
Citation: Wang, X.; Wang, Y.; Sun, M.;

Wang, G.; Liu, Q.; Li, M.; Shulga,

Y.M.; Li, Z. Aramid Pulp Reinforced

Clay Aerogel Composites:

Mechanical, Thermal and

Combustion Behavior. Gels 2022, 8,

654. https://doi.org/10.3390/

gels8100654

Academic Editors: Pavel Gurikov

and Jingliang Li

Received: 17 September 2022

Accepted: 10 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 gels

Article

Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical,
Thermal and Combustion Behavior
Xiaowu Wang 1, Yang Wang 1, Mengtian Sun 1, Guichao Wang 1, Qiong Liu 1, Ming Li 1 , Yury M. Shulga 2,3

and Zhi Li 1,*

1 School of Resource and Safety Engineering, Central South University, Changsha 410083, China
2 Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
3 National University of Science and Technology MISIS, Leninsky pr. 4, 119049 Moscow, Russia
* Correspondence: lizhi89@csu.edu.cn

Abstract: In this work, we reported that aramid pulps (AP) reinforced clay aerogel composites with
improved mechanical strength, good thermal insulation and fire resistance based on the combination
of AP, Poly(vinyl alcohol) (PVA) and sodium montmorillonite (MMT), which present a promising
prospect in the thermal insulation application. The PVA-MMT-APx (x: denotes the mass content of
AP) aerogel composites present an isotropic “lamella-honeycomb” porous structure, which endows
them with excellent comprehensive performance. With the AP content increasing, the extremely low
density is kept, ranging between 67–73 mg/cm3, and the low thermal conductivity is maintained
within 40.9–47.9 mW·m−1·K−1. The mechanical strength is significantly improved with the maximum
compressive modulus increasing from 2.95 to 5.96 MPa and the specific modulus rising from 44.03 to
81.64 MPa·cm3/g. Their detailed heat transfer process has been analyzed, which provides a deep
understanding to the low thermal conductivity of the PVA-MMT-APx aerogel composites. Based
on the combination of thermogravimetric analysis and combustion behavior, the PVA-MMT-APx

aerogel composites are demonstrated to possess improved thermal stability and fire resistance. This
study puts forward a facile approach to utilizing AP to reinforce clay aerogel composites, which
provides new insight into the development of thermal-insulating, fire-safe and high-strength thermal
insulation materials.

Keywords: aramid pulps; clay aerogel; mechanical properties; thermal properties; combustion
behavior

1. Introduction

Clay aerogels are ideal candidates for thermal insulation materials with low density,
low thermal conductivity and good fire resistance, and recently have aroused much interest
due to their cost-effective and eco-friendly freeze-drying process [1–6]. However, pure clay
aerogels are fragile and low-strength to satisfy the practical applications. For instance, the
compressive modulus of the freeze-dried 5 wt% clay suspension is less than 10 kPa [7].
To improve the mechanical properties of clay aerogels, incorporating polymers has been
confirmed as a reliable method and various polymers have been widely used, such as
poly(vinyl alcohol) (PVA) [8], polyimide [9], natural rubber [10], pectin [11], casein [12],
starch [2] and alginate [13]. Thereinto, PVA as a high-molecular polymer tends to show
excellent toughening effect, whether in the clay aerogel, silica aerogel [14] or the phase
change material aerogel [15]. These clay/polymer aerogels usually show higher mechanical
strength and are regarded as the desirable alternative to commercial insulation foams.

In spite of this, further enhancement of mechanical properties of clay aerogel com-
posites will broaden the range of their applications. A high polymer content usually leads
to the deterioration of the thermal insulation as well as flame retardancy, though it does
increase the mechanical properties [16]. Several studies have confirmed that incorporating
biologically-based fibers can further increase the mechanical properties of clay aerogel
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composites, and the effect of fiber diameter and length on mechanical properties have been
investigated [17–19]. This fiber-incorporating strategy without extra chemical crosslinking
could be a good choice from a maneuverable point of view [20,21]. However, little atten-
tion has been paid to the comprehensive properties, particularly thermal and combustion
properties, when further toughening the clay aerogel composites.

According to the current investigations, reinforcing fibers with thinner diameter,
higher specific surface and better flexibility will do a greater favor to retain the composite
matrix intact. Besides, lower density and shorter length of fibers make them evenly disperse
into solvent and avoid sedimentation [22]. Aramid pulps (AP) are highly fibrillated aramid
fibers and possess the excellent physicochemical properties such as low density, high
toughness, good flexibility, high thermal stability and self-extinguishment [23–27]. Recent
reports have indicated that AP as reinforcement showed good compatibility with polymer,
which is very suitable for a clay/polymer system [28–30]. From these points of view, AP can
be a good candidate for achieving our research purpose. Note that it is the first appearance
of organic AP applied in a clay aerogel material.

Here, we utilize AP to reinforce clay aerogel aiming to achieve low density, excellent
thermal insulation as well as flame retardancy. The mechanical, thermal and combustion
behavior of the AP-reinforced clay aerogel composites are characterized and investigated
systematically. This study confirms the availability of using AP as reinforcement for
clay aerogels and develops a new fire-safe and efficient thermal insulation material, which
renders a new insight into fabricating clay aerogel composites with excellent comprehensive
performances.

2. Results and Discussion
2.1. Basic Physicochemical Characterization

As shown in Figure 1a, the PVA aerogels and PVA-MMT-APx present a regular and
intact cylinder, and their colors change from white to yellowish with the content of MMT
and AP increasing. Although all the samples have volume shrinkage, the radial shrinkage
of PVA-MMT-APx (1.8~3.2%) is significantly smaller than that of the PVA aerogel (8.7%);
and as a consequence, the bulk densities of the PVA-MMT-APx are far lower than that of the
PVA aerogel (Table S1). In Figure 1b–e, it finds that the PVA aerogel and PVA-MMT-APx
have a typical layered structure (labeled as dotted lines), in which the micron-sized AP
(labeled as ellipses) are embedded in the aerogel matrix, acting as reinforcement. The
finer microstructure in Figure 1f–j reveals that honeycombed pores distribute all over the
lamellas of PVA-MMT-APx, while the PVA aerogel shows thicker lamellas and fewer pores
on the lamellas.

Note that the microstructure of materials fabricated by a freeze-drying method is
directly depended on the growth of ice crystals. During the freezing process, the ice
crystals grow along the temperature gradient and squeeze the matrix aside into the ice
grain boundaries, inducing parallel alignment of the matrix [31]. For the PVA aerogel,
a high-viscosity precursor solution inflicts great resistance on the growth of ice crystals,
resulting in smaller and fewer ice crystals. For the PVA-MMT-APx, the lower content of
polymer presents little resistance, which is conducive to the growth of ice crystals. As a
consequence, the lamellas with various compactness are formed finally for the PVA aerogel
and PVA-MMT-APx.

The “lamella-honeycomb” porous layered structure (Figure 1k) imparts multifunc-
tional potentials to the as-prepared clay aerogel composites, e.g., adsorption and carrier
materials. This kind of structure is the coupling of the layered structure (discussed above)
and honeycomb structure. For the formation of the honeycomb structure, the hydrophilic
hydroxyls from the PVA and MMT bind with neighboring water molecules to generate
the bound water, which is harder to crystallize before the freeze of free water. Hence,
the formed honeycombed pores on the lamellas may be caused by the fractal growth of
the smaller ice crystals derived from this bound water [11,32]. Furthermore, the element
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distributions tested by the SEM-EDS mapping further confirm the independent existence
of micron-sized AP (C, N elements) and MMT (Si, Al elements) (Figure 1m).
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confirms the presence of mesopores and macropores in the clay aerogel composites [33]. 
As discussed in Figure 1, the clay aerogel composites have abundant porous structures, 
especially a lot of micron-sized pores. Due to the limitation of nitrogen sorption analysis 
[34], these large pores cannot be included in the measured results. That is the reason why 
all the nitrogen adsorbed quantity, pore volume (Vpore) and specific surface area (SBET) (Ta-
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Figure 1. (a) The prepared samples from left to right are the PVA aerogel, PVA-MMT-AP0, PVA-MMT-
AP1.0 and PVA-MMT-AP2.0, respectively. The microstructures of the (b,f) PVA aerogel, (c,g) PVA-
MMT-AP0, (d,h) PVA-MMT-AP1.0 and (e,i) PVA-MMT-AP2.0, respectively. (j) The lamella of PVA-
MMT-AP1.0 and (k) the schematic illustration of the “lamella-honeycomb” porous network structure.
(l) AP. (m) The element distributions of the PVA-MMT-AP1.0.

Figure 2 characterizes the pore structures and surface chemical groups of the clay
aerogel composites. All the curves follow the IV type isotherm with the H3 hysteresis loop,
and the most probable pore sizes concentrate at ~4 nm and ~100 nm, respectively, which
confirms the presence of mesopores and macropores in the clay aerogel composites [33].
As discussed in Figure 1, the clay aerogel composites have abundant porous structures, es-
pecially a lot of micron-sized pores. Due to the limitation of nitrogen sorption analysis [34],
these large pores cannot be included in the measured results. That is the reason why all the
nitrogen adsorbed quantity, pore volume (Vpore) and specific surface area (SBET) (Table S2)
are so low. Besides, the nitrogen sorption also leads to a huge discrepancy between the
Vpore and Vtotal in Table S1, of which Vpore is calculated from the nitrogen sorption and Vtotal
is calculated as per the formula, Vtotal = (1/ρb − 1/ρs), (ρb, ρs are the bulk density and
skeletal density).
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Figure 2. (a) N2 adsorption–desorption isotherms and (b) pore size distribution of PVA aerogel,
PVA-MMT-AP0, PVA-MMT-AP1.0 and PVA-MMT-AP2.0. (c) Mercury intrusion–extrusion isotherms
and (d) pore size distribution of PVA-MMT-AP1.0. (e) FTIR spectra of AP, MMT, PVA aerogel,
PVA-MMT-AP0 and PVA-MMT-AP1.0.

For further understanding the pore structure, the mercury intrusion porosimeter is
employed, and here we take PVA-MMT-AP1.0 as an example. As shown in Figure 2c, the
intrusion volume increases slowly below 1 psia, then abruptly increases until reaching a
nearly stable state, around 10 psia, because the external pressure is inversely proportional to
pore size, i.e., more pressure is needed to press mercury into smaller pores. Figure 2d shows
that the pore size primarily ranges between 50 µm and 500 µm and the most probable pore
size locates at 100 µm. These pore characteristics further confirm the presence of abundant
micron-sized pores in the PVA-MMT-APx. Via the mercury intrusion porosimeter, the
specific surface and the pore volume for PVA-MMT-AP1.0 are tested as 157.15 m2/g and
12.33 cm3/g, respectively (Table S3), which are more reasonable and closer to the theoretical
values, e.g., pore volume. It also indicates the mercury intrusion porosimeter is more
appropriate for characterizing the pore structures of the prepared clay aerogel composites.

The FTIR spectra are recorded in Figure 2e. For the PVA aerogel, the peak at 3351 cm−1

corresponds to the stretching vibration of -OH groups, while the absorption bands at
around 2927 cm−1 and 2850 cm−1 are assigned to the asymmetric and symmetric stretching
vibration of -CH2 groups, respectively. The characteristic peaks at 1734 cm−1 and 1093 cm−1

are ascribed to the stretching vibration of C=O and C-O bonds, respectively [35,36]. To the
pure AP, the typical characteristic peaks located at 3319 cm−1, 1645 cm−1 and 1542 cm−1

correspond to the stretching vibration of the N-H, C=O and the bending vibration of
N-H, respectively [23,25,37]. In regard to the MMT, the peak at 3624 cm−1 arises from
the stretching vibration of single ‘inner’ hydroxyl bonded to octahedral cations [38]. It is
important that this peak is retained in the PVA-MMT-AP0 and PVA-MMT-AP1.0, which is
evidence of the preservation of the internal structure in the clay particles of the aerogel
composites. The peaks at 1639 cm−1 and 1033 cm−1 are attributed to the stretching vibration
mode of absorbed water and Si-O bonds, respectively [5,39]. Compared to the PVA aerogel
and MMT, a red shift towards 3343 cm−1 in the stretching vibration of hydroxyls for PVA-
MMT-AP0 is observed, which should be ascribed to the formation of hydrogen bonds
between the MMT and PVA [37,40]. Furthermore, there is no other new absorption peak in
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the spectra of PVA-MMT-AP1.0, indicating that only physical combination occurs among
the AP, PVA and MMT.

2.2. Mechanical Properties

Figure 3a,b shows the compressive stress-strain curves of PVA-MMT-APx. As shown
in the insets, the specimens exhibit typical compression behavior of foam materials, which
can be mainly divided into three stages. (I) The linear elastic stage ranges between a low
strain region of 0 < ε < 10%, reflecting the elastic deformation of the skeletons of the clay
aerogel composites. (II) The yield stage within the strain of 10% < ε < 50% shows that
the stress increases slowly with the strain, and the yielding plateau also appears at this
stage due to the collapse of pore structures. (III) The densification stage ranges within a
higher strain of ε > 50%, during which the stress increases sharply and the specimens are
compacted completely [35,41].
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Figure 3. (a) Compressive stress-strain (δ-ε) curves and (b) the enlarged δ-ε curves of the PVA-MMT-
APx aerogel composites (insets: photos of the PVA-MMT-APx under the compression test). The linear
gray region (1% < ε < 3%) is used to determine the compressive modulus. (c) Compressive modulus
and specific modulus. (d) Yield strength (δ10%) and compressive strength (δ80%). (e) Absorption
energy (at 80% strain) of the PVA-MMT-APx. (f) The PVA-MMT-APx standing on the rose; pressed
or pulled by a weight of 500 g. (g) The clay aerogel composites with customizable shapes and their
machinability.

In Figure 3c, with the addition of AP increasing, the compressive modulus and specific
modulus of the aerogel composites have been significantly enhanced, from 2.95 MPa to
5.96 MPa and 44.03 MPa·cm3/g to 81.64 MPa·cm3/g, respectively. The yield strength
(δ10%) and compressive strength (δ80%) in Figure 3d increase up to 0.29 MPa and 2.33 MPa,
respectively. Moreover, the improvement of compressive strength is significant, though the
low AP content has a limited influence on the compressive modulus and yield strength.
In Figure 3e, it also finds that the energy absorption of the PVA-MMT-AP2.0 increases
89.8% compared to that of the PVA-MMT-AP0, indicating a potential for acting as packing
materials. Figure 3f shows that the lightweight PVA-MMT-APx aerogel can be easily
supported by a rose and also can withstand the compression and pull without obvious
deformation under an external force of 1250 times its weight. Furthermore, the as-prepared
clay aerogel composites have good machinability, which enables them to be carved to
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desired shapes without any crack and powder in Figure 3g. All the discussions above
suggest that the clay aerogel composites possess good mechanical properties which renders
them with the capacity to satisfy the requirement of given application scenarios.

2.3. Thermal Insulation Properties

The investigation of thermal transport properties is of significant interest for thermal
insulation materials. As shown in Figure 4a, the as-prepared aerogel composites display a
favorable thermal conductivity of 40.3–47.9 mW·m−1·K−1, which are comparable to the
traditional thermal insulation materials, such as commercial polystyrene and polyurethane
foams (30–50 mW·m−1·K−1) [42]. At a lower AP content (<2.0 g), the PVA-MMT-APx still
retains lower thermal conductivity and the PVA-MMT-AP1.0 exhibits the lowest thermal
conductivity of 40.9 mW·m−1·K−1. At a larger AP content (≥2.0 g), the thermal conductivity
has a slight increase, because excessive AP provide more heat transfer paths.
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Figure 4. (a) Thermal conductivity of the PVA aerogel and PVA-MMT-APx aerogel composites.
(b) Infrared thermographic images of the PVA-MMT-AP1.0 with a size of Φ2 cm × 2 cm on the hot
surface of 100 ◦C. (c) The time-dependent temperature profile at the points of Sp1, Sp2 and Sp3 in
the axial and radial directions (Sp1, on the upper end; Sp2, on the middle; and Sp3, on the bottom).
(d) The texture of the PVA-MMT-AP1.0. (e) The schematic of the heat transfer through nondirectional
or directional paths.

The infrared thermographic images of the PVA-MMT-AP1.0 have been recorded for
visually evaluating its thermal insulation performance (Figure 4b). It can be observed that
the upper and middle of the PVA-MMT-AP1.0 maintain a lower surface temperature at
1 min, 5 min and even 10 min, respectively, showing excellent thermal insulation in both
the axial and radial directions. The time-dependent temperature profiles of the three tested
points (Sp1, Sp2 and Sp3) in the axial and radial directions are recorded in Figure 4c. It
finds that the temperatures of the three tested points increase with the heating time, and
then reach equilibrium. The ∆T1 (between Sp1 and the hot surface) and ∆T2 (between Sp2
and the hot surface) are finally kept at about 66 ◦C and 53 ◦C, respectively. In addition, the
surface temperature profiles of the three points present similarly in the axial and radial
directions, indicating the equally excellent thermal insulation of the aerogel composites in
both the axial and radial directions.
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As far as known, the directional structure will impair the thermal insulation per-
formance in a specific direction, because more heat chooses to transfer uninterruptedly
along the directional paths [1,43,44]. For the prepared aerogel composites, heat transfer is
inhibited in both the axial and radial directions due to the isotropic structure comprised
of the nondirectional tortuous paths (Figure 4d,e), and the aerogel composites thus show
good thermal insulation performance in both directions. Predictably, this characteristic
plays an important role in practical thermal insulation applications.

Here, the transient heat transfer is conducted within a total calculation time of 500 s
(see Video S1 and S2). More details about the simulation are presented in Figure S1 in
the Supplementary Materials. The temperature profiles show that the lowest surface
temperatures in the axial and radial directions are 25.6 ◦C and 25.3 ◦C, respectively, which
further confirms the excellent thermal insulating performance of the aerogel composites
(Figure 5a). Furthermore, the temperature profiles in the aerogel composite are theoretically
demonstrated to be upward convex surfaces because of air convection, and this offers a
guide for designing the thermal management system.
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Figure 5. (a) The temperature profiles and isothermal surfaces (at 500 s) in the axial and radial
directions. The heat transfer of a cylinder sample with a size of Φ2 cm × 2 cm on a hot surface of
100 ◦C is simulated using the COMSOL Multiphysics software and all the modelling parameters are
kept consistent with the infrared thermal imaging experiment. (b) The thermal conductivity versus
specific modulus of the PVA-MMT-APx and other clay aerogel composites [5,39,41,45–49]. (c) The
schematic of the heat transfer of the aerogel composites in two different directions.

Figure 5b compares the thermal conductivity and specific modulus of the PVA-MMT-
APx and other clay aerogel composites. It finds that the PVA-MMT-APx exhibits much
higher specific modulus among these ever-reported aerogel composites; meanwhile, their
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thermal conductivities remain close to those of the most clay aerogel composites. Consider-
ing these two points, the nice mechanical property and satisfactory thermal conductivity
indicate the PVA-MMT-APx is an excellent thermal insulation material.

Figure 5c illustrated the heat transfer of the PVA-MMT-APx. Generally, the effective
thermal conductivity consists of the contributions of convection (λc), conduction (where λg
represents gas conduction and λs represents solid conduction) and radiation (λr) [44]. λc
and λr become negligible for the aerogel composites due to the small pore size (less than 1
mm) and the relatively lower ambient temperature [50,51].

The gas conduction λg is strongly dependent on the porosity and pore size of materials
and can be calculated by Kaganer’s model [52] as per Equation:

λg =
λg0Π

1 + 2βKn
(1)

where λg0 stands for the gaseous thermal conductivity of air in free space, 26 mW·m−1·K−1;
Π is the porosity, β is a coefficient dependent on the energy accommodation coefficient and
adiabatic coefficient of gas. For air in aerogel, β ≈ 2. Kn is the Knudsen number which can
be estimated as Equation:

Kn =
lm
δ

(2)

where lm represents the mean free path of a gas molecule, 73 nm, and δ is the characteristic
system size, i.e., the average pore size of the porous aerogel composites.

The solid conduction λs can be estimated by a weighted average of the effective solid
conduction values λ∗

sol of the individual components of the aerogel composite by using
Equation [44,53]:

λ∗
sol =

λsol

1 + λsol
Rk
d

(3)

where λsol is the solid thermal conductivity of the individual components of the aerogel
composite, Rk is the so-called Kapitza resistance and d is the particle size.

For the PVA-MMT-AP1.0, the λg is estimated to be approximately 12.88 mW·m−1·K−1.
The λs of the aerogel composite is effectively reduced from ~91 mW·m−1·K−1 for an equiv-
alent bulk material to ~43 mW·m−1·K−1 for the as-prepared aerogel composites due to the
phonon scattering effects (see Discussion S1 and S2 and Table S4). Note that estimating the
effective thermal conductivity is knotty, and the simple linear superposition of convection,
conduction and radiation has been confirmed to be imprecise, and extra factors must be
considered, such as the solid-gas coupling effects. Moreover, the structural characteristics
of a material should be taken into account for an accurate numerical simulation [54,55].

2.4. Thermal Stability and Combustion Behavior

Figure 6a–c shows the thermal analyses of the pure PVA aerogel and PVA-MMT-APx
and the detailed thermal decomposition data have been listed in Table 1. According to
the TG curves in Figure 6a, the thermal decomposition of the pure PVA aerogel and PVA-
MMT-APx are divided into three stages. At Stage I, the slight weight losses below 200 ◦C
are attributed to the evaporation of the adsorbed water as well as the crystalline water
from MMT [45]. In Stage II, the second weight losses that occur at 200–400 ◦C are mainly
ascribed to the decomposition of hydroxyls in PVA [14,56]. At Stage III, the weight losses
observed at 400–600 ◦C are assigned to the thermal decomposition of the PVA backbones
and AP [25,57].
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Table 1. The temperatures at the maximum decomposition rates (Tmax), the maximum thermal
decomposition rates (dW/dT) and the residues of the pure PVA aerogel, PVA-MMT-AP0 and PVA-
MMT-AP1.0.

Samples
Tmax (◦C) dW/dT (%/◦C)

Residue (%)
Stage II Stage III Stage II Stage III

PVA aerogel 329 476 0.58 0.62 4
PVA-MMT-AP0 272 435 0.40 0.16 47

PVA-MMT-AP1.0 292 500 0.23 0.26 43

The DTG curves are presented in Figure 6b and the maximum decomposition rates
are labeled. In Table 1, it finds that the temperatures at the maximum decomposition
rates (Tmax) of the PVA-MMT-AP1.0 increase 20 ◦C and 65 ◦C at the Stage II and Stage III,
respectively, when compared to that of the PVA-MMT-AP0. This increasement should be
ascribed to the introduction of AP. Furthermore, the temperature at the exothermic peak
for the PVA-MMT-AP1.0 is slightly improved to 507 ◦C compared to those of the pure PVA
aerogel and PVA-MMT-AP0 in Figure 6c. All these results confirm that the addition of AP
is beneficial to the thermal stability of the aerogel composites to some extent. Figure 6d
shows that the PVA-MMT-APx has gross calorific values (GCV) ranging between 11.46–
14.13 MJ/kg, which are significantly lower than that of the PVA aerogel. Considering their
thermal insulation applications, these lower GCV benefit to the thermal safety of the clay
aerogel composites.
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As shown in Figure 7a, the PVA aerogel can be easily ignited and keeps burning until
exhausted after withdrawing the ignition source. After continuously igniting for about
80 s, the PVA-MMT-AP1.0 is still hard to be ignited with exhibiting self-extinguishment in
Figure 7b. From this view, the clay aerogel composites have better fire resistance. Figure 7c
shows the combustion process of the PVA-MMT-AP1.0 can be divided into three stages.
(I) Smolder: the PVA-MMT-AP1.0 begins to decompose and releases flammable volatiles
and smoke when exposed to the radiative heat source. (II) Violent burning: the orange
flames grow rapidly on the PVA-MMT-AP1.0 once ignited by the igniter. (III) Burning down:
the flames gradually split into several small flames and extinguish finally.
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The combustion characteristics by a cone calorimeter are shown in Figure 8, and the
time to ignition (TTI), peak of heat release (PHRR), time to PHRR (TTPHRR), total heat
release, fire growth rate (FIGRA, defined as the ratio of PHRR to TTPHRR), total smoke
release and residue are listed in Table 2. All the aerogel composites have a lower TTI of
~2 s, indicating that these aerogel composites easily catch fire under this condition. In
Figure 8a,b, the PHRR and THR of the PVA aerogel reach as high as 562.8 kW/m2 and
46.2 MJ/m2, respectively, and almost no residue is observed, which suggests that the PVA
aerogel has a very high fire risk. Compared to the PVA aerogel, the PVA-MMT-AP0 and
PVA-MMT-AP1.0 display the significantly decreased PHRR and THR. Furthermore, the
FIGRA of the PVA-MMT-AP0 and PVA-MMT-AP1.0 are reduced and their residues are
up to about 40%. The decreased PHRR, THR and FIGRA as well as increased residues
indicate that the fire risk of the PVA-MMT-APx significantly decreases. Compared to the
PVA-MMT-AP0, the PHRR of the PVA-MMT-AP1.0 has a drop of 13.2% and the FIGRA
slightly decreases from 5.6 kW/m2/s to 4.7 kW/m2/s. Note the addition of AP slightly
increases the THR of the aerogel composites, because these organic AP would also release
heat, and this point is also verified by the increasement of the GCV discussed above.
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Figure 8. The (a) heat release rate (HRR), (b) total heat release (THR), (c) total smoke release (TSR),
(d) smoke production rate (SPR), (e) CO2 production and (f) CO production of the PVA aerogel,
PVA-MMT-AP0 and PVA-MMT-AP1.0 under a heat flux of 50 KW/m2.

Table 2. The combustion parameters of the PVA aerogel, PVA-MMT-AP0 and PVA-MMT-AP1.0.

Samples TTI
(s)

PHRR
(kW/m2)

TTPHRR
(s)

THR
(MJ/m2)

FIGRA
(kW/m2/s)

TSR
(m2/m2) Residue (%)

PVA aerogel ~2 562.8 72.1 46.2 7.8 746.5 0
PVA-MMT-AP0 ~2 150.5 27.1 9.8 5.6 93.4 42.5

PVA-MMT-AP1.0 ~2 130.6 28.0 12.0 4.7 96.5 39.1

In regard of smoke, both of the PVA-MMT-AP0 and PVA-MMT-AP1.0 release less
smoke with the TSR decreasing from 746.5 m2/m2 (the PVA aerogel) to 93.4 m2/m2

(Figure 8c). Meanwhile, the SPR and CO2 production also decrease obviously in Figure 8d,e.
For the CO production, the PVA-MMT-AP0 and PVA-MMT-AP1.0 have two distinct peaks
(Figure 8f). The first one should be attributed to the incomplete combustion of the flammable
volatiles, while the second peak is ascribed to the existence of smolder at the stage of burn-
ing down. Considering the combustion process of the aerogel composites, the characteristics
of the CO production should depend on the first peak (at the violent burning stage) instead
of the second one (at the burning down stage). Furthermore, compared to those of the
PVA-MMT-AP0, it further finds that the peaks of the SPR, CO2 and CO productions of
the PVA-MMT-AP1.0 are reduced by 20.5%, 12.5% and 5.6%, respectively. Similarly, the
addition of AP also slightly increases the TSR of the PVA-MMT-AP1.0.

In general, the fire hazards of the PVA-MMT-APx are significantly decreased com-
pared to that of the PVA aerogel. Between the PVA-MMT-AP0 and PVA-MMT-AP1.0, the
introduction of AP decreases the PHRR and FIGRA, and improves the thermal stability, all
of which benefits reducing the fire hazards to some extent.

3. Conclusions

Herein, lightweight and mechanically strong clay aerogel composites with low thermal
conductivity and fire hazards were facilely fabricated by using AP as reinforcement. The
physical combination is confirmed between the AP and clay aerogel matrix, and the firmly
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embedded micron-sized AP results in significantly increased mechanical strength and
energy absorption performance. The constructed “lamella-honeycomb” porous structure
contributes to the low thermal conductivity, and the isotropic structure guarantees the ex-
cellent thermal insulation performance in both the axial and radial directions. Furthermore,
it demonstrates that the introduction of AP improves the thermal stability and reduces the
fire hazards, which is beneficial to practical thermal insulation applications. This work
validates the feasibility of using AP to reinforce clay aerogel composites, and provides an
engineering example to develop a fire-safe and high-strength material for practical thermal
insulation applications.

4. Experimental Section
4.1. Materials

Poly(vinyl alcohol) (PVA, polymerization degree of 1700, alcoholysis degree of 88%)
was purchased from Aladdin Reagent Co., Ltd., Shanghai, China. Clay as a sodium mont-
morillonite (Na+-MMT, PGW grade, cation exchange capacity (CEC) 145 mequiv/100 g)
was provided by Nanocor Inc., Chicago, IL, USA. Aramid pulps (AP) with an average
length of 1 mm and width of 11 µm were supplied by Cangzhou Zhongli New Material
Technology Co., Ltd., Cangzhou, China. Deionized water was used in the whole process
of the experiments and prepared by a laboratory water purification system (Eco-S15UVFV,
HHitech, Shanghai, China). All chemicals were used as received without further purification.

4.2. Preparation of AP Reinforced Clay Aerogel Composites

A facile mixing–molding–freezing procedure followed by vacuum drying was em-
ployed in this work (Figure 9). MMT/AP suspension and PVA solution were fully mixed
to build a hydrogel, during which hydrogen bonds were formed between PVA chains and
MMT. After vacuum drying, AP-reinforced clay aerogel composites with desirable thermal
insulation and flame retardancy were fabricated. The details of the preparation process are
described as follows.
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Figure 9. Schematic illustration for the preparation of PVA-MMT-APx aerogels composites.

A desired amount of AP and 5 g MMT were evenly dispersed in 95 mL deionized
water under vigorous stirring to form a 5 wt% MMT/AP suspension. Concurrently, 10 wt%
PVA solution was prepared in deionized water at 80 ◦C. Then 50 g of 10 wt% PVA solution
and the mentioned MMT/AP suspension were mixed well to create a uniform hydrogel,
which was subsequently poured into a mold and frozen in a cold trap (−60 ◦C). The
frozen gels were then dried using a vacuum freeze-dryer (SCIENTZ-12N, Ningbo SCIENTZ
Biotechnology Co., Ltd., Ningbo, China) under less than 1 Pa for 72 h and finally the
aerogels were obtained. The samples were labeled as PVA-MMT-APx (x = 0, 0.5, 1.0, 2.0),
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where x represents the mass of AP. In addition, the pure PVA aerogel was fabricated with
10 wt% PVA solution following the same procedure.

4.3. Characterization

The bulk density (ρb) was calculated by the formula ρb = m/v, where m and v stand for
the mass and volume of the samples, respectively. The radial shrinkage (S) can be obtained
through the formula S(%) = 100% × (d0 − d)/d0, where d0 and d represent the diameter of
frozen gel and the final sample, respectively. The porosity and the skeletal density were
calculated by the following Equations:

Porosity% =

(
1 − ρb

ρs

)
× 100% (4)

1
ρs

=
n

∑
i=1

wi
ρi

(5)

where ρs is the skeletal density of aerogel composites, wi and ρi are the weight fraction and
skeletal density of each component, respectively. The skeletal density of MMT, PVA and
AP are 2.6 g/cm3, 1.3 g/cm3 and 1.45 g/cm3, respectively [22].

The microstructure was observed by scanning electron microscopy (SEM, Zeiss Sigma
300, Oberkochen, Germany) at an accelerating voltage of 3 kV. The samples were pasted
on the bench through the conductive tape and coated with gold on the surface before
observation. Nitrogen adsorption–desorption isotherms were measured at 77 K with an au-
tomatic surface area and porosity analyzer (AUTOSORB IQ, Quantachrome, FL, USA). The
mercury-injection test was carried out by an automatic mercury porosimeter (Micromerit-
ics instrument AutoPore IV 9510, Atlanta, GA, USA). The surface chemical groups were
recorded on a Fourier transform infrared spectroscopy (FTIR, Nicolet iS50, ThermoFisher
Scientific, MA, USA) using the attenuated total reflection (ATR) method in a range of 4000–
400 cm−1. The compression test was performed on a universal testing machine (MST Insight
30, Minneapolis, MN, USA) with a compression rate of 2 mm/min from 0 to 80% strain.
Thermal conductivity was measured by a thermal constant analyzer (TC3000E XIATECH,
Xian, China), using the transient hot-wire method at room temperature. The thermographic
images were obtained by an infrared thermal camera (FLIR T540, Wilsonville, OR, USA).
TG-DSC analysis was conducted with a thermal analyzer (NETZSCH STA 4493F, Selb,
Germany), with a heating rate of 10 ◦C/min from room temperature to 800 ◦C under air
atmosphere. The gross calorific value (GCV) was obtained by an oxygen bomb calorimeter
(C3000, IKA, Staufen, Germany). More than 0.3 g of sample was placed in the crucible
and the vessel was pressurized up to 3 MPa using oxygen gas. The combustion behaviors
were investigated by a cone calorimeter device (VOUCH 6810) according to the standard
method ISO 5660: 2015. Samples with a size of 100 mm × 100 mm × 10 mm were tested
under a heat flux of 50 kW/m2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Figure S1: COMSOL simulation of the thermal insulation performance
of the aerogel composites in the axial and radial directions [58,59]; Table S1: Skeletal density (ρs),
bulk density (ρb) and radial shrinkage (S) of the PVA aerogel and PVA-MMT-APx; Table S2: Pore
parameters of the PVA aerogel and PVA-MMT-APx. The pore volume (Vpore), specific surface area
(SBET) and average pore size (Dpore) are determined from N2 adsorption analysis; the total pore
volume (Vtotal) and porosity are calculated manually; Table S3: Pore parameters of PVA-MMT-AP1.0
determined from mercury porosimetry, including the pore volume (Vpore), specific surface area (SBET),
average pore size (Dpore), bulk density (ρb), skeletal density (ρs) and porosity; Table S4: Solid thermal
conductivity and interfacial thermal resistance Rk values of the individual components of the aerogel
composite [44,53,60]; Video S1: Heat transfer along the axial direction; Video S2: Heat transfer along
the radial direction.
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