acid sequences 
as input, automatically performs feature extraction and 
normalization, invokes a Tnp classifier, and finally returns 
the estimated probability and binary classification of Tnp for 
the given proteins. TnpDiscovery is freely available at https:// 
github. com/ ying- jc/ TnpDiscovery.

The running speed and memory usage of TnpDiscovery were 
tested by using proteins from five bacterial genomes (Table 
S5). The results showed that it took about 10 min to predict 
a 4000- protein genome using 15 processes on a workstation 
computer. There is little difference in running time between 
the two built- in classifiers, but EC- all requires more memory 
than GBM- best. Given the accuracy of these two classifiers 

Fig. 3. Classifier evaluation using the validation datasets. Classification metrics were used to evaluate the performance of GBM- best, 
EC- all, and EC- best in ten randomly produced validation datasets. The red star indicates the best performance amongst these classifiers.

Fig. 4. Performance comparison between EC- all and two existing approaches for Tnp prediction using the testing dataset. Shown are 
ROC curves (a) and significance matrix plots (b) for these three methods and their corresponding combined methods. The entry values 
of the significance matrix represent the p- values for the comparison of the AUC of two ROC curves.

https://github.com/ying-jc/TnpDiscovery
https://github.com/ying-jc/TnpDiscovery


9

Wang et al., Microbial Genomics 2021;7:000611

is comparable, we recommend using GBM- best as an option 
when computing resources are limited.

DISCUSSION
Prediction of Tnps in bacteria could help understand the 
spread of antibiotic resistance and virulence, as well as the 
process of DNA movement. The purpose of this study is 
to develop a classifier for Tnp prediction based on protein 
features with ML approaches. We incorporated a wide range 
of complementary and heterogeneous features of proteins 
in this study to accomplish this task. Our results showed 
that combining multiple features may provide more useful 
information for Tnp prediction than a single feature alone. 
Therefore, we further selected a set of features with satisfying 
predictive performances for Tnp prediction. ML approaches 
have been widely used in the selection of markers and 
construction of prediction models, and have been shown 
to improve the predictive performance of models in various 
human diseases [38, 39] and protein identification tasks 
[17, 40]. In this study, we applied a strategy of combining both 
MI and LASSO methods to reduce the dimension of protein 
features and finally selected 75 features as signatures for 
predicting Tnps. We leveraged three popular ML algorithms, 
DL, GBM, and XGB, to construct a classifier of Tnp prediction 
based on the selected feature signatures. And we found that 
each ML approach performed well on the datasets used in this 
study, but the GBM method appeared to be superior. Further-
more, we integrated these single ML- based classifiers to build 
stacked ensemble classifiers, which performed better than 
any individual ML- based classifier. Validation is an essential 
process to verify the predictive performance of the models, 
which also helps control the possibility of model overfitting 
[39]. In this study, the validation process was carried out 
using relatively large- scale sequences in both the training 
and validation datasets. In the step of classifier construction, 
we implemented a ten- fold cross- validation method in the 
training dataset to validate the classifiers and determine the 
best classifiers. For further validation, we set up ten sets as 
validation datasets to evaluate the robustness of these classi-
fiers. Taking all these findings together, we finally developed 
a command- line prediction tool named TnpDiscovery with 
the best- performing classifier EC- all, with GBM- best as an 
alternative.

Before this study, Riadi et al. [12] proposed a web service 
termed TnpPred that supplements and extends currently 
available programs and HMM Profiles for the prediction 
of 19 prokaryotic transposase families. ISfinder database 
was set up by Siguier et al. [9] to collect bacterial insertion 
sequences. These two databases are commonly used for Tnp 
identification by homologous alignment using HMMER 
or blast programs. Since one of our dataset sources is the 
ISfinder database, for the fairness of the comparison, we 
built a testing dataset for the method comparison that does 
not contain sequences from ISfinder. Compared with these 
library- based methods, TnpDiscovery shows comparable 
prediction accuracy, which may help to further improve 

the prediction performance of existing methods for Tnps. 
However, unlike these library- based methods, TnpDis-
covery is a de novo method for Tnp prediction that makes 
predictions based on protein sequence characteristics rather 
than relying on reference sequence comparisons. Therefore, 
TnpDiscovery does not need to prepare a sequence library 
in advance, and is easier to deploy and implement. Although 
TnpDiscovery cannot infer which IS family the Tnp belongs 
to as the library- based method can, it can be used to identify 
novel Tnps because it does not need to consider the similarity 
information of protein sequences. Besides, the running speed 
and memory consumption of TnpDiscovery are acceptable, 
and it is suitable for the primary screening of a large number 
of protein sequences obtained from prokaryotic genomes or 
metagenomes.

There are several limitations to this study. First, we still 
considered only a limited number of protein features, thus, the 
features identified here may not be the best signatures for Tnp 
prediction. Nevertheless, the focus of this study was to deter-
mine whether the ML approach could be applied to develop 
a classifier for Tnp prediction based on protein features. The 
proposed classifier exhibited potentially powerful abilities 
in the prediction of Tnps, which meets our requirements. 
Under such circumstances, we believe that the number of 
features included in this study is large enough to accomplish 
our goal, although we do agree that more features would be 
better. The second issue is that only a few ML algorithms have 
been applied to feature selection and classifier construction. 
Indeed, if more algorithms are applied, better predictive clas-
sifiers might be obtained, but this will greatly increase the 
time cost and computing power needed to analyse the data. 
Given this concern, we just examined several popular ML 
algorithms in the analyses. Furthermore, we implemented an 
ensemble model construction strategy by integrating multiple 
individual ML- based classifiers to achieve better predictive 
performance. Third, the comparison of TnpDiscovery with 
the existing methods may be biassed. The ISfinder database 
used by blast is not comprehensive enough, which may affect 
the sensitivity of blast. And the TnpPred database has not 
been updated for a long time. However, this has little impact 
on this study, and the purpose of this comparison is not to 
find the best method but to evaluate whether the classifier is 
effective.

In summary, we proposed a stacked ensemble classifier 
integrating a collection of individual ML- based classifiers 
that could accurately and effectively identify Tnp proteins in 
bacteria and archaea. On this basis, we implemented a free 
stand- alone tool called TnpDiscovery, to meet users’ specific 
demands. We believe that this program can be a useful and 
alternative tool to predict Tnps in large- scale bacterial genome 
projects, which will expedite the discovery of novel Tnps.
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