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Abstract 

Biological pathway regulation is complex, yet it underlies the functional coordination in a cell. Cancer is a disease 
that is characterized by unregulated growth, driven by underlying pathway deregulation. This pathway deregulation 
is both within pathways and between pathways. Here, we propose a method to detect inter-pathway coordination 
using distance correlation. Utilizing data generated from microarray experiments, we separate the genes into 
pathways and calculate the pairwise distance correlation between them. The result is intuitively viewed as a network 
of differentially dependent pathways. We find intuitive, yet surprising significant hub pathways, including 
glycophosphatidylinositol anchor synthesis in lung cancer. 

Background 

Biological pathways in the human cell function together in a highly orchestrated fashion. This coordination results 
from several mechanisms, including the common occurrence of two metabolic pathways sharing a common 
substrate. Timing is crucial to the development of the cell and deregulation of the interactions among pathways can 
have disastrous consequences, such as tumorigenesis. We present a method to detect interactions among pathways 
from gene expression data of multiple samples, and apply it to identify changes of interactions between pathways in 
cancers versus normal tissues. We hypothesize that phenotypic changes between two conditions, such as tumor and 
normal, are associated with changes in pathway dependencies, and further that hub pathways are of special 
importance to these phenotypic changes. This hypothesis has an advantage that it focuses on the collective behavior 
of genes in pathways instead of individual genes and therefore does not require correlation between expression 
profiles of individual genes.  

In order to mathematically characterize the functional relationship between two gene lists given their expression 
profiles over a collection of samples, we implement a relatively new similarity metric called distance correlation1.
Distance correlation is a type of correlation metric which can detect nonlinear relationships between two vectors or 
matrices. Given two matrices with the same number of columns, for each matrix, we can consider their columns to 
be feature vectors for a set of samples. Therefore the distance correlation first calculates the distances between the 
samples. Then the Pearson correlation coefficient (after a normalization process) between the two sets of distances is 
computed as the relationship measurement between the two matrices. Geometrically, this is equivalent to compare 
two weighted networks for the samples and thus exactly matches the notion of our hypothesis.  

To test our hypothesis, we develop a two stage workflow. The first stage is to establish a pathway network for 
samples in different conditions such as cancer versus normal tissues using whole genome transcriptome data from 
microarray experiments. The second stage is to identify interacting pathways and pathway clusters in specific 
conditions such as cancers. Our results in multiple cancer studies show that we are able to identify specific pathway 
interaction in cancers, which supports the notion on altered metabolism processes in cancers. These results suggest 
that our approach will lead to wide applications as a translational bioinformatics tool for studying diseases at the 
pathway levels. 

Pathway regulation is complex and multifactorial. As such, pathways exhibit both linear and nonlinear dependence 
on each other. Further complicating the situation, different genes in a pathway have varying levels of importance to 
the overall function of that pathway. It is not clear what constitutes an active pathway. Some methods have used the 
average gene expression or a threshold for the number of genes needed to be active to say that the entire pathway is 
active. One pitfall of these assumptions is in pathways with a highly influential rate-limiting reaction that is 
controlled by a single enzyme, such as in cholesterol synthesis. Cholesterol synthesis begins with Acetyl-CoA and 
ends at Cholesterol after six reactions; however, the rate-limiting reaction, the reaction that controls the kinetics of 
cholesterol synthesis, is the conversion of HMG-CoA to Mevalonate by the enzyme HMG-CoA reductase. This 
reaction is inhibited by HMG-CoA reductase inhibitors. 
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Much attention has been given to deregulation of genes within pathways, as this intra-pathway deregulation is the 
hallmark of many cancers. The question of inter-pathway regulation has only recently been posed, perhaps due to 
the relatively short time that high throughput expression analysis has been available. The effects of one pathway on 
another could potentially be as important as the effect of one gene in a pathway on another gene in the same 
pathway. Many genes exert pleiotropic effects on distinct pathways, and transcriptional regulation can be location-
specific, rather than function-specific. In other words, single transcription factors can regulate the genes that belong 

to distinct functional pathways. Because of this, 
selecting a single pathway to study is likely an 
incomplete picture of the causes of tumorigenesis. 
Pathway coordination, or ``crosstalk'', has been 
studied by calculating differential expression of 
genes or sets of genes within pathways2,3,4,5. These 
methods also frequently incorporate, and therefore 
rely on protein-protein interaction networks. The 
nonlinear nature of our pathway also differentiates it 
from PAthway Network Analysis (PANA), a 
method proposed by Ponzoni et al., which can only 
detect linear patterns4. PANA also employs 
dimensionality reduction methods, which result in a 
loss of information that our method does not suffer. 
Cho, et al. use a set-wise interaction score that 
employs the Renyi relative entropy measure to 
measure pathway crosstalk; however, methods 
employing information theory techniques are 
unlikely to be intuitive to biologists6. All of these 
methods address the question of differentially 
expressed pathways, not differentially correlated 
pathways. This subtle difference separates two 
biological questions. We seek to answer the 
question, how does the dependency between 
pathways differ between cancer and normal cells? It 
is a much more general question than asking 
whether or not the pathways are over or 
underexpressed together. 

Figure 1 The workflow for establishing pathway 
dependency networks and compare between 
different conditions. (a) Matrix of expression values 
for each pathway (A and B) are extracted from the 
full expression matrix. (b) A single distance 
correlation values represents the dependency on two 
pathways, such as A and B. These distance 

correlation values are combined into the symmetric distance correlation matrix shown in (b). (c) Two matrices such 
as that shown in (b), created from two different phenotypes, can be subtracted and their entries used as edge weights 
to create a differential network. Here we show a representative example of such a network. 

Methods 

We selected a non-small cell lung cancer paired tumor:normal microarray dataset7 for study. This dataset was 
normalized following standard Affymetrix RMA normalization and log transformed. To assign genes to pathways, 
we adopted the Kyoto Encyclopedia of Genes and Genomes (KEGG)8 pathways to find the intersection of our 
microarray genes and genes known to be involved in pathways. In total, we identified 186 diverse pathways from 
KEGG ranging from cancer-related pathways to signaling and metabolic pathways. Many genes are present in more 
than one of the 186 pathways, which could prevent a bias in pathway dependence. To minimize the bias between 
pathways with many genes in common, we simply combine the gene lists of pathways with similar functions and 
high gene overlap. For instance, 11 pathways related to autoimmunity exhibited high gene overlap, so they were 
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condensed into a single pathway which is the union of all genes contained in each of 11 pathways. These condensed 
pathways were relabeled to reflect the overall functional theme. Once the 186 original pathways were condensed, we 
were left with 116 pathways with low gene overlap. We were able to reduce the number of pathway pairs with >20%
genes present in both pathways from 220 to 30. While the remaining 30 pathway pairs had high gene overlap, they 
were not clearly functionally related, which may be a result of the pleiotropic nature of many proteins. As a further 
safegaurd against the bias created by pathway overlap, our method considers the differences in dependence, which 
may be minimal in pathway pairs in which the dependence is high under any experimental conditions due to gene 
overlap. 

To compare the expression of genes within pathways, we employ distance correlation, a measure that can 
summarize this interaction into a single value. Distance correlation, R, is a measure of the dependence between two 
random variables, (X,Y) = {(Xk,Yk) : k =  1, . . . ,n}. Conveniently, 0 R 1, and R = 0 if and only if X and Y are 
independent. In this paper, we consider Xk in p,k and Yk in q,k to be microarray expression values for patient k 
where p and q are the number of genes measured for a given pathways X and Y, respectively. Our expression 
measurements are therefore organized into 116 pi x k matrices, where  and pi is the number of genes 
in each pathway. A single distance correlation value is calculated for each pair of pathways, which creates a 
116x116 matrix with values between 0 and 1. For our purposes, distance correlation has several advantages when 
compared to Pearson Correlation: it can detect nonlinear relationships; it can be used to compare two matrices with 
the same patient sample size but different gene sample size; and it is between 0 and 1. In addition, when a dataset 
exhibits a bivariate normal distribution, R is a linear function of Pearson Correlation, , with a slope of 
approximately .9 and R = | | when | | = 1. Distance correlation is empirically calculated as described in Szekely et. 
al1.

After calculating distance correlation, we arrive at a 116x116 weighted adjacency matrix, where each entry in this 
matrix is the pairwise distance correlation between two pathways. We have two such matrices, one for tumor 
samples and one for normal samples. To compare tumor and normal samples, we subtract the normal adjacency 
matrix from the tumor. We now have the pieces we need to construct a graph representing the change in dependency 
between each pair of pathways. 

To visualize these distance correlation networks, we employed the Clustergram function in Matlab and the widely 
used network visualization tool, Cytoscape9. The Matlab clustergram function uses average linkage for the 
hierarchical clustering. We then calculated the difference of distance correlation values for every pathway pair 
between cancer and normal samples for each dataset. The networks were imported into Cytoscape as tables, 
containing the top .5% of pairwise differential dependencies (based on absolute values of the differences in distance 

Results 

Our method found that the coordination between GPI-anchor biosynthesis and several other pathways, including 
metabolic pathways, was significantly lower in lung tumor samples than in normal samples as shown Figure 3 with 
the clustering of the pathways based on the difference of distance correlation values in Figure 3.a and network 
diagram in Figure 3.b. The GPI anchor synthesis, thyroid cancer and circadian rhythm pathways are the three 
leftmost columns and bottommost rows of Figure 3.a, while they are highlighted as yellow nodes in Figure 3.b.

Cancer cells are characterized by changes to surface marker proteins, such as glycophosphatidlinositol (GPI)-
anchored membrane-bound proteins. For example, carcinoembryonic antigen, a GPI-anchored protein that is usually 
only expressed in the developing fetus, has been used as a biomarker for colorectal adenoma progression and 
recurrence10. In addition, GPI biosynthetic enzymes have been shown to be elevated in cancer cells 11,12. We also 
found that the thyroid cancer pathway was relatively out-of-sync in the cancer samples. Lung and thyroid cancers 
are diverse, although they may share common pathways. For instance, thyroid transcription factor 1 is active in both 
lung and thyroid cancers, and its detection is a principal way in which lung adenocarcinomas and large cell 
carcinomas are differentiated from other lung cancers13. We also found that the circadian rhythm pathway was 
deregulated with several metabolic pathways. Cancer patients are known to have altered circadian rhythms, which is 
important when considering the timely administration of chemotherapy14. 
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Figure 1. (a) Clustergram of the Lung Cancer pairwise pathway distance correlation with glycophosphatidyl (GPI) 
anchor synthesis, circadian rhythm, and thyroid cancer pathways in the three leftmost columns and bottommost 
rows. (b) The network diagram of the pathway pairs with high differential dependence, with GPI anchor synthesis, 
circadian rhythm, thyroid cancer (in yellow) as the clear hub nodes of this network 

Discussion 

The behavior and fate of a cell can only be understood in the context as an interlocking machine, not as a set of 
disconnected parts. Pathways are in many ways artificial groupings set up to help humans organize the functions of 
genes. Enzymes of distinct pathways share cofactors, and the product of one pathway may be the substrate of 
another. Understanding how these pathways interact is key to identifying the effect on the cell that is created by 
altering a gene. In this paper, we focus at the interactions among pathways, which provides complementary insights 
with reduced number of elements in the system. Our method is based on widely available gene expression data. Our 
use of distance correlations enables multivariate analysis without the need to identify correlated genes. Combining 
distance correlation and networks also breaks from a long tradition of using differential gene expression to identify 
important pathways. Our method is simple, requires no parameter input from the user, and it seeks to answer a 
fundamental question of biology: are two pathways dependent? Using more extensive pathway databases and 
predesigned datasets, we could explore pathway dependency in greater detail, and perhaps even elucidate the 
underlying genes responsible for the pathway dependency. The results on a large lung cancer demonstrated the 
effectiveness of our method in generating new insights on pathway interactions during the disease process.  
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