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Abstract: This work reports the development of a composite of the ionic liquid 1-butyl-3-methylimidazolium
tetrafluoroborate ([BMIM]BP4) and chitosan (CS) described in previous reports through a new method
using cyclic voltammetry with 10 cycles at a scan rate of 50.0 mV s−1. This method is different from
usual methods such as casting, deposition, and constant potential, and it allows the development
of an electroactive surface toward the oxidation of rutin by stripping voltammetry applied to the
detection in tropical fruits such as orange, lemon, and agraz (Vaccinium meridionale Swartz), with
results similar to those reported in previous studies. In addition, the surface was characterized by
electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Raman
spectroscopy. The limit of detection was 0.07 µmol L−1 and the relative standard deviation (RSD) of
10 measurements using the same modified electrode was 0.86%. Moreover, the stability of the sensor
was studied for six days using the same modified electrode, where the variation of the signal using a
known concentration of rutin (RT) was found to be less than 5.0%. The method was validated using a
urine chemistry control spiked with known amounts of RT and possible interference was studied
using ten substances including organic and biological compounds, metal ions, and dyes. The results
obtained in this study demonstrated that this electrodeveloped composite was sensitive, selective,
and stable.

Keywords: adsorptive voltammetry; rutin; ionic liquids; chitosan; tropical fruits

1. Introduction

In the last decade, ionic liquids (ILs) and chitosan (CS) have been widely used in the modification
of electrodes used as electrochemical sensors. This has been mainly due to the advantageous properties
of CS such as good biocompatibility, biodegradability, and adhesion [1] that allow the immobilization
of enzymes [2] and single stranded deoxyribonucleic acid (ssDNA) [3] through the charge interaction
at acidic pH values, and properties of ILs such as high ionic conductivity, high viscosity, ionic
structure, and low volatility [4,5]. Moreover, imidazolium and pyridinium groups are the most
used cations, and the hexafluorophosphate and tetrafluoroborate ions are the most used anions in
electrode modification [6]. Therefore, they have been used in the detection of biological substances
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such as dopamine and uric acid [7–9], organic substances such as hydroquinone [10], fephol [11], and
hydrazine [12], fumigants such as imidacloprid [13,14], toxic metal ions such as Pb and Cd [15,16], and
for microextraction of pesticides [17].

The combination of CS with ILs was studied by Chen et al., who reported that the imidazolium
cation is dissolved more effectively with chitosan through hydrogen bonds [18]. Moreover, this
combination has been used for CO2 capture [19]. Therefore, this composite has been used in
the electroanalytical detection of formaldehyde and nitrite with 1-octyl-3-methylimidazolium
hexafluorophosphate, [OMIM]PF6 [20,21], cholesterol with 1-butyl-3-methylimidazolium chloride,
[BMIM]Cl [22], theophylline with 1-(3-Aminopropyl)-3-methylimidazolium bromide [AMIM]Br [23],
glucose [24], hydrogen peroxide and luteolin with 1-butyl-3-methyl-imidazolium hexafluorophosphate
[BMIM]PF6 [25,26], and ssDNA with N-hexylpyridinium hexafluorophosphate [HPP]F6, and
1-butylpyridinium hexafluorophosphate [BPP]F6 [27,28]. Additionally, this composite has been used
as a catalyst in the Heck reaction of aryl bromides [29] and in the development of the membranes for
the fabrication of dye-sensitized solar cells [30].

In particular, the composite formed between CS and [BMIM]PB4 is one of the most reported
in the development of electroanalytical sensors. It has been used to detect trichloroacetic acid [31],
hydrogen peroxide [32–34], glucose [35], NADH [36], cholesterol [37], guanine and adenine [38], and
bisphenol [39]. In these studies, glassy carbon, carbon paste, and gold were the most commonly used
electrodes. On the other hand, the CS and IL properties were mainly controlled by casting, deposition,
and the substrate, and less often by electrodepositing at a controlled potential.

Interest in detecting rutin (RT) or vitamin P in natural products such as fruits, coffee,
and tea is motivated mainly by their potential activity, such as antioxidant, anti-inflammatory,
blood-vessel-protecting and anticancer-agent activities [40,41]. The detection of RT using CS in electrode
modification has been reported with multiwalled carbon nanotubes [42,43], graphene [44] and graphene
with poly (amido amine) [45]. Moreover, the use of ionic liquids to detect rutin has also been reported
using pyridinium and imidazolium ionic liquid on a modified carbon paste and glassy carbon electrodes
with detection limits between 0.6 nmol L−1 and 0.09 µmol L−1 [33,46–53]. On the other hand, CS and IL
composites with rutin have been recently reported to act as an immunosensor with multiwalled carbon
nanotubes and [BMIM]BF4 [54]. Most of these reports use other substances such as graphene, carbon
nanotubes, nanoparticles, and conductive polymers. By contrast, there have been no reports of the use
of screen-printed carbon electrodes that are very versatile for this type of study.

The previous studies described above demonstrate the importance of detecting RT and the
versatility of chitosan and ionic liquids for modifying the electrodes.

In this study, we evaluated the electrochemical oxidation of rutin using a screen-printed carbon
(SPC) electrode coated with a CS-IL composite. The development of a simple method that allows the
detection of RT in tropical fruits is the aim of this work.

2. Materials and Methods

2.1. Apparatus

Cyclic voltammograms (CVs) and square wave-stripping voltammograms (SWAdVs) were
obtained using a DropSens µStat400 potentiostat (Oviedo, Spain). Electrochemical impedance
spectroscopy (EIS) was carried using a VersaSTAT 3 Potentiostat/galvanostat from Princeton Applied
Research (Oak Ridge, TN, USA) Scanning electron microscopy (SEM) was performed using a JEOL,
model JSM 6490-LV (Tokyo, Japan) with a secondary electron detector. Raman spectroscopy was
performed with a RIBA Yovin-Ivon spectrometer (Kyoto, Japan) using various laser wavelengths
(532, 638 and 786 nm). The electrochemical cell consisted of a screen-printed carbon electrode (DRP
C110. DropSens, Oviedo, Spain) with carbon as the working electrode (4 mm), Ag as the reference
electrode, and carbon as the counter electrode. The pH measurements were carried out using an
Orion-430 digital pH/mV meter equipped with a combined pH glass electrode.
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2.2. Chemicals and Reagents

Ultrapure water was obtained using a Wasselab Purifier System. Methanol, phosphoric
acid, NaH2PO4, and Na2HPO4 were obtained from Merck (Darmstadt, Germany). Chitosan (low
molecular weight), 1-butil-3-metilimidazolio tetrafluoroborate, and K4Fe(CN)6 were obtained from
Sigma–Aldrich (Milwaukee, WI, USA). The stock solutions, rutin, morin, quercetin, dopamine, ascorbic
acid, uric acid, hydroquinone, tartrazine, and sunset yellow (Sigma–Aldrich) were prepared only once
for the entire study (0.6 mmol L−1) in methanol. The phosphate buffer solutions (PBS) as electrolyte
were prepared in the pH range between 2.0 and 7.0 range using 0.010 mol L−1 phosphoric acid, sodium
phosphate, and disodium phosphate solutions.

2.3. Preparation of Electromodified SPC Electrode with Chitosan and Ionic Liquids (IL-CS/SPC)

The SPC electrode surface was washed with ultra-pure water. The electromodified IL-CS/SPC
electrode was prepared as follows: first, the composite of CS and ILs was prepared using 100.0 µL
of CS optimal solution (between 2.5 and 13.5 mg of CS in 10.0 mL acetic acid 1.0%) and 100.0 µL of
pure ILs. Then, 20 µL of the freshly prepared solution was added on the surface of the SPC electrode.
Then, the IL-CS/SPC-modified electrode was subjected to 10 cycles between –0.3 and 1.0 V at a rate of
0.05 Vs−1 and was washed with ultrapure water to remove the excess solvent.

2.4. Samples Preparation

The orange, lemon, and agraz tropical fruits were obtained from a supermarket in
Ibague, Colombia. The extraction was carried with a juice extractor via a conventional method.
Agraz (Vaccinium meridionale Swartz) was dried at room temperature and crushed in a disc mill. A total
of 500 g was extracted diligently in methanol in a 5 L vessel for 15 days and shaken daily. The obtained
extract was concentrated under reduced pressure in a vacuum brand system. No pretreatment was
necessary before each analysis.

2.5. Measurement Procedure

2.5.1. Cyclic Voltammetry

In the electrochemical cell, ultrapure water (9.5 mL), PBS (0.5 mL, 0.01 mol L−1), and RT
(250.0 µL, 0.6 mmol L−1) were added sequentially. Then, after an equilibration time of 3 s, cyclic
voltammograms (scan rate of 50 mV s−1) were recorded while the potential was scanned from −0.3 to
0.6 V. Each voltammogram was repeated 3 times.

2.5.2. Square Wave-Stripping Voltammetry

In the electrochemical cell, ultrapure water (9.5 mL), PBS (0.2 mL, 0.01 mol L−1), and RT
(10.0–100.0 µL, 0.30 mmol L−1) were added sequentially, and the mixture was deposited for 30 s
at 0.0 V. After an equilibration time of 3.0 s, the potential was scanned from −0.3 to 0.5 V using a square
wave with a frequency of 15 Hz and pulse amplitude of 500 mV. Each voltammogram was repeated
3 times. The calibration curves for RT were developed between 0.60 and 30.0 µmol L−1. The detection
limits were calculated using the standard error (3σ) and the slope of the calibration curve. In the real
sample, the standard addition method was used to eliminate matrix effects. All data were obtained at
room temperature (~25 ◦C).

2.5.3. EIS

EIS measurements were carried out at the open-circuit potential using a perturbation amplitude
of 10 mV and a frequency range between 10.0 kHz and 0.10 Hz. The working electrodes were an
SPC electrode, CS/SPC, and IL-CS/SPC. The tested electrolyte was K4Fe(CN)6 10.0 mmol L−1 in KCl
10.0 mmol L−1.
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3. Results and Discussion

3.1. Characterization of CS/SPC Electrode Surface with SEM

The IL-SC composite was electrodeposited between −0.3 and 1.0 V at a scan rate of 0.05 V s−1

for 10 cycles. Figure 1A shows the voltammograms. An anodic peak current and a cathodic peak
current were clearly observed between 0.2 and 0.4 V and −0.1 and −0.2 V, respectively, assigned
to a quasireversible system of the imidazolium group of the ionic liquid [55]. When the study was
done only with CS and in the absence of ILs, this redox pair was not observed. This increase in
the current in each cycle indicated the presence of an IL-CS composite electrodeposited film on the
electrode surface. Moreover, after more than 10 cycles, the current was not increased. The changes on
the modified electrodes surfaces were investigated by SEM. Figure 1B shows the surface of the SPC
electrode without CS, and IL-CS composite where a nonuniform and porous surface was observed.
Meanwhile, for the CS/SPC electrode (Figure 1C), a more homogeneous and smooth surface was
observed. On the other hand, the surface with the IL-CS composite (Figure 1D) showed few changes,
indicating a good interaction between CS and ILs.
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Figure 1. (A) Preparation of electromodified screen-printed carbon (SPC) electrode by cyclic
voltammogram (CV) (10 cycles) and scanning electron microscopy (SEM) images of the (B) SPC,
(C) chitosan (CS)/SPC electrodes, and (D) ionic liquid (IL)-CS/SPC.

3.2. Raman Spectroscopy

Raman analysis showed that the experiment conducted at 638 nm provided the best Raman
dispersion information. For the SPC electrode, only the D band (1350 cm−1) and the G band (1591 cm−1)
were observed, both of which are the characteristic bands of materials with carbonaceous structures [56].
The G band is related to the energy of sp2 bonding and is assigned to normal graphitic structures. In
addition, when CS was deposited on the electrode, two bands were observed at 1341 and 1589 cm−1,
corresponding to the amino and acetamido groups, respectively [57]. In the electrode containing the
IL-CS electrocomposite, the CS bands were observed to shift to higher wavenumbers, indicating that
there was an interaction between the CS and ILs. The figures are shown as supporting information
(Figures S1–S3)
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3.3. Characterization of SPC, CS/SPC and IL-CS/SPC Electrodes by CV and EIS

SPC-modified electrodes were studied with K4Fe(CN)6 10.0 mmol L−1 in KCl 10.0 mmol L−1

as test solutions to identify the conductive properties of the surface using CV and EIS. The results
are shown in Figure 2. Electrochemical impedance analysis is reported in the Nyquist plot for an
electrical circuit at high and low frequencies. The results of the EIS analysis for K4Fe(CN)6 using SPC,
CS/SPC, and IL-CS/SPC electrodes are shown in Figure 2A. The electrochemical impedance for the
SPC electrode exhibits a straight line with a slope to 90◦ at low frequencies that is associated with a
porous surface and semi-infinite diffusion [58]. The impedance of a simple faradic reaction without
diffusion can be calculated in terms of a CPE, CS/CPE, and IL-CS/CPE as

Z(ω) = Rs +
Rs

1 + (jω)aQ Rct
(1)

were Q and a are the CPE parameters, ω is the angular frequency. Q represents the differential capacity
of the interface in the case where a = 1 [59].

The charge transfer resistance (Rct) value is 35,500 Ohm. These results indicate a limitation of
the faradaic process for the SPC electrode. Similar results for Rct were reported for a system with
unmodified SPC electrodes [6]. The SPC electrode coated with CS and the IL-CS composite showed
very different response results, first exhibiting a line with a slope close to 45◦ at low frequencies
that can be associated with diffusion on a homogenous film. On the other hand, the charge transfer
resistance (Rct) values were 4500 and 1800 Ohm. These results are related to the SEM results, where it
was observed that the surfaces were more homogenous for the electrodes with CS and IL-CS composite.
These results imply that IL-CS/SPC electrocomposite film facilitated the electron transfer.

Cyclic voltammograms for the K4Fe(CN)6 solution with KCl using SPC, CS/SPC, and IL-CS/SPC
electrodes are shown in Figure 2B. For the SPC electrode, the anodic and cathodic peak currents were
63.8 and −35.8 µA with ∆V of 0.22 V for a quasireversible reaction. When SPC electrode was coated
with CS and IL-CS electrocomposite, anodic and cathodic peak currents were ±70.0 µA, indicating that
the amount of oxidized Fe2+ is the same as the amount of Fe3+, allowing a reversible redox reaction.
On the other hand, the observed charges for SPC, CS/SPC, and IL-CS/SPC electrodes were 0.132, 0.140
and 0.167 mC, respectively. These results are similar to those observed by EIS, where the presence of
CS and ILs improves the conductivity of the surface of the SPC electrode. Moreover, the background
current of the IL-CS/SPC electrode is higher than that of the large surface area of the composite film.
For the electrodes modified with CS, ILs, and nanoparticles, a more considerable increase in the values
of the anodic and cathodic current was not observed [54].
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Figure 2. (A) Nyquist plot for Fe(CN)6
3−/4− 10.0 mmol L−1 in KCl 10 mmol L−1 using SPC (black

curve), CS/SPC (blue curve) and IL-CS/SPC (red curve). (B) Cyclic voltammograms of Fe(CN) 3−/4−

10.0 mmol L−1 in KCl 10 mmol L−1 using SPC (dash curve), CS/SPC (dash-dot curves) and IL-CS/SPC
(solid curve). Scan rate (v) 0.1 V s−1.
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3.4. Activity of RT Using SPC, CS/SPC and IL-CS/SPC Electrodes

Electroactivity properties for RT are related to the ortho-dihydroxy-phenol group in the chemical
structure where two proton–electron pairs can be oxidized between 0.0 and 0.5 V [60]. Figure 3A
shows the cyclic voltammograms for RT (35.0 µmol L−1) at 0.10 V s−1 in pH 2.5 with PBS, using SPC,
CS/SPC, and IL-CS/SPC electrodes. The results clearly show that RT shows activity on the surface
of the three electrodes through a quasireversible reaction. The ∆E values for RT using SPC, CS/SPC,
and IL-CS/SPC were 0.06, 0.14, and 0.23 V, respectively. These results indicate that more energy is
required to oxidize RT with the modified electrode. This may be due to the width of the film. On the
other hand, the anodic peak currents for RT with SPC, CS/SPC, and IL-CS/SPC electrodes were 3.95,
11.0, and 29.1 µA, respectively. These results showed that the current increased by more than 100%
with IL-CS/SPC, indicating that the concentration of RT on the surface of the IL-CS/SPC electrode
is higher. It is possible that the positive charge of the CS as NH3+ in acidic medium interacts with
the imidazolium anion. Therefore, the CS–IL composite acts as an extraction agent for RT through
an affinity interaction [47]. Similar results have been reported for other analytes such as for the
interaction of dopamine with ILs [61]. With respect to the potential peak for RT, it was reported at more
positive values with ILs on carbon paste [33] and CS on glassy carbon [42]. To select the most sensitive
technique, cathodic stripping voltammetry (CSV), the most popular stripping voltammetric technique
suitable for the determination of organic substances, and adsorptive stripping voltammetry (AdSV)
that shows higher sensitivity due to the adequate accumulation potential value, were evaluated for RT
oxidation. In CSV and AdSV (Figure 3B) using square wave, the anodic and cathodic peak potentials
of RT (3.5 µmol L−1) are observed at 0.28 V with the cathodic and anodic peak currents of −2.36 and
3.98 µA, respectively. These results showed that AdSV exhibit a higher response. Therefore, it has
higher sensitivity for RT analysis. AdSV is chosen as the optimal technique for subsequent studies.
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and IL-CS/SPC electrodes. 0.1 V s−1. (B) cathodic and adsorptive stripping voltammograms of RT
(3.5 µmol L−1). Conditions: pH 2.5 (PBS); cathodic stripping voltammetry (CSV): Eads 0.6 V; tads 60 s;
adsorptive stripping voltammetry (AdSV): Eads 0.1 V; tads 60 s. Other conditions: Step amplitude
0.01 V; pulse amplitude 0.05 mV; and frequency 15 Hz.

3.5. Influence of the Scan Rate of RT on the IL-CS/SPC Electrode

The mass-transfer process for RT on the IL-CS/SPC electrode was studied to elucidate the
influence of the scan rate (ν) on the anodic peak current at pH 2.5 (Figure 4A). Anodic peak currents
were studied at the rates between 0.02 and 0.10 V s−1. A linear trend was observed at low and high
scan rates. The regression equation was ipa (µA) = −4.549 + 0.439ν (correlation coefficient R2 = 0.995).
This result indicates that the process on the IL-CS/SPC electrode is adsorption-controlled. Moreover,
the plots of the dependence of the anodic peak potentials vs. ln ν for RT are fitted with the regression
equation of Epa (V) = −0.033 + 0.069 ln ν (correlation coefficient R2 = 0.990). This slope value is close
to the value of 0.059 in the Nernst equation. This linear relationship indicates that the electro-oxidation
of RT shows a stoichiometry of 2H+:2e−. Similar results were reported for RT using Cu–CS/MWCNT
carbon nanotubes [42] and ionic liquid-modified carbon-paste electrodes [33].
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Figure 4. (A) Voltammograms and (B) plots of the dependence of anodic peak potentials vs. ln ν for
RT (35.0 µmol L−1) using IL-CS/SPC electrode.

3.6. Effect of pH on the Anodic Peak Current of RT on the IL-CS/SPC Electrode

Adsorptive properties depend largely on the pH value in the electrochemical cell. The pH
influence on anodic peak current for RT was studied at pH range 2.5–6.3 using PBS (0.001 mol L−1)
with 35.0 µmol L−1 of RT (0.1 V s−1) (Figure 5A). Anodic peak potentials for RT were shifted slightly
toward more negative values with increasing pH, suggesting that protons participate directly in the
oxidation of RT. The anodic peak current maximum was obtained at pH 2.5 and this pH was used for
further experiments. Moreover, the plots of the dependence of the anodic peak potentials on pH for RT
were fitted with the regression equation Epa (V) = 0.368 + 0.049pH (correlation coefficient R2 = 0.992).
This value of the slope value is close to the value of 0.059 in the Nernst equation. This linear relationship
indicates that the electro-oxidation for a quasireversible reaction of RT shows the stoichiometry of
2H+:2e−. These results are the same as those described in Section 3.3 and as previously reported in
the literature [62].
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Figure 5. (A) Voltammograms of the effect of the pH (6.3, 5.3, 4.3, 3.3, and 2.5) for 35.0 µmol L−1 of RT,
and (B) plots of the dependence of anodic peak potentials vs. pH for RT using IL-CS/SPC. Conditions:
scan rate of 0.1 V s−1.

3.7. Influence of the Adsorption Time (tADS), Adsorption Potential (EADS) and SWV Parameters

To optimize the adsorption of RT on the IL-CS/CPE surface, tADS, EADS, and SWV parameters
were studied with an RT concentration of 3.5 µmol L−1. The results showed that with an increase in
the adsorption time, the anodic peak current increased to 60 s, with no increase observed for longer
time. This may be due to the saturation of the electrode surface. 60 s is chosen as the optimal tADS for
subsequent studies. EADS was studied between −0.2 and 0.2 V. The results showed that anodic peak
current for RT was higher at the positive potential values. 0.1 V was chosen as the optimal potential
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value. This potential value it is not high enough to oxidize RT. Therefore, RT was adsorbed on the
IL-CS/SPC electrode surface. The effects of the square wave parameters, such as the pulse amplitude
(V) and frequency (Hz), on the anodic peak current were also studied in the ranges of 0.01–0.1 V and
5.0–30.0 Hz, respectively. The anodic peak current for RT increased with the increase in the pulse
amplitude and frequency to 0.09 V and 10.0 Hz, respectively. Therefore, these values were chosen as
optimal for the subsequent studies.

3.8. Analytical Parameters, Stability and Repeatability

Figure 6 shows the voltammograms of the calibration curve (calibration-curve insert), stability, and
reproducibility of the IL-SC/SPC electrode. Detection limits was calculated from the calibration curve
obtained between 0.75 and 12.5 µmol L−1 of RT with the optimized conditions: pH 2.5 (0.01 mol L−1

PBS), EADS 0.1 V, and tADS 60 s. The regression equation for the anodic peak currents (Figure 6A) was
Ipa = 0.397 ± 0.01 + 0.596 ± 0.09CRT (correlation coefficient R2 = 0.997). The DL obtained for RT based
on the values of the slopes and the random errors in x and y was 0.07 µmol L−1. The stability and
durability of the sensor was evaluated by performing SWAdV after 10 consecutive measurements
for a RT concentration of 35.0 µmol L−1. The results are shown in Figure 6B. Anodic peak currents
for RT increased by only approximately 5.0%. This corresponds to the increase of 0.5% in the current
(µA) for each measurement. Moreover, the relative standard deviation (RSD) was 0.86% (n = 10).
The reproducibility was 1.5% (n = 7) for RT (35.0 and 13 µmol L−1) using four different electrodes
(Figure 6C). These results indicate that the performance of the sensor allows it to be used for a long
period of time without an appreciable reduction in its activity. The proposed method using IL-CS/CPE
for RT detection was compared to other modified electrodes, as summarized in Table 1.
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Figure 6. (A) Adsorptive voltammograms and calibration curve (insert) of RT between 0.75−12.5 µmol L−1;
(B) adsorptive voltammograms (n = 10) for RT 35.0 µmol L−1; (C) and anodic peak current for RT 35.0 and
13.3 µmol L−1 using four different CS/SPC electrodes. Conditions: pH 2.5; EADS 0.1 V; tADS 60 s.
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Table 1. Modified electrodes for rutin determination.

Electrode Materials DL (µmol L−1) Application Reference

GCE Cu–CS/MWCNT 0.01 Fruits [42]
ABPE CS/ MWCNT 0.01 Pharmaceutical samples [43]
CPE IL 0.01 Pharmaceutical samples [33]
GCE CS/G 0.50 Pharmaceutical samples [44]
GCE IL-MWCNT 0.02 [47]
SPC CS 0.09 Tea [63]
SPC IL-CS 0.07 Tropical fruits This work

GCE: glassy carbon electrode; CPE: carbon paste electrode; ABPE: acetylene black paste electrode; Cu–CS/MWCNT:
copper-complexed chitosan/multiwalled carbon nanotubes; G-CS-polyAA: graphene nanosheets, chitosan, and a
poly (amido amine).

3.9. Interference, Validation and Study

The possible interfering substances in the detection of RT with the IL-CS/SPC electrode were
evaluated by the amperometric technique at 0.3 V with metal ions using an ICP multielement standard
solution IX (Merck) containing As, Be, Cd, Cr(VI), Hg, Ni, Pb, Se, and Tl 100 mg L−1, hydroquinone
(HQ), catechol (CT), uric acid (UA), ascorbic acid (AA), dopamine (DP), dye colors such as tartrazine
(TZ) and sunset yellow (SY), and others flavonoids such as quercetin (QC) and morin (MR) in
concentrations ten times higher. The results showed that only HQ and CT can cause interference
with the signal for RT. Figure 7A shows the amperograms for RT in the presence of the substances
mentioned above. These results suggest that the IL-SC/SPC electrode can be used for the analysis of
natural samples and foods.

The accuracy for RT detection using the IL-CS/SPC electrode was evaluated with the standard
control urine chemistry from Bio-Rad spiked with known amounts of RT. The results are summarized
in Table 2. The relative error of the four samples were close to 10.0%, indicating acceptable accuracy,
considering the concentration of smaller than 5.0 µmol L−1. Moreover, the slopes of the calibration
curves for RT were 1.18, 1.09, and 0.90. The small differences in the slope values indicate that the
matrix of the sample did not affect the activity of the sensor. The voltammograms for sample 1 of
Table 2 are shown in Figure 7A.
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Figure 7. (A) Amperograms for RT with morin (MR), quercetin (QC), metal ions, hydroquinone (HQ),
catechol (CT), dopamine (DP), ascorbic acid (AA), uric acid (UA), tartrazine (TZ), sunset yellow (SY)
and (B) adsorptive voltammograms and calibration curves (inset) of sample 1 * (Table 2). Using the
IL-CS/SPC electrode under the same conditions as Figure 6.
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Table 2. Results for RT in urine chemistry control standard.

Sample Added (µmol L−1) Found (µmol L−1) % Relative error

1 * 1.74 1.94 ± 0.01 11.5
2 1.74 1.95 ± 0.02 12.1
3 3.50 3.92 ± 0.05 12.0
4 3.50 3.72 ± 0.04 6.3

* voltammograms are shown in Figure 7B (insert calibration curve).

3.10. Analytical Application

An IL-CS/SPC electrode was used in the detection and quantification of RT in tropical fruits
such as orange, lemon, and agraz (Vaccinium meridionale Swartz) obtained at a supermarket in Ibagué,
Colombia. The concentrations of RT were calculated by standard addition. Each sample was analyzed
at pH 2.5 with PBS. The results are shown in Table 3. These results were similar to a previous report
where the concentration of RT was found to be higher in lemon than in orange [42]. Moreover, the
amount of RT detected in agraz was higher and was similar to the amount of RT detected in grapefruit
by capillary electrophoresis [63] and electroanalytical method [64].

Table 3. Results for RT in tropical fruit samples.

Sample
Found (mol µL−1) RDS (%)

RT RT

Agraz extract 18.3 0.50
Orange 2.30 0.05
Lemon 4.20 0.08

4. Conclusions

The IL-CS composite deposited onto SPC electrode showed high activity and selectivity towards
RT oxidation. Moreover, it allowed the detection and quantification in natural samples without
any pretreatment. Additionally, the sensor was shown to be stable, reproducible, sensitive, and
easily developed.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/9/2934/
s1, Raman spectroscopy of SPC, CS/SPC and IL-CS/SPC. Were performed in a RIBA Yovin-Ivon spectrometer
(Kyoto, Japan) using various laser wavelengths (532, 638, and 786 nm).
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