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A B S T R A C T

In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been 
investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have 
emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that 
play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs 
signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis 
and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish 
different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and 
whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prog-
nostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in 
infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, 
we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular 
approach and propose their potential clinical applications and contributions to public health.

1. Introduction

Basic research on diseases provides insight into the mechanisms of 
pathogenesis, enabling the development of novel strategies for disease 
control and more effective treatments. Regarding infectious diseases, 
pathogens employ a wide range of strategies to invade, survive and 
replicate within hosts. However, many host attempts to manage physi-
ological, metabolic, and immunological disruptions fail due to 
pathogen-induced dysregulation [1,2]. These mechanisms involve the 
activation of intracellular signaling pathways and transcription factors. 
Reprogramming cellular transcripts allows the expression and modula-
tion of immune-associated genes following disease onset. In this process, 
non-coding RNAs play key roles [3,4].

MicroRNAs (miRNAs) are small, non-protein encoding, endogenous 
single-stranded RNAs with approximately 22 nucleotides in length. 
Acting by repressing translation or by the degradation of target 
messenger RNAs (mRNAs), miRNAs are important regulators of gene 

expression in several biological processes, including cell proliferation, 
development, differentiation, apoptosis, and energy metabolism, as well 
as carcinogenesis [5–8]. These molecules correspond to approximately 
1–2% of the known genome of eukaryotes and are considered key reg-
ulators of at least 60 % of human genes [9,10].

Several studies highlight the promising use of miRNA profiles as 
endogenous biomarkers to distinguish between diseased and healthy 
individuals, identify different disease stages, and serve as a screening 
tool for high-risk individuals [11–20]. Clinical trials investigating 
miRNAs as therapeutic targets have produced interesting results, such as 
Miravirsen for hepatitis C [21], MRX34 for advanced solid tumors [22], 
and Cobomarsen [23] for cutaneous T-cell lymphoma and ringworm. 
The modulation of miRNAs can be exploited as a monotherapy or to 
enhance the efficacy of conventional treatments [24–27].

This review aims to first characterize miRNAs and describe their 
roles in regulating gene expression, followed by exploring their potential 
as biomarkers and therapeutic targets in infectious diseases. Finally, we 
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discuss different platforms for miRNA analysis and examine the ad-
vances and challenges in their clinical applications.

2. The biogenesis of microRNAs

MiRNAs function by decreasing translational efficiency and/or 
mRNA levels [28,29]. They originate as primary miRNA (pri-miRNA) 
[30], which are initially transcribed as double-stranded sequences with 
a hairpin structure. These pri-miRNAs are cleaved by the Drosh-
a/DGCR8 endonuclease complex, resulting in the formation of precursor 
miRNA (pre-miRNA). The pre-miRNAs are then transported to the 

cytoplasm via a binding protein named Exportin 5 [29,31]. In the 
cytoplasm, pre-miRNAs are further cleaved by the DICER endonuclease, 
forming mature double-stranded miRNAs [32,33]. Subsequently, these 
strands are separated, and the functional strand is incorporated into the 
RNA-induced silencing complex (RISC), which includes proteins such as 
including Argonaut 2 (AGO-2). When RISC binds to the 3′ untranslated 
region (3′ UTR) of a target mRNA, it triggers deadenylation by exo-
nucleases (Fig. 1). This mechanism ultimately results in the regulation of 
gene expression [30,34,35].

The binding of the seed region of miRNAs to complementary se-
quences in the 3′ UTR of target mRNAs inhibits gene expression at the 

Fig. 1. Biogenesis of microRNAs. The biogenesis of miRNAs begins with transcription of primary miRNA (pri-miRNA) by RNA Polymerase II, followed by cleavage 
of pri-miRNA by DROSHA endonuclease, forming a precursor miRNA (pre-miRNA). The pre-miRNA is transported to the cytoplasm by the exportin 5 complex. In the 
cytoplasm the pre-miRNA is cleaved by another endonuclease, DICER, forming a miRNA duplex. The strands are separated by argonaut complex, and the single 
strand is considered the mature miRNA, which together with the RNA-induced silencing complex (RISC), binds to the target mRNA leading to repression of 
translation or degradation of mRNA. Created with BioRender.com.

S. Nunes et al.                                                                                                                                                                                                                                   Non-coding RNA Research 10 (2025) 41–54 

42 

http://BioRender.com


post-transcriptional level [5]. Different approaches for analyzing miR-
NAs aim to predict the potential to inhibit target genes by considering 
factors such as base pair similarity, algorithmic predictions, and con-
servation of target sites. Additionally, these methods assess the associ-
ation of target genes with different biological processes and diseases 
[36]. Since many miRNAs are conserved across different species, they 
play crucial roles in development and the regulation of homeostasis. 
Indeed, without miRNAs, animals and plants would be unable to survive 
or reproduce [37,38]. The recognition of miRNAs as key 
post-transcriptional regulators has led to significant clinical 
applications.

3. Clinical application of miRNAs

3.1. Treatment and therapy

Several studies have suggested that miRNAs can be used to modulate 
biological processes for medical interventions in the treatment of 
different human conditions. However, nonspecific actions or biological 
compensation can occur in both miRNA-mediated therapies and con-
ventional treatments. To address or minimize these limitations, pre-
clinical validation can be conducted using in silico, in vitro and in vivo 
assays [26,39].

Specific sequences known as miRNA mimics and antagomirs have 
been designed to either induce or inhibit target gene expression by 
imitating the action of miRNAs. Preliminary in silico analysis aids in 
identifying these sequences and predicting their binding potential. 
Additionally, in vivo studies are crucial for optimizing existing delivery 
systems and developing new, more efficient ones. Ensuring efficient 
miRNA delivery is fundamental due to the potential degradation of their 
structure by nucleases and other proteins [40–43].

The Clinicaltrials.gov (https://clinicaltrials.gov/) website provides a 
comprehensive record of miRNAs currently under investigation in pre-
clinical and clinical trials (Table 1). One notable example is the use of 
miR-122 to treat HCV infection [21]. This research has resulted in the 
development of Miravirsen, a locked nucleic acid (LNA) that binds with 
high affinity to the complementary 5’ end of miR-122. MiR-122 is 
crucial for the stability of the HCV genome by forming a protective 
complex that shields it from nucleolytic degradation or from host im-
mune responses [44]. Miravirsen binds and inactivates miR-122, leading 
to a reduction in circulating HCV viral load [21,45]. Additionally, 

studies on miR-34a in tumors [22] have contributed to the development 
of MRX34, a potent treatment for different types of solid tumors 
(NCT02862145 and NCT01829971). MRX34 has also shown promise as 
a therapeutic candidate for Multiple Myeloma [22,46].

Artificial miRNAs (amiRNAs) have also emerged as an alternative to 
mimic miRNAs for achieving long-lasting gene silencing in specific tis-
sues. They consist of a target-specific siRNA insertion within a scaffold 
based on a natural pri-miRNA. Currently, a clinical trial testing an 
amiRNA to treat Huntington’s disease is in the recruitment phase 
(NCT04120493). This genetic disorder is fatal due to neurodegenerative 
complications caused by the mutant huntingtin protein (HTT), which 
leads to the gradual degeneration of neurons and progressive impair-
ment of motor coordination [47]. AMT-130 is an amiRNA designed to 
degrade both wild-type and mutant human huntingtin protein. The 
strategy involves administering AMT-130 via a viral vector that binds to 
cell receptors, is internalized by neurons, and is processed as a regular 
miRNA. In vitro and in vivo assays have demonstrated the efficacy of this 
approach, suggesting that it is specific, broad-spectrum and safe [48,49].

Collectively, these studies pave the way for the development of 
miRNA-based tools for disease treatment, demonstrating their effec-
tiveness, stability and safety.

3.2. The potential of miRNAs as biomarkers

In recent years, the search for new biomarkers has significantly 
intensified, driven by remarkable technological advancements that have 
enhanced the precision and reliability of their selection. Among the 
various biomarkers being explored, miRNAs have emerged as promising 
candidates due to their non-invasive nature, enabling their potential use 
in diagnosing and predicting the progression of numerous conditions. 
This stands in contrast to certain proteins, which can be challenging to 
access and require considerable time for analysis [50].

One notable advantage of miRNAs is their detectability in various 
human body fluids, further underscoring their potential as biomarkers. 
Studies have confirmed the abundance and specificity of miRNAs across 
different tissues and pathological conditions, establishing their suit-
ability for diagnostic purposes [51–53]. More recently, numerous 
studies have highlighted the significance of circulating miRNAs in 
several infectious diseases. Initially focused primarily on cancer [54], 
research has expanded to demonstrate the potential of miRNAs as 
diagnostic tools for a wide range of conditions, including infections 
[55–58], immunological and metabolic disorders [59], cardiovascular 
diseases [60], and more (Table 2).

Another significant advantage of miRNA profiles is their detect-
ability early in the course of a disease, even before treatment begins. 

Table 1 
miRNAs as targets for clinical trial at https://clinicaltrials.gov.

NCT Number miRNA Mode 
of 
action

Conditions Phases Study Type

NCT01200420 miR- 
122

Anti- 
miR

HCV Phase 
2

Interventional

NCT01646489 miR- 
122

Anti- 
miR

Hepatitis C| 
Chronic 
Hepatitis C

Phase 
1

Interventional

NCT01727934 miR- 
122

Anti- 
miR

Hepatitis C Phase 
3

Interventional

NCT02452814 miR- 
122

Anti- 
miR

HCV – Observational

NCT02508090 miR- 
122

Anti- 
miR

Chronic 
Hepatitis C

– Observational

NCT03713320 miR- 
155

Anti- 
miR

Mycosis 
Fungoides| 
Cutaneous T- 
Cell 
Lymphoma

Phase 
2

Interventional

NCT03837457 miR- 
155

Anti- 
miR

Mycosis 
Fungoides| 
Cutaneous T- 
Cell 
Lymphoma

Phase 
2

Interventional

NCT numbered trials are registered at ClinicalTrials.gov.

Table 2 
microRNAs as potential biomarkers of infectious diseases.

miRNA (s) Expression 
profile

Disease Ref

miR-19a-3p, miR-19b- 
3p, and miR-92a-3p

Up Covid-19 [65]

miR-150 and miR- 146b- 
5p

Down Human immunodeficiency 
virus (HIV)

[66]

miR-150 Down Human immunodeficiency 
virus (HIV)

[67]

miR-122, miR-21, and 
miR-34a

Up Hepatitis C [68]

miR-149, miR-638, and 
miR-491

Up Hepatitis C [69]

miR-122 Up Hepatitis C [70]
miR-361-5P, miR- 889, 

and miR-576-3p
Down Tuberculosis [57]

miR-144 Up Tuberculosis [57]
miR-378, miR-483-5p, 

miR-22 and miR-29c
Up Tuberculosis [71]

miR-101 and miR-320b Down Tuberculosis [71]
miR-16 and miR-451 Down Malaria [72]
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This early detection holds promise as a potential indicator of different 
disease outcomes [61]. Additionally, specific miRNA profiles have been 
identified for different stages of the same disease, offering the possibility 
of modulating these profiles and restoring homeostasis [62].

The ability of miRNAs to serve as diagnostic tools across various 
diseases underscores their clinical potential and highlights their role as 
valuable biomarkers [63,64]. By examining the altered profiles of 
circulating miRNAs, researchers and healthcare professionals can gain 
insights into disease onset, progression, and potential therapeutic in-
terventions. Continued research in this field holds promise for 
enhancing disease management and patient outcomes.

4. Expression of miRNAs in infectious diseases

4.1. Tuberculosis

Tuberculosis (TB), a global health concern caused by the airborne 
bacterium Mycobacterium tuberculosis (MTb), primarily infects the lungs. 
Astonishingly, approximately one-fourth of the world’s population is 
affected by MTb, resulting in a significant disease burden. Each year, 
around 10 million people fall ill with TB, and 1.3 million people die from 
this disease, making it the world’s leading cause of infectious death [73].

Upon infection, MTb has the remarkable ability to persist within 
macrophages for an extended period, evading host immune responses 
and establishing a foothold for disease progression. This prolonged 
intracellular survival of MTb within macrophages ultimately leads to the 
formation of granulomas - organized aggregates of immune cells aimed 
at containing the infection. Unfortunately, granuloma formation can 
also neutralize defense mechanisms, creating an environment conducive 
to the pathogen’s persistence [73].

Several studies have identified an association between miRNAs and 
tuberculosis, revealing specific miRNAs that play crucial roles in regu-
lating the immune response during infection. Notably, miR-21, miR- 
146a, and miR-155 have emerged as key regulators, showing increased 
expression in patients with active tuberculosis compared to healthy 
controls. These miRNAs can play diverse roles, such as controlling 
infection [74], favoring Mtb survival [75] or having a dual function of 
supporting the pathogen while promoting better cellular function, 
thereby enabling a more effective immune response [76–78].

One such miRNA, miR-21, is upregulated in peripheral blood 
mononuclear cells (PBMCs) and targets Bcl-2 and TLR4 in MTb-infected 
macrophages, leading to impaired anti-TB immunity [74,79]. Similarly, 
miR-146a promotes mycobacterial survival in macrophages by sup-
pressing nitric oxide production, which is essential for antimicrobial 
activity [75]. Conversely, miR-155 sustains macrophage survival, 
creating an environment conducive to bacterial replication [78]. Addi-
tionally, miR-155 subverts autophagy by targeting ATG3 in human 
dendritic cells, inhibiting a crucial mechanism for controlling tubercu-
losis. Intriguingly, silencing miR-155 during MTb infection restores 
ATG3 levels and rescues autophagy, presenting a novel approach to 
counter tuberculosis [80].

Several studies have highlighted the involvement of miRNAs in 
regulating critical processes such as phagosome maturation and auto-
phagy, which are pivotal in controlling the spread of Mycobacterium 
tuberculosis (MTb) infection. MiR-33 is one such miRNA induced during 
MTb infection, playing a role in reprogramming autophagy and host 
lipid metabolism [81]. Additionally, miR-27a and miR-144 have been 
identified as regulators that downregulate autophagosome formation 
and maturation in patients with active tuberculosis [82,83]. In contrast, 
miR-20b is downregulated during MTb infection, resulting in increased 
inflammation and pyroptosis of alveolar cells in mice via the 
NLRP3/caspase-1/IL-1β pathway [84]. The involvement of these miR-
NAs in phagosome maturation and autophagy provides detailed insight 
into the immunological mechanisms controlling MTb propagation. This 
understanding can lead to the development of new therapeutic strategies 
aimed at enhancing these defense pathways, offering novel approaches 

for clinical application.
Biomarker research in tuberculosis has identified several miRNAs 

with potential diagnostic value. In silico analysis has revealed that miR- 
223 and miR-448 are downregulated in the plasma of patients with 
active tuberculosis compared to healthy controls, indicating their ability 
to distinguish these patients during infection. These miRNAs participate 
in regulatory networks that interfere with interferon signaling path-
ways, suggesting their involvement in the immune response against 
tuberculosis [85].

In the context of tuberculous meningitis, the most severe form of the 
disease, a study identified four miRNAs — miR-126, miR-130a, miR- 
151a, and miR-199a — that can distinguish tuberculous meningitis 
from viral meningitis. These miRNAs were found to be downregulated in 
PBMCs from tuberculosis patients compared to those with viral menin-
gitis, highlighting their potential as diagnostic tools [86]. Importantly, 
these miRNAs play roles in protecting the blood-brain barrier, modu-
lating neutrophil-mediated inflammation, inhibiting macrophage acti-
vation, regulating Th1-mediated immunity, and producing 
pro-inflammatory cytokines [86].

These findings emphasize the significance of miRNAs in fine-tuning 
the host immune response to MTb infection (Fig. 2), particularly in 
regulating autophagy and controlling inflammation. Understanding the 
precise roles of these miRNAs offers important insights into the molec-
ular mechanisms underlying tuberculosis pathogenesis and identifies 
potential targets for therapeutic interventions. Continued research in 
this field holds promise for developing novel strategies to enhance host 
defense mechanisms and improve outcomes in tuberculosis 
management.

4.2. Leprosy

Leprosy is a chronic infectious disease caused by the bacterium 
Mycobacterium leprae. It is characterized by nerve damage, which leads 
to a wide range of clinical manifestations and can result in deformity and 
disability. M. leprae is an intracellular parasite that primarily resides in 
the peripheral nervous system and has a slow replication rate. This re-
sults in a long incubation period and a gradual progression of the dis-
ease. Leprosy remains a significant public health concern, with over 
200,000 new cases reported globally each year. In Brazil alone, 27,864 
cases have been documented, accounting for 93 % of all cases in the 
Americas and 13.7 % of the worldwide total [87–89].

Leprosy is classified into different clinical forms, including tuber-
culoid (TT) and lepromatous (LL), with an intermediate group that en-
compasses borderline tuberculoid (BT), borderline borderline (BB), and 
borderline lepromatous (BL) presentations. These classifications are 
based on the clinical and immunological characteristics observed in 
affected individuals [90].

The immune response in leprosy involves two distinct reactions: type 
1 (R1) and type 2 (R2), associated with different clinical forms and 
immune profiles. Type 1 reactions (R1) typically occur in TT, BT, and BB 
forms. These reactions feature a strong cellular immune response against 
M. leprae, marked by T cell activation and the production of pro- 
inflammatory cytokines, such as interferon-gamma (IFN-gamma) and 
tumor necrosis factor-alpha (TNF-alpha), which help control the infec-
tion and cause tissue inflammation [91,92]. Conversely, type 2 reactions 
(R2) are common in BL and LL forms, where the cellular immune 
response against M. leprae is reduced or absent, and humoral immunity 
is increased. R2 reactions involve a shift to a Th2-type immune response, 
with cytokines such as interleukin-4 (IL-4) and interleukin-10 (IL-10) 
that promote antibody production and suppress cellular immunity, 
potentially worsening the disease and causing tissue damage [91,92].

The expression of specific miRNAs in biopsies from active leprosy 
lesions has been investigated, highlighting their potential diagnostic and 
discriminatory roles. Studies have identified a panel of miRNAs, 
including miR-101, miR-196b, miR-27b, and miR-29c, which show 
differential expression in leprosy patients compared to healthy controls. 
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Using these miRNAs, researchers were able to distinguish between 
healthy individuals and leprosy patients with 80 % sensitivity and 91 % 
specificity, suggesting their potential as diagnostic biomarkers for 
leprosy [93]. Moreover, this set of miRNAs has shown promise in dis-
tinguishing between lepromatous and tuberculoid forms of leprosy, with 
a sensitivity of 83 % and a specificity of 80 %. This underscores the 
potential of miRNA profiling as a tool for identifying different clinical 
forms of the disease and their reactional states [93,94].

In a study, researchers identified several differentially expressed 
miRNAs between lesions of leprosy patients with TT and LL forms. 
Among these miRNAs, miR-21 stood out for its specific expression in 
lepromatous lesions. Notably, miR-21 targets the vitamin D-dependent 
antimicrobial pathway, inhibiting the expression of CAMP and DEFB4A, 
essential peptides in antimicrobial defense mechanisms. The upregula-
tion of miR-21 by M. leprae suggests it may be a mechanism employed by 
the bacterium to evade host antimicrobial responses [95].

The identification of specific miRNA panels capable of accurately 
diagnosing leprosy and distinguishing between its different forms holds 
significant clinical potential. These panels could enable early detection, 
prompt treatment initiation, and effective monitoring of treatment 
progression (Fig. 2). However, further research and validation studies 

are required to confirm the clinical applicability and reliability of these 
miRNA panels in larger patient cohorts and diverse populations.

4.3. Malaria

Malaria, caused by Plasmodium parasites, continues to be a major 
global health challenge, impacting approximately 1 billion people in 85 
countries. Each year, malaria leads to an estimated 249 million cases 
worldwide, with approximately 608,000 deaths [96,97].

Initially malaria triggers excessive production of inflammatory cy-
tokines like TNF-α and IFN-γ, which aim to control the parasite but can 
also lead to severe malaria. In advanced cases, the infection affects red 
blood cells, causing anemia and metabolic acidosis. Additionally, severe 
malaria can damage vital organs such as the brain, lungs, liver, and 
kidneys [98,99]. Efforts to control malaria include prevention through 
vector control measures, early diagnosis, and prompt treatment. 
Research into novel biomarkers and therapeutic targets, such as miR-
NAs, is essential for improving disease management and outcomes 
(Fig. 2). Identifying specific molecular markers associated with malaria 
progression can lead to more targeted interventions and better patient 
care.

Fig. 2. Regulation of miRNAs of great significance in infectious diseases in humans and mice. Summary of the expression profile of miRNAs for Tuberculosis, 
Malaria, Leprosy, Leishmaniasis, COVID-19 and Chagas in human (white) and mice (grey), as discussed in the main text. The miRNAs up-regulated are symbolized by 
red arrows and the down-regulated by green arrows. Created with BioRender.com.
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Interestingly, individuals with sickle cell anemia exhibit a certain 
level of resistance to the malaria parasite Plasmodium falciparum, 
although the exact mechanism has remained elusive. Recent studies 
have highlighted the potential role of a specific miRNA, miR-451, in this 
phenomenon. It has been observed that miR-451 is translocated to the 
malaria parasite during infection of sickle cell anemia erythrocytes. This 
translocation appears to confer resistance to P. falciparum within these 
cells. Inhibition of miR-451 in HbSS erythrocytes, the sickle cell variant, 
has been found to increase susceptibility to P. falciparum infection. This 
suggests that miR-451 plays a crucial role in the inherent resistance to 
malaria observed in individuals with sickle cell anemia [100]. Further 
research is needed to elucidate the precise molecular pathways and 
targets influenced by miR-451 in the context of malaria resistance in 
sickle cell anemia [100].

Recent studies have investigated the expression of specific miRNAs 
in circulating microvesicles of mice infected with Plasmodium berghei (P. 
berghei). These investigations revealed alterations in the expression of 
miR-146a and miR-193b, both implicated in inflammation and immune 
responses. During P. berghei infection, miR-146a is up-regulated, while 
miR-193b is down-regulated in circulating microvesicles. These changes 
in miRNA expression suggest their involvement in the development of 
neurological complications associated with severe malaria. MiR-146a is 
known to regulate inflammatory responses by targeting molecules such 
as Toll-like receptors (TLRs), which are key components of the innate 
immune system [101].

On the other hand, miR-193b is downregulated during infection and 
plays a role in immune regulation, particularly through the transforming 
growth factor beta 2 (TGFβ2) signaling pathway. TGFβ2 is involved in 
regulating various cellular processes, including immune responses and 
tissue homeostasis. Therefore, the regulation of miR-146a and miR-193b 
may significantly impact inflammatory processes, thereby contributing 
to the severity of malaria [101].

In patients infected with Plasmodium vivax, several miRNAs, 
including miR-223, miR-145, miR-155, have been found to be upregu-
lated in plasma compared to healthy controls [102]. MiR-223 is known 
to modulate immune responses by regulating cellular activation, 
particularly in the polarization of macrophages into M1 and M2 phe-
notypes. This upregulation in P. vivax-infected patients suggests its 
involvement in immune modulation during malaria [103]. MiR-145, on 
the other hand, is associated with attenuating inflammation. In the 
context of sepsis, miR-145 levels are significantly downregulated, but its 
upregulation has been shown to attenuate lipopolysaccharide (LPS)-in-
duced inflammation and sepsis-induced lung injury, partly through the 
TGFBR2/Smad3 signaling pathway. This suggests that miR-145 may 
play a protective role in mitigating inflammation-associated complica-
tions during malaria infection [104].

In patients with cerebral malaria, miR-155 levels are increased. MiR- 
155 is involved in infection control and neuroinflammation and nega-
tively regulates blood-brain barrier integrity and T cell function [105]. 
Experimental models of cerebral malaria have shown that pretreatment 
with an inhibitor of miR-155 improves survival and helps preserve 
blood-brain barrier integrity.

These findings suggest that miR-223, miR-145, and miR-155 may 
play crucial roles in the immune response, modulation of inflammation, 
and malaria pathogenesis. Further research is necessary to elucidate the 
specific mechanisms and precise roles of these miRNAs in malaria 
infection. Understanding their regulatory functions could lead to novel 
therapeutic strategies for managing malaria and its associated compli-
cations [106].

In a study by Gupta et al. [107], children with severe malaria 
exhibited higher plasma levels of miR-3158 and miR-4497 compared to 
those with uncomplicated malaria. Interestingly, both miRNAs showed a 
positive correlation with the expression of histidine-rich protein 2 
(HRP2), a protein produced by P. falciparum during the blood cycle and 
commonly used as an infection biomarker [108].

This study also identified plasmatic miR-3158 as a promising 

biomarker of cerebral malaria [107]. The expression levels of miR-3158 
were associated with the mortality rate in patients with cerebral malaria 
and were linked to brain hypoxia pathways, indicating its potential 
involvement in the disease’s pathogenesis. These findings suggest that 
miR-3158 and miR-4497 may serve as valuable biomarkers for assessing 
malaria severity and complications. The correlation between these 
miRNAs and HRP2 levels highlights their potential as indicators of 
active infection. Additionally, the association of miR-3158 expression 
with mortality and brain hypoxia pathways underscore its relevance as a 
prognostic marker and its possible role in the pathophysiology of cere-
bral malaria [107].

Together, miR-223, miR-145, miR-155, miR-3158, and miR-4497 
have significant potential as biomarkers and therapeutic targets in ma-
laria. Their involvement in immune response modulation, inflammation 
control, and disease pathogenesis offers promising avenues for novel 
interventions. Further research is essential to fully understand the 
mechanisms through which these miRNAs function and to develop tar-
geted therapies that can improve malaria management and patient 
outcomes.

4.4. Leishmaniasis

Leishmaniasis is a disease caused by Leishmania parasites, trans-
mitted by infected sandflies [109]. It is a significant public health issue 
in developing countries, with about 1 billion people at risk and 12 
million currently infected. Approximately 2 million new cases and 70, 
000 deaths occur annually [110]. The host’s immune response to the 
parasite can lead to chronic inflammation, as the parasite evades im-
mune defenses, resulting in persistent infection [111,112].

Research has shown that Leishmania parasites can modify the miRNA 
profile in human cells. By altering the host cell’s miRNA profile, Leish-
mania can potentially shape the immune response, creating a favorable 
environment for its survival and proliferation. This discovery enhances 
our understanding of the intricate interactions between host and para-
site in leishmaniasis [113,114].

In the context of Leishmania donovani infection in human macro-
phages, it has been observed that the expression of miR-30a increases 
over time. This up-regulation of miR-30a is associated with a reduction 
in parasite load, achieved through the regulation of autophagy [115]. 
These findings indicate that miR-30a could be a promising target for 
developing new strategies to control the parasite and combat leish-
maniasis. On the other hand, in vivo L. donovani infection decreases the 
expression of miR-122 in the liver, a miRNA critical for maintaining 
hepatic homeostasis. The reduction in miR-122 expression creates a 
favorable environment for parasite survival [116]. This observation 
highlights the parasite’s ability to manipulate miRNA expression, 
enabling its own survival and proliferation within the host during 
visceral leishmaniasis [117].

Through in silico analysis of co-cultured CD4+ T cells with 
L. donovani-infected macrophages from mice, dysregulated miRNAs 
were identified using next-generation sequencing. The study found 11 
upregulated and 9 downregulated miRNAs associated with cellular im-
mune responses and the Th1/2 dichotomy. The upregulated miRNAs 
targeted transcription factors associated with the Th1 phenotype, while 
the downregulated miRNAs directed cells towards Th2 populations, 
suggesting that there is a predominance of a Th2 response in donovani 
infection modulated by miRs [118].

Other studies on the treatment of two L. infantum strains with anti-
monial drugs have also explored miRNA expression. These studies 
observed an increase in miR-155 during L. infantum infection in mouse 
cells, which contributes to resistance against conventional treatments 
[119]. Additionally, mice deficient in miR-155 develop less severe dis-
eases caused by L. guyanensis, highlighting the potential clinical 
importance of miRNAs during cutaneous leishmaniasis [120].

Regarding CL, infection of mouse macrophages with L. amazonensis 
increases the expression of miR-294 and miR-721, which are involved in 
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L-arginine and NOS2 metabolism, thereby promoting parasite prolifer-
ation [121]. Additionally, L. amazonensis modulates Toll-like receptor 
(TLR) signaling by altering the expression of let-7e in murine macro-
phages, enabling the parasite to subvert the host immune response and 
enhance its survival and persistence [121]. In THP1 lineage macro-
phages infected with L. mexicana, five miRNAs have been identified that 
inhibit cell death and maintain parasite survival, contributing to the 
evasion of host immune responses and the establishment of chronic 
infection [122]. Surprisingly, supernatants enriched with neutrophil 
extracellular traps (NETs) contain miRNAs that can modulate TNF-α 
production in macrophages infected with L. amazonensis. These findings 
reveal a novel role for NETs in cellular communication, transferring 
miRNAs from neutrophils to neighboring cells [123].

Few studies have sought to define the miRNA profile during L. major 
infection in human macrophages. Among these, one study identified 64 
miRNAs with significant modulation upon infection. Notably, miR-210 
exhibited increased expression in a HIF-1α-dependent manner and was 
implicated in stress response and signal transduction [113]. Conversely, 
let-7a was found to be down-regulated at both 24- and 48-h 
post-infection in human macrophages exposed to L. major. This down-
regulation was associated with an increase in cellular apoptosis and 
necrosis leading infection control, once Leishmania is known to inhibit 
cell death to ensure its survival [124,125].

Similarly, L. major infection in a mouse peritoneal macrophage cell 
line resulted in decreased miR-340 expression, promoting parasite sur-
vival. This effect occurs because miR-340 knockdown led to increased 
expression of its targets, IL-10 and TGF-β1, immune regulatory cyto-
kines. Furthermore, transfection of infected macrophages with miR-340 
reduced macrophage infectivity, suggesting that miR-340 may be a 
promising new therapeutic agent for the treatment of cutaneous leish-
maniasis [126].

Our research team made a groundbreaking contribution by being the 
first to investigate the expression profile of miRNAs in lesions of patients 
with CL caused by L. braziliensis. We identified a crucial triad consisting 
of miR-193b, miR-671, and their target gene TREM-1, which were 
associated with the healing time. Intriguingly, these associations were 
observed exclusively in patients whose lesions healed during the initial 
treatment cycle, up to 59 days after diagnosis. This suggests that the axis 
miR-193b, miR-671, and TREM-1 holds potential as a prognostic indi-
cator for CL [127]. Another notable finding by Lago et al. demonstrated 
an induction of miR-361 in L. braziliensis lesions. This specific miRNA 
targets granzyme B and TNF genes, both associated with therapeutic 
failure and prolonged healing time. This discovery highlights the po-
tential influence of miR-361 in the pathogenesis of CL and its implica-
tions for treatment outcomes [128].

More recently, the interplay between cytokines and miRNAs in 
regulating the host’s immune response through the activation of 
inflammasome during CL was elucidated [129]. This study showed an 
increased expression of miR-7-5p, miR-133a, miR-146b, miR-223-3p, 
and miR-328-3p, as well as elevated cytokine levels of IL-1β, IL-6, and 
IL-17 in patients with CL compared to the healthy controls. These results 
suggest that these circulating molecules that can help in the diagnosis, 
prognosis and treatment of leishmaniasis [129].

Regarding parasite control, it was demonstrated that miR-548d is 
involved in parasite growth and inflammation in CL caused by 
L. braziliensis [130]. This discovery opens exciting avenues for precision 
medicine and the development of novel treatment strategies for CL.

Overall, these reports contribute to our understanding of the com-
plex immune dynamics and regulatory mechanisms in leishmaniasis 
(Fig. 2). However, to our knowledge, there are no studies testing the 
efficacy of miRNAs in experimental models of leishmaniasis. This proof 
of concept has now become necessary to demonstrate that miRNAs can 
be used in vivo as a therapeutic strategy against leishmaniasis.

4.5. Chagas disease

Chagas disease, a neglected tropical disease caused by the parasite 
Trypanosoma cruzi (T. cruzi), progresses through acute and chronic 
phases, often manifesting as cardiac, digestive, or a combination of both 
forms. Cardiomyopathy is the most common presentation. Globally, 
around 6 million people are infected, and the disease is endemic in 21 
Latin America countries, with approximately 30,000 new cases and 
12,000 deaths reported annually [131,132].

Although research on the miRNA expression profile during T. cruzi 
infection is still limited, existing studies offer significant insights into the 
complex molecular mechanisms involved in the disease. There is a 
notable upregulation of miR-145 and miR-146b in infected cardiomyo-
blasts, which correlates with a reduction in parasite burden. This 
observation suggests that these miRNAs could be crucial in the host’s 
defense mechanism, potentially by modulating immune responses or 
interfering with the parasite’s life cycle [133].

The upregulation of miR-145 and miR-146b might influence various 
cellular pathways, such as inflammation, apoptosis, and cellular prolif-
eration, which are pivotal in the context of infection. For example, miR- 
146b is known to be involved in the regulation of the immune response 
and inflammation, possibly helping to control the inflammatory pro-
cesses associated with T. cruzi infection. Similarly, miR-145 has been 
implicated in cell differentiation and apoptosis, processes that could 
limit the parasite’s replication and spread [133].

Furthermore, these findings underscore the potential therapeutic 
implications of targeting specific miRNAs. Modulating the levels of miR- 
145 and miR-146b could emerge as a novel strategy to enhance host 
immunity and reduce parasitic load, offering a complementary approach 
to existing treatments [133].

Recent findings emphasize the importance of placenta-specific 
miRNAs, miR-512 and miR-515, in Chagas disease. MiR-512 promotes 
trophoblast differentiation by inhibiting c-FLIP, while miR-515 inhibits 
this differentiation by suppressing hGCM-1. During T. cruzi infection, 
miR-512 levels increase, and miR-515 levels decrease, indicating a po-
tential placental defense mechanism against the parasite. These miRNAs 
are crucial in mediating the placenta’s susceptibility to T. cruzi, affecting 
trophoblast turnover and defense responses [134].

In a study on patients with Chronic Chagas Cardiomyopathy (CCM), 
the expression levels of six circulating miRNAs (miR-34a, miR-208a, 
miR-185, miR-223, let-7d, and miR-454) were evaluated. Among 
these, only miR-223 was associated with improved markers of 
myocardial function. This association was particularly notable in the left 
atrium area, in the end-systolic and end-diastolic volumes of the left 
ventricle, suggesting that miR-223 could serve as a circulating 
biomarker for heart failure in individuals with CCM [135]. Furthermore, 
an in-depth analysis of the target genes regulated by miR-223 revealed 
signaling pathways involving receptor tyrosine kinases, indicating a 
potential mechanism by which low levels of miR-223 contribute to the 
progression of CCM. These findings enhance our understanding of the 
molecular basis of CCM and identify potential therapeutic targets.

Despite recent advances, no miRNA candidate has yet been identified 
as a biomarker or therapeutic target for pre-clinical studies in Chagas 
disease. Further research is needed to uncover miRNAs with the po-
tential to diagnose or treat Chagas disease.

4.6. SARS-CoV-2

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, 
emerged as a public health threat in December 2019 and was declared 
a pandemic by the World Health Organization in March 2020. The 
disease exhibits a wide range of clinical manifestations, from asymp-
tomatic to severe cases requiring intensive care [136]. To date, there are 
776 million confirmed infections and over 7 million deaths [137].

SARS-CoV-2 can modulate the host’s miRNA profile, influencing the 
host’s response to infection and impacting disease progression. 
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Additionally, miRNAs play a crucial role in regulating viral replication 
[138–141]. Blocking miR-155 has been shown to mitigate the severe 
lung cytokine storm induced by SARS-CoV-2. Researchers delivered 
anti-miR-155 via intranasal injection to SARS-CoV-2-infected mice, 
successfully suppressing miR-155 expression. This intervention 
improved survival rates and clinical outcomes, reducing proin-
flammatory cytokines while increasing antiviral and anti-inflammatory 
cytokine responses in the lungs. These findings suggest that 
anti-miR-155 treatment is a promising therapeutic strategy for 
combating the detrimental effects of the lung cytokine storm associated 
with SARS-CoV-2 infection [142].

Similarly, COVID-19 patients exhibit a marked increase in the 
expression of miR-155 in peripheral blood mononuclear cells (PBMCs). 
This upregulation shows a negative correlation with the expression of 
SOCS-1, a critical negative regulator of cytokine signaling pathways. 
The inverse relationship between miR-155 and SOCS-1 suggests that 
miR-155 may play a significant role in the modulation of the immune 
response during COVID-19 infection. By downregulating SOCS-1, miR- 
155 potentially exacerbates the cytokine dysregulation often observed 
in COVID-19 patients, contributing to the heightened inflammatory 
response and immune imbalance. This miRNA’s involvement in the 
regulation of immune signaling pathways highlights its potential as a 
target for therapeutic interventions aimed at reducing the severe in-
flammatory responses associated with the disease [143].

Another study highlighted the involvement of specific circulating 
miRNAs in the inflammatory response seen in critically ill COVID-19 
patients. Specifically, miR-146a was downregulated, while miR-221 
and miR-155 were upregulated. The upregulated miRNAs showed a 
positive correlation with key components of inflammation, including 
increased neutrophil counts, suggesting their potential role in modu-
lating the inflammatory cascade associated with severe COVID-19. 
Moreover, pathway enrichment analysis of the target genes regulated 
by these miRNAs revealed a strong association with pathways related to 
inflammation, immune response, vascular diseases, and metabolic dis-
orders. This suggests that SARS-CoV-2 may interfere with these path-
ways by modulating the expression of these specific miRNAs. The 
dysregulation of these miRNAs could contribute to the aberrant immune 
response and dysregulated inflammatory processes observed in critically 
ill patients with COVID-19 [144].

In a groundbreaking study utilizing transcriptomic analysis, re-
searchers identified miR-2392 as a key regulator driving COVID-19 re-
sponses. This miRNA promotes inflammation, glycolysis, and hypoxia, 
processes known to contribute to COVID-19 pathogenesis. The study 
confirmed these findings in patients, showing elevated levels of miR- 
2392 in the blood and urine during COVID-19 compared to healthy 
controls. In vivo and in vitro experiments further demonstrated that 
increased miR-2392 levels induce biological responses similar to those 
seen in COVID-19 infection. These findings strongly suggest that miR- 
2392 plays a crucial role in the pathophysiology of COVID-19 [145]. 
Consequently, pharmacological inhibition of miR-2392 is proposed as a 
potential antiviral therapy for COVID-19. By targeting and suppressing 
miR-2392 activity, it may be possible to disrupt viral assembly, atten-
uate inflammatory responses, and mitigate metabolic dysregulation 
associated with the disease [145].

Another promising application of miRNAs is their use as markers for 
disease progression in COVID-19, with miR-200c emerging as a partic-
ularly promising indicator. Researchers measured its circulating levels 
in hospitalized patients at admission and seven days later. Remarkably, 
miR-200c exhibited a time-dependent increase that correlated with 
disease severity, regardless of whether patients were in ICU or non-ICU 
settings. These findings suggest that miR-200c has significant potential 
as a reliable predictive marker for assessing COVID-19 severity [146]. 
Additionally, the study observed a noteworthy trend in recovered pa-
tients: miR-200c expression decreased following recovery, suggesting 
that its levels align with disease status. This dynamic expression pattern 
underscores the potential utility of miR-200c as a marker for monitoring 

disease progression and recovery in COVID-19 patients [146].
In a recent breakthrough, researchers identified the significant role 

of miR-144 in the severity and mortality of COVID-19. This miRNA is 
downregulated in the plasma of hospitalized COVID-19 survivors 
compared to those who were discharged. This observation suggests that 
miR-144 expression could serve as an indicator of disease severity and 
prognosis. By measuring seric miR-144, clinicians may gain valuable 
insights into potential outcomes and overall prognosis for COVID-19 
patients. Furthermore, miR-144′s ability to differentiate between 
COVID-19 patients and healthy individuals, as well as among different 
disease severities, highlights its potential as a diagnostic and prognostic 
tool. MiRNAs, such as miR-144, offer non-invasive and easily accessible 
biomarkers that could aid in early detection and accurate [147].

Additional research is essential to advance the application of miR-
NAs in the management of COVID-19. To the best of our knowledge, no 
studies have yet tested miRNAs as a therapeutic or diagnostic tool for 
COVID-19 [147]. However, the potential of miRNAs to serve as bio-
markers and therapeutic targets holds promise for improving disease 
outcomes. Understanding and harnessing the specific roles of miRNAs 
could revolutionize the early detection, monitoring, and treatment of 
COVID-19, ultimately contributing to better patient care and 
management.

5. Platforms to analyze miRNAs

The evaluation of interactions between miRNAs and their target 
genes typically involves examining the pairing between the miRNA seed 
region with the 5′ and 3′ untranslated regions (UTRs) of the target 
mRNA. However, this binding is not always as effective, posing a chal-
lenge, as animal miRNAs often establish imperfect links with their target 
sites [9,148]. Different computational approaches have been widely 
used to indicate pairing strength (Fig. 3). The essential steps for studying 
miRNAs and comprehending the biological processes they influence 
include computational identification, prediction of miRNAs and their 
targets, analysis of canonical pathways, and experimental validation 
[149–151].

MiRBase (miRBase 21) is the leading online database for miRNA 
sequences and analysis (http://mirbase.org/). This tool can catalog, 
name, annotate, and characterize miRNA gene sequences, in addition to 
identify miRNAs in different species, either at their precursor and 
mature structure through deep sequencing data. Currently, miRBase is 
in version 22 and has described miRNAs in 271 organisms, with 48,860 
different mature miRNA sequences where 1917 are described in 
humans.

The tool provides extensive information on published miRNAs, their 
3p and 5p sequences, the chromosomes they are located, literature ref-
erences, experimentally predicted and validated miRNAs, along with 
literature-oriented annotation. Considering the number of annotations 
for each miRNA, they can be classified as high confidence. This desig-
nation considers at least 10 readings that map each of the two mature 
sequences (-5p and -3p) of a given miRNA. Alternatively, it should have 
at least 5 readings mapped for each arm and at least 100 mapped 
readings in total [149,152,153]. The discovery of high confidence 
miRNAs highlights the potential participation of this transcript in 
certain biological contexts, since it is supported by the notes deposited in 
the database.

Some miRNA tools are designed to predict the potential targets of the 
miRNAs, moreover, it is possible to select molecules and predict the 
miRNAs that they can be targeted. Among these databases are: Tar-
getScan [151], DIANA-microT [154], miRDB [155] and miRWalk2.0 
[156,157]. In addition, there are target tools with some experimental 
support, such as DIANA-TarBase [158] and miRTarBase [159]. In 
addition to others that can contribute to the prediction of canonical 
pathways involving miRNAs and its targets, such as mirPath [160], 
Kyoto Encyclopedia of Genes and Genomes (KEGG) [161] and Enrich-
miR [162].
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TargetScan is one of the most used miRNAs targeting platforms in 
literature. This database predicts biological targets based on the degree 
of conservation of the miRNAs (conserved, poorly conserved and non- 
conserved miRNAs), in addition to their interaction with the target via 
the seed region based on a statistical model that predicts the effects of 
binding at canonical sites. It allows not only the evaluation of this 
interaction directly in the program, but also other databases use this 
database to form more robust bases [151].

Diana-microT is a tool that uses an improved target prediction al-
gorithm, it was created to incorporate data from miRBase and Ensembl 
predicting in silico interactions for miRNA-gene for Homo sapiens, Mus 
musculus, Drosophila melanogaster and Caenorhabditis elegans. This tool 
allows users without robust knowledge in bioinformatics to perform 
advanced multi-step functional miRNA analyzes in an online web 
interface [154].

miRDB is a predictive database of miRNA targets and functional 
annotations. It annotates 3.5 million predicted targets regulated by more 
than 7000 miRNAs, plus prediction of cell-specific miRNA targets. This 
database has been constantly updated and has been predictive of miRNA 
functions by integrative analysis of target prediction and genetic 
ontology data [155,163].

miRWalk was created to generate possible interactions of miRNA 
with all regions of a gene, gathering 13 datasets of prediction of pre- 
existing miRNA targets, it contains not only the predicted targets but 
also the validated ones, in addition it is a tool with multiple possibilities 
of analyzes such as integration of miRNAs evaluating genes, epi-
genomics, pathways, ontologies, protein classes, phenotype, genotype, 
nucleotide polymorphisms, functional networks, tandem mass spectra 
and relevant articles from PubMed [156].

DIANA-TarBase and miRTarBase are reference databases dedicated 
to predicting interactions between miRNAs and their targets with robust 
experimental support. They integrate information on gene regulation of 
miRNAs specific to cell types, while hundreds of thousands of miRNA 
binding sites are reported after literature survey considering functional 
studies of miRNAs experimentally validated by reporter assay, Western 
blot, microarray, sequencing generation, RNA expression, protein 
expression, and biological function for various validation experiments 

related to the role of miRNA [158,159].
KEGG (https://www.kegg.jp) is a database that integrates various 

biological processes classified into systems, genomic, chemical and 
health characteristics. In it, it is possible to find miRNAs in biological 
networks. More than 99 % of the human pathways evaluated by KEGG 
contain genes directed by miRNAs or harbor them (host genes). It is also 
possible to highlight the importance of integrating miRNAs (experi-
mentally validated and predicted) in biological networks to reinforce 
new biologically important miRNA-mRNA interactions [161,164].

mirPath is a miRNA pathway analysis web server. This platform 
provides information on polymorphisms (SNPs) at miRNA target sites or 
to annotate all predicted and experimentally validated miRNA targets in 
a selected molecular pathway. is a highly specific tool for analyzing 
miRNA-targeted pathways through a web interface. Recently, a new 
target-specific enrichment analysis tool for miRNAs, enrichemiR, has 
emerged. This tool compares a set of genes of interest using the results of 
a differential expression analysis. In addition, it generates cumulative 
distribution (CD) plots of warp change comparing targets and non- 
targets. Similarly, these online tools allow for flexible and real-time 
analysis for users who do not have training in bioinformatics, since 
their use is intuitive, and their results are generated with interactive 
graphics that help in the interpretation of the results [160,162].

6. Obstacles and advances of miRNAs to clinical application

Despite the great advance in the understanding and application of 
miRNAs, few studies have progressed to clinical trials and none of them 
have progressed to phase III [165]. There are some obstacles regarding 
the delivery of miRNAs in therapies: (1) few therapeutic candidates; (2) 
large amount of endogenous miRNA targets; (3) low binding affinity 
with its target; (4) degradation of miRNA in delivery (5) control of un-
expected and non-specific consequences to the patient and activation of 
the immune system [165–167].

Part of these limitations can be minimized or overcome by the tar-
geted delivery system, through structural modifications in miRNAs and 
control of adverse effects through preclinical tests. All these measures 
will improve miRNA binding with the target and improve the efficiency 

Fig. 3. Tools for predicting targets-associated microRNAs for their targets and pathways.
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of selective delivery to the specific tissue more safely [167].
Currently, miRNA delivery systems have shown encouraging ad-

vances. Delivery methods based on lipid, polymeric, inorganic and 
exosome systems, in addition to viral vectors such as retroviral, lenti-
viral, adenovirus, adeno-associated and bacteriophage-based vectors, 
have helped to overcome challenges in this therapeutic approach [168,
169]. Therefore, it is believed that in the coming years assays associated 
with therapeutic miRNAs will tend to generate more robust and lasting 
results to the point of establishing themselves in clinical practice and 
effectively contributing to public health.

7. Conclusion

Considering the advances in the last 30 years of miRNAs, it is safe to 
predict that these small transcripts may soon assume new positions in 
human therapeutics. Its tissue stability, the possibility of non-invasive 
prognosis and diagnosis through the detection of biological liquids, 
the support of bioinformatics platforms, the wide variety of delivery 
systems and its endogenous identity are properties that reinforce its 
potential in clinical medicine. Current trials suggest that miRNAs may be 
the next-generation drugs through a personalized medicine and able to 
overcome biological challenges and traditional therapeutic limitations.

Despite recent advancements, no miRNA candidate has yet been 
established as a primary therapy or integrated with standard treatments. 
However, the potential of miRNAs in the diagnosis and treatment of 
diseases is increasingly recognized. Their diverse functions and the 
complex nature of the diseases they target present challenges and op-
portunities in their identification, which can serve as first-line treat-
ments. Additional research is necessary to leverage the potential of 
miRNAs, which hold promise for accurate diagnosis and innovative 
treatment approaches for infectious diseases.
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