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Abstract

In the current paper the decoding algorithms for motor-related BCI systems for continuous
upper limb trajectory prediction are considered. Two methods for the smooth prediction,
namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regres-
sions, are proposed. The methods are compared to the Multi-Way Partial Least Squares
and Kalman Filter approaches. The comparison demonstrated that the proposed methods
combined the prediction accuracy of the algorithms of the PLS family and trajectory smooth-
ness of the Kalman Filter. In addition, the prediction delay is significantly lower for the pro-
posed algorithms than for the Kalman Filter approach. The proposed methods could be
applied in a wide range of applications beyond neuroscience.

Introduction

The Brain-Computer Interface (BCI) is a system for converting the brain’s neural activity into
commands for external devices [1]. Motor-related BCI aims at improving the quality of life of
individuals with severe motor disabilities [2]. Paralyzed or handicapped persons get the oppor-
tunity for mental control of wheelchairs, robotic arms, exoskeletons, etc. [3-8]. Besides that,
motor-related BCI systems can be applied for rehabilitation purposes [9, 10].

Different methods of acquiring the brain’s neural activity are currently used for BCL
Among the non-invasive approaches are electroencephalography (EEG) [11, 12], magnetoen-
cephalography (MEG) [7, 13], functional magnet resonance imaging (fMRI) [14, 15], func-
tional near-infrared spectroscopy (fNIRS) [16, 17], etc. In the case of invasive methods such as
electrocorticography (ECoG) [18-22] and microelectrode arrays (ME) recordings [23, 24], the
electrodes are implanted under the cranial bones. Whereas ME record intra-cortical neural
activity, ECoG electrodes are placed on the surface of the brain. A chronic ECoG-recording
implant, appropriate for a long-term use, has recently been reported [25]. Although non-inva-
sive techniques ensure better safety, the invasive methods allow superior quality of the record-
ings, providing high spatial and temporal resolution of the signals [18]. Decoding of hand’s
continuous trajectories from subdural and epidural ECoG recordings was reported recently
[22-24, 26-29].
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In this paper, the task of reconstructing continuous 3D trajectories of the subject’s hand
from ECoG recordings is considered. This problem was studied in both monkeys and humans
[22,29-31]. A set of approaches for trajectory decoding from neuronal recordings were pro-
posed [22-24, 28]. A common approach consists in extraction of informative features from
spatial [32], frequency [33], or/and temporal [34] domains of brain signal. Decoder is identified
from the trajectory information (response variable) and neural activity features (exploratory
variable). Many standard methods for model identification from experimental data are
designed for vector exploratory variables which generally represent only one domain (modal-
ity) of analysis [26, 35-37]. If analysis in one domain does not provide satisfactory results, sev-
eral modalities could be combined sequentially in this paradigm. A tensor-based (Multi-Way)
approach is intended for simultaneous treatment of several domains. Multi-electrodes brain
signals recording is mapped to the spatial-temporal-frequency space [38] representing single
time epoch by a cube (a third-order tensor). All cubes are stored in a tensor of observations (a
fourth-order tensor). Tensor (multi-way array) data representation is convenient, since it save
natural structure of the data. Detailed review of the tensor data representation as well as the
tensor analysis is given in [39]. Multi-Way Analysis is reported as an efficient tool for the
decoder identification [22, 40, 41].

The peculiarity of the tensor data analysis is their high dimension. The algorithms of the
Partial Least Squares (PLS) regression family are known to be particularly appropriate for high
dimension tasks [42]. PLS projects both exploratory and response variables to low dimensional
spaces of latent variables. Contrary to the widespread Principal Component Analysis (PCA)
[43], which projects only explanatory variables, both explanatory and response variables are
taken into account by the PLS for projectors identification. Thus, the PLS provides projectors
correlated to the task. However, the generic PLS approach is vector oriented and can be applied
only for the tensors unfolded to the vectors (Unfolded PLS) [44]. To exploit the advantages of
tensor data representation, generalizations of the PLS for the tensor data were invented
(N-Way PLS [45], Higher Order PLS [40], etc.) and were used in BCI systems [40, 46, 47].

The smoothness of the predicted trajectory is an important property of motor-related BCI
systems [29, 48, 49]. The particular importance of smoothness was reported for control of such
BCI effectors as wheelchairs [50] and cars [51]. There are two main approaches to manage the
problem of a smooth prediction. The first one consists in the smoothing post-processing of the
predicted trajectories [29]. However, this post-processing increases the system’s latency,
depending on the required level of smoothness, the decision rate of the system, etc. Another
solution consists in identifying the model, for which the smoothness of the predicted trajecto-
ries is an intrinsic property. A Kalman Filter (KF) [52] is used in BCI systems to generate
smooth trajectories [53, 54]. However, the method is not adjusted for the high dimensional
data due to the application of the matrix inversion operation in it. Moreover, the Kalman Filter
weights the current prediction with the previous one, which also brings a latency to the system.
Minimal system latency is an essential requirement for the comfortable use of real-time BCI
systems [55]. Improvement of the prediction smoothness with minimal supplementary delay is
the particular goal of the article.

In this paper, a new penalization approach is proposed to improve neural decoding smooth-
ness. By means of penalization, one can impose different penalties related to the particular
tasks. The paper novelty resides in two new ways of penalization (new penalization terms),
which particularly address solution smoothness. Namely, Sobolev Penalized Multi-Way PLS
(SNPLS) and Polynomial Penalized Multi-Way PLS (PNPLS), are proposed. They combine
tensor representation of the data with the possibility to control the level of the smoothness of
the predicted trajectories. In these methods, the smoothness is not provided by the post-pro-
cessing or weighting with previous predictions, but is an internal parameter of the identified
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model. Thus, no supplementary delay is introduced due to post-processing of the response. In
the current paper, a set of state of the art BCI methods, namely Kalman Filter, generic PLS, and
Multi-Way PLS (NPLS), are considered and compared with the proposed SNPLS and PNPLS
on the set of publicly available ECoG recordings. In addition, response latencies are investi-
gated and compared for the proposed approach and state of the art methods.

The proposed methods could be applied in a wide range of applications beyond neuroscience.

Prediction performance evaluation

Different criteria for performance evaluation have been applied in BCI studies [26, 29, 40, 56].
In this paper, Pearson correlation (r), Root Mean Squares Error (RMSE), and Mean Absolute
Error (MAE) are used to compare the methods. A shortcoming of the above criteria is that they
do not reflect the smoothness of the predicted trajectory. They are based on the sum of
squares/absolute values of residuals which temporal sequence is not taken into account. Mean
Absolute Differential Error (MADE) is a way to assess both prediction accuracy and smooth-
ness [29]. Hence MADE is included to the list of criteria for performance evaluation.

The Pearson correlation is a commonly used criterion [22, 26, 30, 46] for the continued-
value trajectories decoding,

r = correlation(y, y), (1)

Wherey = (y(t)),. . .,y(tN))T= - - .,yN)Tandy =((t),... ,j/(tN))T = ,j/N)T are the
observed and predicted trajectories. RMSE represents the L,-norm distance between the pre-
dicted and observed trajectories [22, 29, 40]:

~ _ N _ N
RMSE = [ly = [L,/ly =¥l Iyl =/>__ 7 ¥y =D »/N. (2)

Less sensitive to the outliers, MAE [29, 56] is based on the L;-norm distance:
MAE = [ly = 3[,/lly = ¥, ll¥ll, :ZL [yl (3)
MADE criterion compares derivatives y' and y':
MADE = |y — 3|l /Iy ~ ¥'ll.. ¥ = > »//N. (4)

MADE characterizes the prediction smoothness [29] and, being based on the L;-norm, is
robust to the outliers.

Methods
Kalman Filter

The KF [52, 57] is a vector-oriented method, which recursively operates on streams of input
data to produce an estimate of the underlying system state. KF is widely used to decode the
neural activity in BCIs [53, 58-61]. One advantage of KF is the smoothness of the prediction in
time [53, 59]. Thus, KF was applied for prediction of the hand’s trajectory from the brain’s neu-
ronal activity, such as ECoG [60] and spikes [53, 61]. Brain activity data x, € R", observed at
the moment #;, are used to predict the system state y, € R" (m = 9 represents 3D coordinates,
velocity, and acceleration of the hand at the moment t;). The generative model of the KF is for-
mulated as a linear dependency between the brain activity and system state: x; = Hyyi+qs
where H, € "™ is a matrix of linear coefficients, and q,~N (0, Q,) is the zero-mean noise of
the observation, Q, € R"". The model expects that the system states are linearly propagated
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in time: y;,1 = Agyx+wy, where A, € R™" is a matrix of linear coefficients, w,~N\ (0, W,),
W, € R If matrices Hy = H, A; = A, Q= Q, and W = W are constants in time, they can
be estimated from the training data X = (x,,...,%,) € RN Y = (y,,...,yy) € RV by
means of the least squares:

A= Y2Y1T(Y1Y1T)717 H= XYT(YYT)A» W= (Y, - AY,)(Y, - AYl)T/(N —-1),

Q=X-HY)(X - HY)T/N, Y, =y ¥na)s Yo=(¥or-- V) (5)

The KF algorithm consists of a priori and a posteriori steps. In the first step, the method a
priori estimates the state of the system as y, = Ay,_,. In the second step, a posteriori estima-
tion y, is found as a linear combination of the a priori estimation and the weighted difference
between the observed and predicted signals:

yk:y;+Kk(Xk_Hyl:)' (6)

Here K, = P, H'(HP, H" + Q) " is the gain matrix, P, = AP, ,A" + W is the a priori
estimate error, and P, = (I — K, H)P, is the a posteriori estimate error [52]. More detailed
information about the KF can be found in [57].

Generic PLS

A linear regression model between the response variable y € " and the explanatory variable x €
R" is represented as E[y|x]| = Z; Bx, = Bx,where B = (B,,...,B,) € R"", x=(xp. . .xn)"
[62]. For the data set X = (x;,. . .xn), Y = (Yo - >YN) T the Ordinary Least Squares (OLS) gives [63]:

N
B :argminZHyifoiH; = argmin ||Y — BX||>. (7)
B ‘I B

However, the OLS procedure is unstable for the case of the high dimension task [63]. Partial
Least Squares regression is a statistical method for linear vector-based data analysis [42]. Due to
its efficient dimension reduction technique even in the case of highly correlated variables, PLS is
particularly appropriate for the high dimensional data. The PLS algorithm iteratively estimates a
linear relation between the matrices of observations of input and output variables X € #"*" and
Y € RV Y = XB + D, where B € R"" is the matrix of linear coefficients, and D € R"*" is
the matrix of noise. On each iteration, X and Y are projected in low dimension spaces (latent var-
iables) in such a way as to explain the maximum of their variation simultaneously: X = TP” + E,
Y=UQ"+F where T = [t,,...,t,] € R and U = [u,,...,u,] € R"*" are the matrix of
the latent variables (scores), P = [p,,...,p;] € R"" and Q = [q,, ..., q,] € R"" are the
matrix of the loading vectors (projectors), E and F are residual matrices, and F is the number of
iterations (factors). Estimation of the factors number F can be done through the cross-validation
procedure [64]. A detailed description of the PLS approach can be found in [42].

The PLS regression was applied in the BCI systems for hand trajectory reconstruction [22,
26, 40].

Multi-way PLS

Multi-way (N-way) PLS is a generalization of the PLS method to the tensor input/output data
[45]. Tensors (multi-way arrays) allow the representation of data of a high order. Vectors and
matrices are tensors of orders one and two, respectively. In this paper, a tensor is denoted as
X € R " where n is the order of the tensor. More information about the tensors can be
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found in [39]. NPLS inherits the robustness of PLS and allows simultaneous analysis of data in
several domains (e.g. time-frequency-space). Examples of the application of multi-way tensor-
based methods in BCI research are given in [40, 46, 65-67].

Similarly to PLS regression, NPLS builds the linear relation between the dependent and
independent tensors of observations X € RV and ¥ € RV The model is con-
structed iteratively by projection of the tensors to the space of latent variables:

F F
X:Zletfowio,,,owf;—i—ﬂ,Xzzlellfoqflou.oq{ﬂ—Q—E, uf:Tfo’ (8)

where the operator “*” is the outer product [39], T; = [t,,...,t;] € RV and U=, ule
R are the matrices of the latent variables after f=1,...,Fiterations, w{ € R and qu c R are
the projection vectors, Byis the matrix of the linear coefficients, and E and F are the residual tensors.

In contrast to the OLS approach, NPLS, as well as PLS, is a biased estimator. However, it
provides the insensitivity of the predictive model to ill-conditioning and noise [68].

Penalized regression

Modification of the cost function (optimization functional) in the model identification proce-
dure could be used to improve the prediction/regression properties. Among other reasons,
penalizations are widely applied to achieve desirable characteristics (sparsity, robustness, etc.).
Additional terms are added to the optimization task, basically performing the standard L,-
norm or L,-norm optimization. For linear regression E[y|x] = Bx the least squares estimation
is given in (7). To impose the additional restrictions, the regularization (penalization) term is
introduced [69-74].

B = argmin |Y — BX|> + P(Y, B, X), 9)
B

P, (B,4) =4 B|? (LASSO) and P, (B,2) = /|| BJ|> (RIDGE) are the most frequently used,
> 0 represents the penalization parameter. Whereas the P; penalization encourages sparse

solution (9), the P, penalization reduces the variation of the coefficients B, which increases the
robustness of the model [71]. In addition, the P, penalization as well as Fused LASSO [75] are
often applied to improve the smoothness of the coefficients B [70, 73, 74]. However, neither
P, nor P, penalizations improve the smoothness of prediction of y(t) analyzing the data flow
x(t). In this paper, we propose two penalizations to improve the smoothness of the continuous
trajectories prediction.

SNPLS. The Sobolev NPLS method is based on the use of the Sobolev norm W [76]
instead of the L,-norm in the optimization task:

W, norm : ||¢

v = lolls + 1ol (10)

Here ¢ and ¢ are a function and its s-th derivation, respectively. Optimization in Sobolev
space corresponds to the optimization problem (9), where the penalization term is added with
the parameter A > 0 to control the influence of the derivative part:

N N
B —argmin 3 [ly, - Bx/|* + 23 [Bx", " (11)
B i=1 =2
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The problem can be represented in the matrix form:

B = arg min ||Y — BX|* 4+ |[VZBX"Y|’ = arg min | Y — BX|’, (12)
B B

heeX = | % | v-1|¥
where = 5 = .
\/ZX(S) 0

The optimization problem (12) corresponds to the regression estimation task with the
matrices of independent and dependent variables XandY, respectively. Moreover, for the
tensor case, the same approach can be applied to obtain the tensors X and Y. To identify the

regression between the tensors X and i, we use the NPLS algorithm, since it is suitable for
tensor-based variables and has demonstrated its efficiency for BCI tasks.
PNPLS. Polynomial Penalized NPLS considers the optimization problem:

N N-I
B = arg;ninz Iy, = Bx,|” + 2> lIg,.(x:, B)II”,
i=1

i=l+1

1
Pp (xL, Xi+l) (‘xi )
gp.l(xi7 B) =Bx,—B = Bx; — BPP,(x,v,l..“.x,H)(xx) = Bx, — B;(w (13)
PP’(X:LI"”X:;I) :‘l)
where x, = (x!,...,x")", and P, (. 1. (+) is a polynomial function of the power p, which
provides the minimal least squares approximation of the set of points (x;j,. . ..x;;7),

x; =P, . (%) Theprocedure of X identification can be represented as a result of the

power p polynomial filtration in a sliding window of size (2] + 1), where polynomial coefficients
are fitted independently for each window.
In the matrix notation, the optimization problem is represented as

B =argmin|Y - BX|’ + Z|BX - BX ||%, (14)
B

Penalizing the difference between the results of application of the model B to the initial (X)

and “smoothed” (X) explanatory variables, this algorithm is looking for the model which pro-
vides similar results being applied to the original and “smoothed” data.

For the new variables X and Y:

B —argmin|¥ - BX|®. X = | _ v-|¥ .
7arg};‘nln” - ”a [ﬂ(x—i)]’ l ‘| (5)

Similar to (12), the task (15) corresponds to the problem of regression estimation with the
matrix of the explanatory and response variables X and Y. It can also be generalized to the
case of the tensors X and Y. The NPLS algorithm is used for the following regression
estimation.

Both SNPLS and PNPLS algorithms improve solutions without increasing the complexity of
the optimization problem (sum-of-squares optimization).
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Application
Evaluation and comparison

The BCI problem of the reconstruction of 3D trajectories of a monkey hand from its ECoG
brain activity is considered to evaluate the accuracy and smoothness of the proposed
approaches. Two proposed methods (SNPLS and PNPLS) are evaluated and compared to three
state-of-the-art methods (Kalman Filter, generic PLS, and tensor-based NPLS).

The publicly available dataset recorded and distributed by the Laboratory for Adaptive Intelli-
gence, BSI, RIKEN (http://neurotycho.org) was used to evaluate the methods. During the experi-
ments, the 3D position of the monkey’s right hand was recorded simultaneously with the epidural
ECoG signal of the brain [26, 77]. The dataset used in the current paper consists of 20 recordings, cor-
responding to two Japanese macaques (10 recordings of each monkey), denoted as ‘B’ and ‘C’ in the
database [22]. The monkeys were trained to receive pieces of food with their right hands. The pieces
were demonstrated by the experimenter at random locations at a distance of about 20 cm from the
monkeys. The new trial started when the monkey finished eating the previous piece of food. The
ECoG data were acquired with 64 electrodes (Blackrock Microsystems, Salt Lake City, UT, USA)
implanted in the epidural space of the left hemisphere (see Fig 1). A sampling rate of 1000 Hz per
channel was provided. To record the hand trajectories, an optical motion capture system was used

monkey  pg monkey Pps
"B" 0 @ ncn @@

IPs

Fig 1. The schemes of the implantations. 64 electrodes were implanted in the epidural space of the left
hemispheres of two monkeys. Ps: principal sulcus; As: arcuate sulcus; Cs: central sulcus; IPs: intraparietal sulcus
[22].

doi:10.1371/journal.pone.0154878.g001
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(Vicon Motion Systems, Oxford, UK) with a sampling rate of 120 Hz. The experiment scheme is rep-

resented in Fig 2A. Additional description of the experiments and analyzed data is given in [22, 77].
The duration of each of 20 experiment sessions was 15 minutes. The first 10 minutes of each

recording were used for model identification and the last 5 minutes were employed for testing

of the corresponding model.

Feature extraction. The input data tensor X was formed from the ECoG epochs. Each
epoch contains 1 second of the signal, mapped to the temporal-spatial-frequency space by

A)
B)
g IR IAHMAL A nﬁ}; T
5 I " o
S v lht UAULULL L
= 7
g z ? [
cn W
o) Ch2
8 W
B Cch3

Multiway ECoG Data

-
s Artifacts
.

i filtration
|

| ||
Tl =
- ¢

t

Frequency

1=AT  Time epoch

g
ol
T

Frequency

‘% — ('.:,

3D trajectory of
the hand in time

(x,y,2)(t)

‘ s, AN
‘;‘ﬁ:::p::

Brain signals in
time ECoG(t)

x(ty)
x(t)

Decimation )
along the -

temporal
modality S i

| >
&'
! o V(DQQ
C

t=AT " Time epoch ¢

"

Frequency

Fig 2. Experimental scheme and data formation. (A) The scheme of the experiment. The monkey is following the food
with its hand. 3D coordinates of the hand are recorded simultaneously with monkey ECoG brain activity [22]. (B) For each
moment t, the response variable y(t) is formed from the 3D coordinates of the monkey’s hand at this moment. To form the
explanatory variable x(t), the ECoG epoch [t-At, t], A= 1 s is mapped by the Continuous Wavelet Transform (CWT).
Then, the logarithm of the absolute values of the wavelet coefficients is taken, the procedure of the artifact filtration is
applied, and the tensor is decimated along the temporal modality 100 times (1000 points to 10 points). Then the whole

procedure is repeated for the next time moment t;+ 1 =t;+ At, Ar=0.1s.

doi:10.1371/journal.pone.0154878.9002
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means of the wavelet transform. The complex Morlet wavelet was chosen as a mother wavelet
due to its widespread application for BCI data analysis [22, 26, 30, 40, 46]. The epochs were
taken continuously with time shifts equal to 100 ms. Based on [29], frequencies from 10 to 150
Hz with a step of 10 Hz were chosen. The logarithm of the absolute values of the wavelet coeffi-
cients was taken. After formation of the input tensor X, the chewing artifacts [22] were filtered
in the way described in [29]. Then, the feature tensor was decimated along the temporal modal-
ity 100 times, by averaging the data in 10 sliding windows of 100 ms length. A detailed descrip-
tion of the analyzed data formation procedure is given in [29]. The matrix of the response
variables Y was formed from the corresponding 3D coordinates of the monkey’s hand.
Whereas for PLS, NPLS, SNPLS, PNPLS methods matrix Y represents 3D coordinates, the Kal-
man Filter uses the extended matrix of the response variables which additionally includes
velocity and acceleration Yir=[Y, Y', Y']. The explanatory variables tensor X is identical for
all the methods. Fig 2B represents the general scheme of the data preparation procedure.

To validate the methods, the explanatory variables tensor X and the matrix of the response
variables Y were split into training (70%) and test (30%) subsets for each recording:

training

=—training

Y/ Ytraining] € §R6U21X97 for KF

[ training? training ?

o € R for PLS — family methods %
for training data ¢ X € ROV IA0x6 , (16)
i=1

95, E 20

ssonisionst Yeer € BP0 for PLS — family methods

for test data ¢ X € O IPA0 ) . S0 . (17)
Yoo Y Yol €R , for KF o

test? test? test

Parametrization. Three state-of-the-art methods (Kalman Filter, generic PLS, and tensor-
based NPLS) and two proposed tensor-based approaches (SNPLS and PNPLS) were compared
using a set of optimized parameters. The optimal number of factors F (PLS, NPLS, SNPLS,
PNPLS) as well as the smoothing parameter A (SNPLS, PNPLS) were chosen on the training set
by the 10-fold cross-validation procedure [64] for each recording. The preliminary study on
one recording gave the polynomic parameters for the PNPLS algorithm: the number of points
chosen for the polynomial coefficients estimation was equal to L = 2] + 1 = 9 and the polynomic
power was p = 2. Then, these parameters were fixed for all other recordings. Similarly, the opti-
mal derivative order chosen for the SNPLS approach was s = 3.

Results. The models were calibrated separately on each training recording and tested on
the corresponding testing data. An example of the application of the compared methods to the
same interval of data is illustrated in Fig 3.

Fig 4 presents the criteria for comparing the methods’ performance (Pearson correlation,
RMSE, MAE, MADE) for the Kalman Filter, PLS, NPLS, SNPLS, and PNPLS, averaged over all
the recordings. Table 1 represents the p-values for all the pairs of the methods. In the present
study, the significance level of & = 0.05 is chosen. The algorithms of the PLS family, and in par-
ticular the proposed SNPLS and PNPLS, significantly outperform the KF in correlation, RMSE,
and MAE. The difference between the generic methods (PLS, NPLS) and the proposed
approaches (SNPLS, PNPLS) for these criteria is insignificant (Table 1) and does not exceed
5% (Fig 4). In general, the presented prediction accuracy corresponds to the accuracy reported
for this database [22, 26, 29, 46].

KF, SNPLS and PNPLS demonstrated better smoothness than PLS and NPLS, which is
reflected by the MADE criterion: the improvement is significant (Table 1) and varies from 30%
to 47% (Fig 4). At the same time, although KF showed the best smoothness, the difference
between KF and the proposed PNPLS approach is less than 6% and is insignificant.
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Kalman filter

700 T | |

600
500
400
300
200
100

-100

300
200
100

Z-coordinate, mm

_100 Il 1 1 1 1 Il 1 1 1

300

200

100

Observed Predicted

Fig 3. Example of the observed and predicted data. Examples of the observed and predicted (Kalman
Filter, PLS, NPLS, PNPLS, and SNPLS) trajectories of Z-coordinate of the monkey’s wrist.

doi:10.1371/journal.pone.0154878.g003
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Correlation s RMSE 2 MAE MADE
2 10
15
10
5
‘ IR
E & %Q\BZ %Qw‘: %Q\? S & %sz §w‘2 Q\?’ E & %Q\)Z %Q\i %Q& S R ~”§i éz\‘?

- X-coordinate - Y-coordinate l:l Z-coordinate

Fig 4. Prediction quality characteristics. The criteria of prediction quality, estimated for 3D trajectories for the models given by
KF, PLS, NPLS, SNPLS, and PNPLS. The results are averaged over 20 recordings for two monkeys.

doi:10.1371/journal.pone.0154878.g004

To illustrate PLS-family predictive models, the averaged influence [78] of the frequency, tem-
poral, as well as spatial modalities estimated for the monkey “B” are shown in Fig 5 (the results
for the monkey “C” are consistent). For each modality, the influences of its elements are evalu-
ated as the weights of sum of the absolute values of the related predictive model’s coefficients.

Prediction delay comparison

System latency is an important characteristic for BCIs [55]. Smoothing generally introduce the
delay to the prediction. An additional study was carried out to assess and compare prediction
delays of the analyzed methods.

To compare latencies, the predicted trajectories generated by the analyzed approaches were
shifted in time to maximize the correlation between predicted and observed trajectories. Pre-
diction delays were estimated as minimal shifts of the predicted signals, which maximizes the
correlation between predicted and tested trajectories. The shift interval S = [0, 2] s was studied.
Fig 6 shows averaged delays for the analyzed methods over monkeys, sessions, and coordinates.
The delay of the Kalman filter is 0.47+0.21 s. Significantly lower (¢ = 0.05) prediction delays
are demonstrated by PLS-family algorithms (0.10+0.09 s, 0.11+0.11 s, 0.15£0.12 s, and 0.03
+0.07 s for PLS, NPLS, SNPLS, and PNPLS, respectively). Differences between the PLS, NPLS,
SNPLS, and PNPLS latencies are not significant.

Discussion

Motor-related BCI systems are of great importance since they can help people with severe
motor disabilities to recover their functionality. However, decoding the neural activity is a

Table 1. p-values of the difference between the quality evaluation criteria of the methods (ANOVA test, significance level a = 0.05).

p-value
Compared methods Correlation RMSE MAE MADE
KF SNPLS 0.000 0.000 0.000 0.000
PNPLS 0.000 0.000 0.0100 0.132
PLS SNPLS 0.456 0.126 0.108 0.002
PNPLS 0.848 0.007 0.010 0.000
NPLS SNPLS 0.678 0.093 0.073 0.000
PNPLS 0.853 0.005 0.005 0.000
SNPLS PNPLS 0.529 0.409 0.548 0.000

doi:10.1371/journal.pone.0154878.1001
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challenging task [1]. BCI control of external devices like wheelchairs, artificial arms, exoskele-
tons, etc. in real life is especially difficult, due to safety issues [24]. This imposes additional
restrictions on BCI decoders, as well as on the smoothness of the predicted trajectories, in par-
ticular. The standard approach for improving smoothness consists of post-filtering of the
obtained prediction [55, 79]. Such filters (e.g. sliding window averaging) bring a delay to the
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Fig 6. Prediction delays. Averages prediction delays of the Kalman Filter, PLS, NPLS, SNPLS, and PNPLS
approaches. PLS, NPLS, SNPLS, and PNPLS significantly outperform KF, whereas the differences between PLS,
NPLS, SNPLS, and PNPLS are not significant (significance level a = 0.05)

doi:10.1371/journal.pone.0154878.9006
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system response. More complex nonlinear filters, such as KF, are labor-consuming, which
decreases the decision rate of real-time BCI systems, especially in the case of high dimensional
data, and also introduces a prediction delay. Both a high decision rate and minimal system
latency are essential requirements for the comfortable use of real-time BCI systems [55].

The methods proposed in the current paper, namely SNPLS and PNPLS, are based on
multi-way data analysis, which is known to be efficient for neural data treatment [40, 47, 80].
These methods construct the decoders with the possibility of controlling the smoothness of the
predicted trajectories. The proposed algorithms try to improve the smoothness of prediction
without increasing the system latency. Penalization integrated into the linear decoder identifi-
cation procedure can be interpreted, as the penalization of informative but noisy variables. The
proposed methods improve solutions stability by penalizing unsmooth predictions without
increasing the complexity of the optimization problem (sum-of-squares optimization). The
proposed methods do not change the predictive model complexity as well. Solutions remains
linear, and the resulted model can be efficiently applied for high dimensional data flow decod-
ing in real-time on standard computer (Intel Dual Core, 3.16 GHz; RAM 3.25 Gb) [80]. The
proposed methods could be applied in a wide range of applications beyond neuroscience.

To validate the efficiency of SNPLS and PNPLS for BCI tasks, the algorithms were com-
pared with a set of state-of-the-art approaches. The Kalman Filter has been chosen as a method
which generates a smooth prediction and is widely applied in BCIs. However, it contains the
inversion of the matrix. This limits the application of the KF for high dimensional tasks [53].
Unlike the KF, the algorithms of the Partial Least Squares family are particularly suited for the
high dimensional data and are also often used in BCI systems [22, 46]. Improvement of the
prediction smoothness of these methods, with minimal loss of accuracy as well as supplemen-
tary delay, was the particular goal of the article. The prediction accuracy of the compared meth-
ods was evaluated by means of Pearson correlation, RMSE, and the more robust to outliers
MAE criteria. To evaluate the smoothness, the MADE criterion was chosen. It combines the
robustness of the L;-norm and allows assessment of the smoothness.

The algorithms of the PLS family significantly outperform the KF in prediction accuracy
estimated with Correlation, RMSE, MAE, whereas the difference among the PLS-based
approaches is insignificant. Due to matrix inversion, KF could be more sensitive to high dimen-
sional and noisy explanatory variable in comparison to PLS-family algorithms. Additional pre-
and/or post-processing of data or Kalman algorithm’s modifications could improve its predic-
tion accuracy for the current task and this is the subject for future researches.

From the smoothness point of view, KF, PNPLS, and SNPLS significantly outperform
generic PLS and NPLS. KF demonstrates the best smoothness. However, the results of KF and
new methods are comparable. Thus, PNPLS and SNPLS algorithms combined the prediction
accuracy of the PLS-family algorithms with the smoothness approaching the KF. In addition,
SNPLS and PNPLS provide lower prediction delay in comparison with the KF. The KF
approach latency reaches half a second (470+210 ms) that could be noticeable and irritable for
subjects. As it was reported in [79] for spikes decoding methods in monkeys experiments,
whereas delays up to 200 ms provide minimal influence, every 100 ms of additional delay
added about 200 ms to the reaching time. The studies in human also demonstrated that delays
about 200 ms slow down reaching tasks and decrease accuracy [81]. For simulated human
experiments, increasing of average reaching time by over 5 s due to visual feedback delay of
300 ms is reported in [55]. Contrary to the KF, the PLS, NPLS, SNPLS, and PNPLS methods
provide a latency of about 100 ms that is equal to the decision rate of the system. However,
additional real-time closed-loop BCI experiments should be carried out in human to clarify the
latency’s tolerable level.
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Generally, criteria values appropriated for the practical applications are derived according
to the subject satisfaction in practical experiments. The influence of different parameters such
as error magnitude, processing delays, etc. on closed-loop BCI in human was studied, in partic-
ular in [55]. The comparison of decoding approaches during the clinical closed-loop BCI trials
will be the next step of our research.

Fig 5 demonstrates the modality influence analysis results [78] for the PLS-family methods,
in frequency, spatial and temporal domains. In the frequency modality, frequencies influence
distributions are similar for all the considered approaches. The distributions have two maxi-
mums around 20 Hz and 90 Hz. In the temporal modality, the PLS and NPLS models tend to
give close weights to all elements of the analyzing interval, with the maximums near 0
moments. Contrarily, coefficient distribution of the SNPLS and PNPLS models have maxi-
mums in the middle of the analyzing intervals. It is possible that weight shapes are responsible
for the predicted trajectories smoothness. On the other hand, prediction delay evaluation dem-
onstrated that there is no additional latency due to these weights distributions, as one might
expect. Additional study is needed to clarify this effect. In the spatial modality, electrode
weights are comparable for all the considered approaches. The most informative electrodes (6,
10, and 13) are the same for all the methods. This could be explained by detecting the readiness
potentials, i.e. cortical contribution to the pre-motor planning of volitional movement in the
supplementary motor area. Additional information about the readiness potentials could be
found in [82].

The influences analysis allows estimating the stability of the prediction models by means of
assessment of the weights variability in each modality. Standard deviations through all the modali-
ties are opr s = 0.005£0.005, onprs = 0.005+0.008, ognprs = 0.005+0.005, 0pnprs = 0.00410.005. The
differences of the standard deviations are not significant (o = 0.05). Thus, the proposed PNPLS and
SNPLS methods keep the robustness of the generic PLS and NPLS approaches.

Comparing the proposed methods, both SNPLS and PNPLS allow improving of the smooth-
ness of the predicted trajectories. The PNPLS prediction smoothness surpasses the SNPLS one,
while the prediction latencies for both approaches are comparable. On the other hand, SNPLS
provided slightly a better accuracy (Fig 4). The advantage of SNPLS is that it depends on fewer
external parameters than PNPLS, thus it is preferable in the case of restricted computation
time for model identification.

Limitations of the present study and future work

The main limitation and disadvantage of the proposed approaches is the time-consuming esti-
mation of a set of the external parameters. The smoothness parameter, the polynomial parame-
ters for PNPLS, the derivative order for SNPLS, as well as the number of factors for SNPLS and
PNPLS, need to be evaluated. In this study, a time-consuming cross-validation procedure is
applied to identify the external parameters of the algorithms. Additional investigation is
needed to optimize parameters estimation procedure.

Parametrization and calibration is the offline procedure. Generally, recalibration is not
required for ECoG-based BCIs during a long period [80]. Nevertheless, the fast online calibra-
tion would be a strong point for the BCI system. Recently, the Recursive NPLS algorithm was
proposed [46] for adaptive BCI system calibration. The combination of the SNPLS and PNPLS
methods with RNPLS will allow online adjustment of the decoder to the non-stationary brain
activity.

As it was reported in [49, 83], methods that demonstrate good performance for offline
decoding could be less efficient for online applications, while other methods provide better per-
formance in closed-loop conditions. The next step of the study will be closed-loop application
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and the evaluation of decoding approaches, and in particular the application of the algorithms
in clinical BCI to calibrate the BCI decoder. The fully-implantable device WIMAGINE® [25]
for chronic measurement and wireless transmission of ECoG data, as well as the full body exo-
skeleton EMY® [84], are currently developed within the framework of the CEA-LETI-CLINA-
TEC™ BCI project. Clinical trials of the exoskeleton control by tetraplegic subjects is in

preparation.
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