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XDec-CHI reveals immunosuppressive interactions
in pancreatic ductal adenocarcinoma

Emily L. LaPlante,1 Dongliang Liu,2 Varduhi Petrosyan,1 Qizhi Yao,2,3,4,* and Aleksandar Milosavljevic1,4,5,6,*

SUMMARY

Most cancers harbor a diverse collection of cell types including a typically hetero-
geneous cancer cell fraction. To reconstruct cell-intrinsic and heterotypic interac-
tions driving tumor progression, we combine the XDec deconvolution method
with cell-type-specific gene expression correlation analysis into the XDec-CHI
method. XDec-CHI identifies intra- and inter-cellular pathways using correlation
and places them in the context of specific tumor subtypes, as defined by the state
of constituent cancer cells. We make the method web-accessible for analysis of
publicly accessible pancreatic ductal adenocarcinoma, breast, head and neck,
glioblastoma, and glioma tumors. We apply the method to TCGA and ICGC data-
sets to identify immune-suppressive interactions within PDAC tumors that are
relevant for immunotherapies targeting PD-L1. Subtype-specific interactions
derived from correlative analyses validated in co-culture experiments suggest
PDAC subtypes have distinct therapeutic weaknesses, with Basal-like and
MSLN-high Classical B tumors most likely to respond to therapies targeting
PD-L1.

INTRODUCTION

Cancer therapy resistance is driven by both cell-intrinsic and heterotypic interactions within the tumor

microenvironment (Jacobetz et al., 2013; Olive et al., 2009; Özdemir et al., 2014; Provenzano et al., 2012;

Rhim et al., 2014). The highest-resolution method to study the tumor microenvironment in vivo is single-

cell profiling. However, single-cell profiling is technically demanding, costly, and not readily applicable

to large cohorts required to decipher interactions within the microenvironment. It also cannot be applied

to standard FFPE samples collected in clinical practice. To address this issue, computational deconvolution

methods that estimate tumor composition from bulk methylation or RNA-seq profiles have been devel-

oped (Carter et al., 2012; Chan-Seng-Yue et al., 2020; Lurie et al., 2020; Newman et al., 2019; Onuchic

et al., 2016; Peng et al., 2019b). The most recent generation of such tools, including the highly popular

CIBSERSORTx, utilize single-cell RNA-seq (scRNA-seq) information collected on a small number of sam-

ples to create cell-type-specific reference profiles that are subsequently utilized for computational decon-

volution of bulk RNA-seq profiles (Newman et al., 2019; Peng et al., 2021; Wang et al., 2019).

Tumor complexity is further exacerbated by the possibility that relevant interactions may occur only within

specific tumor subtypes. Moreover, a single tumormay be heterogeneous, withmultiple subtypes of cancer

cells present (Chan-Seng-Yue et al., 2020; Topham et al., 2021). This heterogeneity of cancer cell states is

yet to be tackled by reference-basedmethods. On the other hand, reference-freemethods (Decamps et al.,

2020) do not take any advantage of information available from single-cell profiling. Here we propose a

‘‘reference optional’’ strategy that utilizes information from single-cell profiling, if available, to identify

informative genes while retaining the power to infer cancer subtype profiles by deconvolution. The strategy

is particularly suitable for situations where bulk profiling data is available for a much larger number of tu-

mors than single-cell data, implying that the diversity of tumor types is better represented in bulk profiles.

The reference-optional strategy, initially implemented by the EDec algorithm, has indeed shown the po-

tential to recover the diversity of cancer cell states that correspond to clinically relevant subtypes of breast

cancer (Onuchic et al., 2016), glioblastoma (Lucero et al., 2020) and pancreatic ductal adenocarcinoma

(Lurie et al., 2020).

XDec (Murillo et al., 2019, 2022) is a modification of EDec that deconvolutes RNA-seq profiles. XDecmay be

characterized as being ‘‘reference-optional’’ as it utilizes scRNA-seq data, when available, to identify genes
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that are variable across cell types and therefore informative for deconvolution. Unlike reference-based

methods, XDec does not fix cell-type-specific expression levels for the informative genes. Because it infers

the cell-type expression levels for all genes from bulk profiles, we reasoned that XDec would enable the

discovery of the diversity of cancer cell states including those not explicitly identified in the reference

data. Specifically, we reasoned that XDec may uncover cancer cell states corresponding to subtypes of

Pancreatic Ductal Adenocarcinoma (PDAC) that cannot be clearly discerned from the limited number of

tumors for which scRNA-seq data are available by harnessing the large number of publicly accessible

bulk tumor profiles that are representative of the full spectrum of cancer cell states across the diversity

of tumor subtypes.

Going beyond XDec itself, XDec-CHI correlates gene expression levels within and across distinct cell types

within the tumor microenvironment. It functions by performing non-negative least squares deconvolution

on each dataset in the manner of a sliding window to determine multiple cell-type-specific profiles for each

dataset. As input, it uses proportions generated by XDec-SM (Murillo et al., 2022) or, alternatively, other

deconvolution algorithms including CIBERSORTx or BLADE (Barbosa et al., 2021; Newman et al., 2019)

and bulk RNA-seq profiles. We reasoned that the correlation may point to gene-gene and cellular interac-

tions within the microenvironment that can then be confirmed in experimental models. To empower the

community, we create user-friendly web applications that perform this method across multiple pre-decon-

voluted cancer dataset (Pancreatic cancer, breast cancer, head and neck cancer, glioblastoma, and glioma)

and an R package for performing analysis on other datasets. To demonstrate the power of this method to

generate experimentally verifiable discoveries that are relevant for tumors in vivo, we apply it to study the

heterogeneity of immune pathway activation across subtypes of PDAC.

RESULTS

Detection of cell-intrinsic and heterotypic gene interactions from deconvoluted tumor

profiles using XDec-CHI

XDec determines cell-type-specific gene expression from bulk RNA-seq data (Murillo et al., 2019, 2022).

XDec-CHI extends XDec deconvolution by determining cell intrinsic (Figures 1A and 1B) and heterotypic

(Figures 1C and 1D) gene-gene interactions. In both of these settings, we envisioned the need for detecting

either a single correlation between two specified genes (Figures 1A and 1C) or detecting all significant cor-

relations between a gene of interest and any other gene (Figures 1B and 1D). XDec-CHI can also start from

cell proportions determined bymethods other than XDec. Themethod is therefore not tightly coupled with

XDec while benefiting from the potential of XDec to identify subtypes of cancer cells within deconvoluted

tumors.

XDec-CHI identifies gene-gene correlation by performing sliding-window deconvolution. Samples are first

ordered by bulk expression of a gene of interest, termed ‘‘anchor gene.’’ Next, groups of 40 samples are

deconvoluted, moving the window by 1 sample so that groups of samples corresponding to consecutive

windows overlap by 39 samples (Figure 1E top, STAR Methods). Every deconvolution of 40 samples results

in cell-type-specific profiles that estimate the expression of all genes across all cell types (Figure 1E bot-

tom). The method provides information about the changes in cell-type-specific gene expression levels

(Figure 1E bottom). Correlations between the gene expression levels can are then visualized (Figure 1F).

Simulation experiments confirm the power of XDec-CHI to detect cell-intrinsic and

heterotypic interactions

To evaluate the power of the method as a function of key parameters, we performed simulation experi-

ments. The simulations using varying coefficients of variation between gene pairs showed larger power

of the method to detect cell intrinsic than heterotypic correlations presumably because of the larger effect

of variability of cell type composition on the ability to accurately assess heterotypic interactions

(Figures S1A and S1B).

We next explored the power to detect cell-intrinsic correlations as a function of the strength of correlation

between the genes of interest and the proportion of the cell type within tumors. Toward this purpose, we

used the Pancreatic Ductal Adenocarcinoma (PDAC) tumor profiles from the ICGC collection. UsingMSLN

and CD274 genes as a model, we performed a series of simulation experiments. Starting with MSLN and

CD274 means and standard deviations observed in the ICGC collection, we simulated additional varying

amounts of noise to determine the probability of detecting their interaction within the top 1% or 2% of
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Figure 1. Sliding window deconvolution allows cell-type-specific correlation

(A) Correlation for Gene X and Gene Y in cell type A.

(B) Correlations of genes in cell type A that correlate with Gene X.

(C) Correlation for Gene X in cell type A and Gene Y in cell type B.

(D) Correlation of genes in cell type B that correlate with Gene X in cell type A.

(E) Schema of XDec sliding window deconvolution. (Top) Samples ordered by bulk Anchor Gene expression. (Bottom)

Each window provides estimated gene expression for all genes across all cell types and looking at a gene across each cell

type displays cell-type-specific expression changes.

(F) Exemplar correlation of cell intrinsic correlation based on 1E (bottom).
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correlations. As expected, stronger correlations could be detected within smaller cell type proportions

than weaker correlations (Figure S1C).

XDec is available as an R package and a web application with pre-computed deconvolutions

To empower the community, we implemented XDec-CHI as an R package (https://github.com/BRL-BCM/

XDec_CHI) that takes as an input bulk RNA-seq profiles and cell proportions for each sample (identified by

XDec or other deconvolution methods) and identifies cell intrinsic or heterotypic gene-gene interactions.

In addition to the package, we have released a web application to enable reproducibility of our findings

and empower the community to perform cell-type-specific analysis without running the R package. The

web application hosts provide correlation analyses based on pre-computed deconvolution of five cancer

types (PDAC, BRCA, HNSC, GBM, and Glioma) and are accessible at https://brl-bcm.shinyapps.io/XDec-

CHI_Homepage (Carrero et al., 2019; Lucero et al., 2020; Lurie et al., 2020; Murillo et al., 2022).

The R package and the web application contain two groups of functionalities – first, allowing cell-type-specific

correlation of two genes where users provide two genes and the two cell types of interest (Figures 1A, 1C, 1E,

and 1F). Second, the user can identify all genes in any specific cell type that correlate with a gene of interest in

the same or different cell type (Figures 1B and 1D). Results are displayed listing all correlated genes and the

direction of their correlation. This ‘‘all gene’’ comparison can be used to rank genes or perform further analysis

on significant sets that are positively or negatively correlated with the gene of interest.

Deconvolution by XDec identifies subtypes and cellular composition of PDAC tumors

Whereas XDec-CHI may utilize as an input cell type proportions inferred by methods other than XDec, we

asked if XDec may identify PDAC subtypes of cancer cells within deconvoluted tumors, thus enabling the

detection of subtype-specific correlations. Recent PDAC profiling studies have delineated multiple PDAC

subtypes (Chan-Seng-Yue et al., 2020; Moffitt et al., 2015; Rashid et al., 2020). As the PDAC single-cell

profiling study used as reference information did not categorize cancer cells into different subtypes, we

reasoned that reference-optional deconvolution methods such XDec may identify subtype-specific profiles

from the large number of publicly accessible bulk profiles even if single-cell profiles are not subtyped. To

this end, we performed XDec deconvolution, which uses scRNA-seq references only to identify informative

genes and outputs the number of constituent cell types, cell-type-specific expression profiles, and propor-

tions of the cell types within each bulk tumor sample.

Deconvolution of the TCGA PAAD cohort (n = 149) identified nine unique cell profiles. Because the decon-

volution did not identify the profiles, their identify was established by correlation to reference single-cell

profiles (Figure 2A). The highly specific correlation provided initial evidence for successful deconvolution.

To further establish the accuracy of the method, we compared the predicted proportions with those ob-

tained by other methods. The comparison showed a high correlation between our predicted cancer pro-

portions and other methods (ABSOLUTE R = 0.82; EDec R = 0.80) (Figures 2B, S2A, and S2C). In compar-

ison, CIBERSORTx, a reference-based deconvolution method, identified only one cancer profile

(ABSOLUTE, R = 0.70; EDec, R = 0.74) (Figures 2C, S2B, and S2D). Taken together, these results validate

XDec at the coarse level of resolution afforded by state-of-the-art methods while also demonstrating

the power of XDec to increase the resolution beyond current methods by deconvoluting multiple distinct

profiles of the cancer cell fraction, which we discuss next.

Of the nine profiles identified by correlation (Figure 2A), two were Cancer epithelial, one of which had

higher proportions in Classical patients and the other higher proportions in Basal-like patients. We there-

fore identified the two as corresponding to distinct PurIST subtypes (Rashid et al., 2020) (Figure 3A).

Another classification mechanism, Bailey subtyping, breaks samples into four subtypes (Bailey et al.,

2016). We reproduced results showing that Progenitor samples overlap with Classical and Squamous sam-

ples overlap with Basal-like (Figure 3B). This concordance with previous findings gave us confidence that

our cancer profiles indeed correspond to Classical and Basal-like subtypes.

We next asked if we could go beyond the established Classical/Basal dichotomy and deconvolute the

recently proposed subtypes of higher specificity (Chan-Seng-Yue et al., 2020). To do this, we applied the

same deconvolution method to the ICGC PACA-CA Cohort (n = 108) used by the Ontario Institute for Can-

cer Research (OICR) to create a subtyping system that splits Classical and Basal-like tumors into Classical
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A/B, Basal-like A/B, and Hybrid (Chan-Seng-Yue et al., 2020). We again identified nine cell types and were

able to identify cancer profiles enriched in Classical A and Classical B tumors (Figure 3C). However, we did

not see a split in Basal-like profiles. The profile enriched in Basal-like A patients is also present in Classical

patients at high proportions suggesting it is instead the Hybrid profile (Figure 3D). Both the Chan-Seng-

Yue subtyping and PurIST subtyping identify very few Basal-like samples present in this set (18 and 15,

respectively). It is therefore likely that we did not see the split in Basal-like patients because of the small

number of samples present. Other contributing factor mays be high proportions of the hybrid and immune

cell types and the low proportion of cancer cells among individual Basal-like samples. Our final cancerous

profile that could not be subtyped is found in low proportion across all samples suggesting a possible can-

cer stem cell population. To validate our results, we also considered all publicly available datasets that had

more than 42 samples in addition to the ones discussed above (PACA-AU and Dijk (Dijk et al., 2020)). Both

datasets deconvoluted Classical, Basal-like, and hybrid cancer profiles.

Taken together, these results show that the results of deconvolution of TCGA and ICGC samples show

concordance at the coarse level of resolution, and that the discerning power of deconvolution diminishes

at finer levels of resolution, as the number of samples per highly specific subtype decreases. The differential

performance across datasets may further be exacerbated by batch effects such as different requirements

for tumor purity as well as different methods – bulk vs LCM – employed by the studies. The differences

extend to the non-cancer fraction, with TCGA deconvoluting a single stromal profile, but ICGC deconvo-

luting into three stromal profiles. Moreover, likely because of the low proportions of immune cells found in

the ICGC cohort (average 8.3%), which is especially pronounced in Classical samples, it is not surprising

that we see a single immune profile unlike the three profiles observed in TCGA that averages 26% immune.

After estimating cell type proportions, deconvolution estimates cell -type-specific gene expression. This

provided an additional opportunity to validate the results by confirming the expression of cell-type-specific

marker genes and to determine expression of other genes (Figures S3 and S4).

Figure 2. XDec deconvolution correlates well with other methods

(A) Correlation of nine TCGA cell types with pseudo-bulk references over informative genes.

(B) Correlation of XDec estimated tumor and immune proportion with EDec.

(C) Correlation of CIBERSORTx estimated tumor and immune proportion with EDec.
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XDec-CHI analysis reveals distinct cell-intrinsic immunosuppressive interactions within PDAC

subtypes

We next focused on testing the potential of XDec-CHI to identify cell-intrinsic immunosuppressive interac-

tions in PDAC tumors. Given a recent study that showedMSLN and NF-kB as drivers of PD-L1 (Liu et al.), we

investigated their cell-type-specific expression of these genes. In vitro experiments (Liu et al.) suggested

the MSLN high subtype (Classical) to also be CD274 (PD-L1) high, but this did not turn not to be the

case in vivo (Figures 4A and 4B). We used XDec-CHI to deconvolute the studies using a sliding window

approach, which created a single cell-type-specific expression profile for each set of 40 samples. Given

multiple measures of expression for each cell type, we could then study gene relationships and potential

interactions using correlation analysis. XDec-CHI can be applied to any dataset where cell type proportions

and bulk expression are known but we moved forward with XDec as it was able to provide subtype-specific

profiles (Figure S5A).

We focused on the relation of cell-type-specific expression ofMSLN and RELA (p65, NF-kB) to immunosup-

pression via amplification of CD274 (PD-L1). In the Basal-like tumors,MSLN correlated with RELA (R = 0.78)

(Figure 4C) but not withCD274 (PD-L1) (Figure 4D) that was confirmed in two separate cohorts (Figures S6A,

S6B, S6G, and S6I). Whereas this was at odds with in vitro studies (Liu et al.), we noted that CD274 was

already upregulated in Basal-like tumors that were shown to be IFNg high (Espinet et al., 2020; Laise

et al., 2020) and express markers of CD274 high tumors (Asgarova et al., 2018) (Figures 4B and 4G). These

results suggest that most Basal-like tumors would still be responsive to therapies targeting PD-L1 and may

possibly be synergistic with therapies targeting the IFNg but not MSLN and RELA pathways.

In contrast to Basal tumors, Classical tumors did not show a correlation between MSLN and RELA. Like

Basal tumors, Classical tumors also lacked a correlation between MSLN and CD274 (Figures 4E and 4F).

We asked if the lack of correlations may be related to the recent results suggesting that Classical subtype

Figure 3. Estimated proportions can identify subtype of cancer cells

Per sample proportion of each TCGA cell type in patients separated by (A) PurIST subtype and (B) Bailey subtypes.

Estimated per sample proportion of each ICGC cell type separated by (C) OICR subtype, (D) PurIST subtype. Error bars

extend to 1.5 IQR and all others are depicted as outlier points.
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is heterogeneous, consisting of Classical A and Classical B subtypes. To address this question we turned to

the ICGC tumor profile collection where the Classical A and Classical B subtypes were initially discovered

(Chan-Seng-Yue et al., 2020). XDec-CHI analysis of the ICGC collection indeed revealed strong correlation

between Classical AMSLN and RELA but estimated CD274 expression remained near zero suggesting im-

mune suppression in Classical A tumors by a non-PD-L1 mechanism (Figures 4H and 4I). In contrast, we saw

strong positive correlation between Classical B MSLN, RELA, and CD274 (RELA R = 0.81, CD274 R = 0.74)

(Figures 4J and 4K). These results highlight potentially distinct immuno-suppressive pathways in Classical A

and Classical B subtypes.

We next asked if concordant results can also be obtained by analyzing the TCGA PDAC tumor collection.

Consistent with the TCGA collection consisting mostly of the Classical A subtype, the Classical TCGA de-

convolution profile appears to be an amalgamation of a majority of Classical A and a minority of Classical B

Figure 4. MSLN and CD274 have different relationships in Classical A and Classical B

(A) XDec estimated expression of MSLN, CD274, and RELA in ICGC. Error bars report SE.

(B) XDec estimated expression of MSLN, CD274, and RELA in TCGA. Error bars report SE.

(C) Correlation of Basal-like MSLN and RELA, (D) CD274.

(E) Correlation of Classical MSLN and RELA, (F) CD274.

(G) Estimated expression of genes associated with CD274 expression.

(H) Correlation of Classical A MSLN and RELA, (I) CD274.

(J) Correlation of Classical B MSLN and RELA, (K) CD274.
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with a lack ofMSLN, RELA, and CD274 correlation. Whereas we could not validate the MSLN-CD274 Clas-

sical B relationship using the TCGA collection owing to a lack of Classical B profile, we still identified a Clas-

sical B specific signal: genes that correlate strongly with CD274 in the Classical TCGA (R > 0.7, 1,258 genes)

profile show enrichment for genes upregulated in Classical B tumors compared with Classical A tumors (26/

275 gene overlap, p <0.05, OR = 1.6) suggesting the same relationship between Classical B and CD274

observed in the ICGC collection also exists in TCGA.

XDec-CHI explores the contribution of heterotypic interactions toward an immuno-

suppressive microenvironment

Because of the high proportion of stomal cells in PDAC tumors and the known stromal involvement in sup-

porting tumor growth, we performed gene expression correlations between cancer and stromal cells. We

found that stromal CD274 correlated with cancer cellMSLN in all subtypes (Classical An R = 0.26; Basal-like

R = 0.58; Classical B R = 0.85) (Figures 5A–5C and S6K). As this potentially immuno-suppressive interaction

has not been previously observed, we turned to cancer and stromal cell lines in a cancer-stromal co-culture

system to validate this interaction. Using Basal-like and Classical B cell lines, wemanipulated the amount of

MSLN present in cancer cell lines and observed changes in pancreatic stellate cells (PSCs) at the RNA and

protein level in the co-culture system. MSLN was knocked down using shRNA in MSLN high cell lines and

over-expressed inMSLN low cell lines. By increasingMSLN in cancer cells we significantly increased stromal

CD274/PD-L1 expression. The reverse direction could also be validated – by removing MSLN from cancer

cells we significantly decreased stromal CD274/PD-L1 expression (Figures 5D–5F). These results suggest

that cancer cell MSLN is necessary and sufficient for stromal PD-L1 expression on the RNA and protein level

in both Classical B and Basal-like cell lines. These results further suggest that MSLN may be a good candi-

date for combination immuno-therapy as it may control stromal PD-L1 expression in Classical B and Basal-

like tumors.

We next attempted to identify the gene that may mediate amplification of stromal CD274 expression upon

up-regulation of MSLN in cancer cells. Toward this end, we identified all genes that strongly correlated with

Figure 5. Cancer cell MSLN induces stromal CD274

Correlation between (A) Basal-like MSLN and stromal CD274, (B) Classical B MSLN and stroma 3 CD274, (C) Classical A

MSLN and stromal CD274.

(D) qRT-PCR for stromal CD274 co-cultured in cancer cells with and without MSLN (n = 3 replicates). Error bars are

standard deviation.

(E) Western blot for stromal PD-L1 in stromal cells alone, stromal cells cultured with cancer cells without and

overexpressing MSLN.

(F) Western blot for stromal PD-L1 in stromal cells alone, stromal cells cultured with cancer cells withMSLN overexpressed

knocked down. ANOVA, **p < 0.01, ***p < 0.0001.
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stromalCD274 and cancer cellMSLN and RELA expression (R > 0.6). We identified IFNGR1 as the only gene

present in both sets (TCGA R = 0.79; ICGC R = 0.81) (Figures 6A and 6B). IFNGR1, a receptor for IFNg that

is known to upregulate PD-L1, has been shown to correlate with PD-L1 expression after activation (Garcia-

Diaz et al., 2017). To validate this interaction we again employed the cell co-culture system. We found that

stromal IFNGR1 protein levels indeed correlate with cancer cell MSLN levels (Figure 6C).

The increase of IFNGR1 expression would not effectively mediate heterotypic interaction that results in stro-

mal CD274 expression without the presence of the IFNg ligand. We therefore hypothesized that IFNg may

be produced by cancer cells when co-cultured with PSC cells. We indeed found expression of IFNg in cancer

cell lines (Figure 6D). Moreover, IFNg was significantly upregulated uponMSLN over-expression and down-

regulated upon MSLN knockdown suggesting a role for MSLN in regulating IFNg expression (Figure 6E).

These results are consistent with the role of IFNGR1 in mediating the upregulation of stromal PD-L1

upon the activation of MSLN expression. Moreover, the upregulation of IFNg itself by MSLN suggests a syn-

ergistic effect on the upregulation of stromal PD-L1 (Figure 6E).

DISCUSSION

The high failure rate of clinical trials for therapies of cancer and other diseases calls for a critical examination

of current strategies for drug discovery. Approximately 10% of drugs succeed in attaining approval and a

large portion of these drugs fail owing to a lack of efficacy in humans (Kola and Landis, 2004; Mak et al.,

2014; Takebe et al., 2018). Whereas the stage at which drugs drop out varies widely, oncology therapies

have one of the lowest success rates at 5% with 70% of therapies failing in stage II clinical trials (Kola

and Landis, 2004). One possible source of failure of a candidate drugmay be traced to differences between

pre-clinical cell-line or mouse models and tumors in vivo. Specifically, cell lines propagated in vitro do not

always model the microenvironment that a cancer cell interacts with in vivo. Moreover, mouse models may

not be relevant for all subtypes of human tumors (Murillo et al., 2022). The XDec-CHI method enables a

bedside-to-bench strategy where relevant interactions are identified in vivo before being modeled exper-

imentally. This new strategy will help focus the experimental modeling efforts on the interactions that are

relevant for tumors in vivo.

Figure 6. Cancer cell MSLN induces stromal IFNGR1 and IFNG

Correlation between (A) Basal-like cancer cellMSLN and stromal IFNGR1 in TCGA and (B) Classical BMSLN and stroma 3

IFNGR1 in ICGC.

(C) Western blot for IFNGR1 in stromal cells when co-cultured with endogenously MSLN high-expressing cancer cells and

MSLN knocked down (AsPC1 and Capan2 cells), or endogenously MSLN low-expressing Panc28 cancer cells and

overexpresses MSLN.

(D) qRT-PCR for cancer cell IFNG expression in PDAC cancer cell lines withMSLN overexpressed or knocked down. Error

bars are standard deviation.

(E) qRT-PCR for cancer cell IFNG expression in PDAC cancer cell lines with MSLN overexpressed or knocked down when

co-cultured with PSC stromal cells. T-test, Error bars are standard deviation. **p < 0.01, ***p < 0.0001.
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The large heterogeneity of cancer cells and drug resistance mechanisms calls for strategies targeted to

specific subtypes of tumors. Toward this end, we demonstrate the power of XDec-CHI to identify PDAC

subtype-specific intracellular and heterotypic interactions that may lead to immunotherapy resistance.

Our results suggest that Basal-like andMSLN high Classical B patients will bemost likely to respond to ther-

apies targeting PD-L1 and PD-1. Because we find low to no cancer cell expression of PD-L1 in Classical A

tumors despite the correlation betweenMSLN and RELA, the question is what repressesCD274 in Classical

A tumors. Such mechanisms may even point to new approaches to silence PD-L1 in other cancer cells.

We also find that MSLN plays a role in stromal PD-L1 expression via IFNGR1 and IFNg. Given the large pro-

portion of stromal cells generally present in PDAC, stromal expression of PD-L1 may also affect T cell acti-

vation and response to therapeutics. However, we did not determine the mechanism by which cancer cell

MSLN affects stromal IFNGR1 expression. Future work should focus not only on identifying the mechanism

for cancer cell MSLN to affect stromal IFNGR1 but also identify markers for this interaction.

Taken together, our analysis highlights the potential importance of tailoring therapy to subtypes of PDAC.

Only the most recent clinical trials have included stratification by subtype. For example, the Pancreatic Cancer

Action Network announced in 2020 they will be applying PurIST to their Precision Promise clinical trial and the

PANCREAS trial will treat patients based on subtype. However, PurIST only separates Classical and Basal-like

patients. Given our discovery of differences in expression ofCD274 in Classical A andClassical B patients, it will

be important going forward to develop additional methods to subtype samples into sub-classes in a single

sample manner. Having this information would also be important for retrospective clinical trial analysis and

the correct identification of cell lines andpatient-derived xenograftmodels. SubtypingPDACmodels will allow

knowledge derived from model organisms to be better applied to primary tumors.

Our analyses critically depend on the power of XDec to deconvolute PDAC subtype-specific cancer pro-

files. This is clearly the key enabling factor in discovering subtype-specific gene–gene interactions and

resistance pathways. Not surprisingly, the power to deconvolute subtypes also depends on the dataset it-

self, as apparent from the summary table (Figure S6K) that indicates interactions discovered across data-

sets examined here. One illustrative example is the deconvolution of Classical A and B in the ICGC cohort

that enabled the discovery of Classical-B-specific interactions such asMSLN-CD274. That interaction could

not be identified in the TCGA dataset as XDec deconvoluted only one Classical profile. One plausible

explanation is that the interaction could not be detected because of the ‘‘dilution’’ of the subtype-specific

correlation pattern in the heterogeneous sample population.

Our results also highlight several limitations of the power of the method to identify all links along a causative

pathway. Information theory tells us that the correlation of the node at the end of a pathway with the node at

the beginning of the same pathway cannot exceed the smallest pairwise correlation along the causative path

connecting the two. Therefore, we should expect that any interactions that are between cancer cell MSLN and

stromal IFNGR1 would be stronger than or equal to correlations to MSLN. However, as our simulations show,

correlation strength is only one of several factors that define the power of our method to detect them. Other

important factors affecting the detection power include the proportion of the relevant cell type, number of

relevant samples in the dataset, and noise levels in the measurement of gene expression. Despite the power

being limited by these factors, our successful validation experiments indicate a low false discovery rate of the

method and thus high utility of our correlation analyses for generating hypotheses that validate experimentally.

To ensure the reproducibility of the PDAC findings and enable the wide application of the method by the

community without requiring software or data downloads, we created a web application backed by five

pre-deconvoluted cancer datasets (PDAC, BRCA, HNSC, GBM, and Glioma). To enable the application

of the method to other datasets, we released an R package. Taken together, our tools, methods, and their

validation in the context of PDAC will help decipher the contribution of intracellular and heterotypic inter-

actions within complex tissues to human health and disease.

Limitations of the study

As with all deconvolution algorithms, the major limitation is sample number – the authors recommend us-

ing windows of 40 samples, which means to return at least three measures of cell-type-specific expression

for correlation 42 samples should be included per dataset. In addition, single-cell references are used to

select genes for the optional Stage 0 of XDec deconvolution – single-cell sequencing can be expensive
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and finding datasets for less studied diseases may be difficult. However, the sliding window deconvolution

functions after the second stage of deconvolution, so as long as the criteria are met (cell type proportions

have been estimated and enough samples are present) the method will return cell-type-specific values.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Aleksandar Milosavljevic (amilosav@bcm.edu).

Material availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PD-L1 Cell Signaling Technology 13684S

IFNGR1 Abcam Ab134070

GAPDH Sigma G8795

Experimental models: Cell lines

Human pancreatic stellate cells Dr. Rosa F. Hwang PSC

Human Panc28 (female) Dr. Craig Logsdon RRID:CVCL_3917

Human ASPC1 (female) ATCC RRID:CVCL_0152

Human Capan2 (male) ATCC RRID:CVCL_0026

Human HPAFII (male) ATCC RRID:CVCL_0313

Human MIA PaCa2 (male) ATCC RRID:CVCL_0428

Human Panc 1 (male) ATCC RRID:CVCL_0428

Oligonucleotides

Primers: CD274 forward TGGCATTTGCTGAACGCATTT

reverse TGCAGCCAGGTCTAATTGTTTT

This paper N/A

Primers: IFNGR1 forward AGCAGGAAGTCGATTATGA

TCCC reverse CTGGCACTGAATCTCGTCACA

This paper N/A

Primers: IFNG forward TCGGTAACTGACTTGAATGTC

CA reverse TCGCTTCCCTGTTTTAGCTGC

This paper N/A

Primers: GAPDH forward TCGACAGTCAGCCGCATCT

reverse CCGTTGACTCCGACCTTCA

This paper N/A

Software and algorithms

R 4.0.0 R Core Team, 2020 https://www.R-project.org/

XDec-CHI Code This paper https://github.com/BRL-BCM/XDec_CHI

XDec-CHI Web instance This paper https://brl-bcm.shinyapps.io/XDec-CHI_Homepage

Other

TCGA: PAAD Raphael et al. (2017) https://xenabrowser.net/datapages/

ICGC: PACA-CA Chan-Seng-Yue et al. (2020) https://ega-archive.org/studies/EGAS00001002543

ICGC: PACA-AU ICGC DCC https://dcc.icgc.org/

Dijk EMBL-EBI https://www.ebi.ac.uk/ena/browser/view/PRJEB27026
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All original code has been deposited at https://github.com/BRL-BCM/XDec_CHI and is publicly available

as of the date of publication. A web resource which implements the method is available https://brl-bcm.

shinyapps.io/XDec-CHI_Homepage. DOIs are listed in the key resources table

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Human pancreatic stellate cells (PSC) were generously given by Dr. Rosa F. Hwang, Panc28cells were ob-

tained from Dr. Craig Logsdon from MD Anderson Cancer Center (Houston, TX). PDAC cell lines ASPC1,

Capan2, HPAFII, MIA PaCa2, and Panc1 (were purchased from ATCC and maintained by the Yao lab. All

cells were authenticated by short tandem repeat profiling and were propagated for less than 6months after

resuscitation. The MSLN overexpression stable cell lines of Panc1 and Panc28, as well as MSLN shRNA

knockdown cell lines of ASPC1 and Capan2 were established and maintained as previously described

((Li et al., 2008; Lurie et al., 2020). All cell lines were cultured under standard culture conditions (5%

CO2, at 37�C) in culture media (ASPC1 in RPMI-1640, Capan2 in McCOY’s 5A, PSC, HPAFII, MIA PaCa2,

Panc1, and Panc28 cells in DMEM media) supplemented with 10% FBS and 1% penicillin/streptomycin.

Co-culture of pancreatic cancer cells and PSCs

Human PSC cells (1–103105 cells/well) were seeded in 24 well or 6 well culture plates (BD Bioscience) in

DMEM medium supplemented with 10% FBS, 1% penicillin/streptomycin. 1:1 proportion of PDAC cells

(1–103105 cells/culture insert) were seeded into the culture inserts of 3 mm pore size (BD Bioscience) in

appropriate media supplemented with 10% FBS, 1% penicillin/streptomycin. The culture inserts seeded

with PDACs were placed into the 24/6-well plates containing PSC cells, and incubation was conducted

for 2 days under standard culture conditions (5% CO2, at 37�C).

METHOD DETAILS

XDec methodology

XDec is a reference-optional method which functions in three stages: Stage 0 (optional) identifies informa-

tive genes that are differentially expressed between cell types from scRNA-seq data. Any set of cell type

specific genes may be provided if users do not want to perform unsupervised identification via reference

data. Stage 1 uses iterative matrix factorization to identify the constituent cell types and their proportions in

each tumor sample, and Stage 2 uses non-negative least squares optimization to estimate the transcrip-

tomic profile for each cell type. XDec was performed as previously described (Murillo et al., 2019, 2022).

y = 1 � e� ax ; a =
1

maxfxg (Equation 1)

where {x} denotes the set of expression levels x for a specific gene across all samples.

PDAC single cell RNA-seq profiles were downloaded from GSA: CRA001160 (Peng et al., 2019a). Metadata

from the study gave cell type identity for each cell. Profiles with low coverage (<300 genes/cell) and cells

with coverage in the bottom quartile were removed. For each cell type, cells were ranked by total coverage

and then pseudo-bulk profiles were created by summing every 5 profiles. Pseudo-bulk depth was then

normalized to match the sample with the highest coverage and transformed into a 0-1 range using Equa-

tion 1. 100 pseudo-bulks were created for all cell types resulting in 11 cell type references. Endothelial 1

pseudo-bulks were then removed due to the total Endothelial cell count being over-represented.

Informative genes were chosen by performing the one.vs.rest command in EDec R package. 20 up- and

downregulated genes were selected for each cell type at P < 0.00001. Acinar and normal epithelial cells

proved difficult to separate so an addition 20 up- and down-regulated genes were selected at P

< 0.00001 by using the each.pair command. Genes chosen for multiple cell types were removed leaving

283 genes (Table S3). 269/283 genes were present in ICGC. Cell stability was estimated using the estima-

te_stablility function as previously described (Onuchic et al., 2016). 9 cell types were selected for both

TCGA and PACA-CA datasets. In the case of the PACA-AU dataset, the most stable cell number of 11 pro-

ducedmultiple profiles with no correlation to reference samples so the secondmost stable cell number of 9
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was selected. The Dijk cohort (Dijk et al., 2020) had the most stable cell number of 11 but produced cancer

cell profiles that could be mapped to classification using 12 cell types so 12 was selected.

Sliding window deconvolution and cell types specific correlations

Stage 1 was performed on the entire cohort to estimate cell type proportions. Samples were then ordered

by bulk expression of a gene of interest (Figure 2B). Stage 2 was then performed on the groups of 40 sam-

ples with the lowest expression of the anchor gene which returned estimated gene expression for all genes

across all cell types. The window was then moved by one sample (sample 2-41) and Stage 2 was performed,

again returning estimated gene expression. This deconvolute and move strategy was repeated until every

sample had been deconvoluted. Each cell type specific profile was then concatenated creating cell type

specific gene by deconvolution matrixes. Pearson correlation compared estimated expression for genes

across all windows using the appropriate cell types.

Simulations

Simulating varying correlation efficient and coefficients of variation

500 simulated mixtures of 3 cell types were generated by (1) generating proportions of each cell type pre-

sent in themixture and (2) multiplying a cell type specific expression by the proportion of that cell present in

each of the 500 samples. The proportions associated with each of the 3 cell type were generated for each

mixture from one of three Dirichlet distributions as previously described (Onuchic et al., 2016). The first Di-

richlet distribution had parameters a = [2,2,6], generating proportions with averages 20% for the first cell

type, 20% for the second cell type, and 60% for the third cell type. The second and third Dirichlet distribu-

tions were a = [4,3,3] and a = [3,3,4] respectively.

500 profiles for Gene X and Gene Y were generated for each cell type. For cell intrinsic interactions, the

expression for Gene X and Gene Y were placed into the same cell type and for heterotypic interactions

Gene X was placed in cell type 1 and Gene Y was placed in cell type 2. To model different coefficients

of variation, Gene X and Gene Y were set equal and the same random gaussian noise was added to

each for a correlation of 1. Gaussian noise with a mean of 200, 400, 600, 800, 1000, 1200, 1400, 1600,

1800, and 2000 to model different coefficient of variations. To model different correlation coefficients,

additional gaussian noise was then added to Gene Y. The amount of noise added varied based on the co-

efficient of variation in order to approximate correlation coefficients 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (no

noise was added for those with perfect correlation). The cell type specific profiles were then multiplied by

the proportions generated from the Dirichlet distribution and summed together to create 500 simulated

bulk samples.

These 500 simulated bulk samples were then ordered by Gene X and using the proportions and simulated

bulk samples sliding window deconvolution was performed. The spearman correlation between cell type

specific Gene X and Gene Y were then calculated. This process was completed 1,000 times for both the

cell intrinsic and heterotypic simulations. True positive interactions were considered those correlations

which landed within 0.1 in either direction of the true correlation and false negatives were those than

landed outside. This allowed for the calculation of sensitivity.

Simulated pair ranks against experimental results

XDec was applied to the ICGC cohort and samples were ordered by MSLN for sliding window deconvolu-

tion. All gene correlations to MSLN in the Classical B cell type were determined and the correlation

strength at n = 1, top 1%, and top 2% were determined.

500 simulated mixtures of 3 cell types were generated by (1) generating proportions of each cell type pre-

sent in themixture and (2) multiplying a cell type specific expression by the proportion of that cell present in

each of the 500 samples. Four different sets of proportions were generated – Cell 1 proportion centered

around 10%, 25%, 50%, and 90% and noise was added using a Dirichlet distribution as previously described

(Onuchic et al., 2016). Gene X was then placed in Cell 1 with a mean of 210 and standard deviation of 300

(matching the bulk mean and standard deviation ofMSLN in the ICGC dataset) andGene Ywas also placed

in Cell 1 with a mean of 8 and standard deviation of 13 (matching the bulk mean and standard deviation of

CD274 in the ICGC dataset). Gaussian noise was added toGene Y from 1 to 55 standard deviations to get a

wide range of true cell intrinsic correlations. The cell type specific profiles were then multiplied by the
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proportions generated from the Dirichlet distribution and summed together to create 500 simulated bulk

samples for each of the average proportions.

Simulated bulks were ordered byGene X and then sliding window deconvolution was performed. The esti-

mated correlation for Gene X and Gene Y were recorded. For each rank, we reported the smallest true cell

intrinsic correlation which resulted in an estimated correlation that fell into that rank based on the exper-

imental data.

Processing RNA-seq datasets

TCGA PAAD level 3 RNA-seq dataset was downloaded from UCSC Xena (Goldman et al., 2019) for samples

not flagged during review (Raphael et al., 2017). ICGC PACA-CA fastq files were downloaded from

EGAD00001004548 and were aligned to hg38 using STAR v2.5 and expression was calculated using

RSEM v1.3. RSEM counts were used for further analysis. Primary PDAC samples that were present in the

ICGC database with survival and OICR subtyping information (Chan-Seng-Yue et al., 2020) were used

(Table S2). ICGC PACA-AU PDAC sample expression data (exp_seq.PACA-AU.tsv.gz) was downloaded

from the ICGC web portal (dcc.icgc.org/releases). The normalized_read_count column was used.

Correlations to outside methods

CIBERSORTx was performed on TCGA samples using 100 single cell profiles for all cell types. Estimated

proportions from CIBERSORTx and XDec were correlated to other methods (Carter et al., 2012; Li et al.,

2017; Lurie et al., 2020) using spearman correlation. ABSOLUTE PAAD tumor purity was precomputed

and downloaded from Aran, Sirota, and Butte 2015(Aran et al., 2015). TIMER estimated the immune score

for 6 immune types and all scores were summed for comparison.

Generation of summary table

Sliding window deconvolution was performed on all datasets and correlations between gene pairs were

performed. Any correlation above 0.55 was considered present and designated with a check mark.

Classical B gene enrichment in genes correlated to CD274

Using estimated means and standard deviations from Stage 2 we identified differentially expressed genes

with a t-test (Onuchic et al., 2016). For the ICGCClassical B cell type we identified genes with FDR<0.05 and

fold change < 1. 275/308 genes identified were present in TCGA. We correlated all genes in the Classical

cell type in TCGA to Classical CD274 and identified 1278 genes which correlated at R > 0.7. Fisher’s exact

test was used to test for enrichment.

Classical A and classical B subtype identification

Expression from individual samples (patient or cell line) were combined with ICGC data and transformed

using Equation 1. XDec identified the Classical A and B cell profiles and subtype was assigned based on

which cell type was in predominant proportion. Method available via https://brl-bcm.shinyapps.io/

XDec_PDAC_subtyping (Using the Single Sample option).

qRT-PCR

Total RNA for PSCs co-cultured with PDACs was extracted by TRIzol reagent (Invitrogen, Thermo Fisher

Science, USA) according to the product’s manual. Briefly, 1 ml TRIzol reagent was added into samples

for 5-min incubation at room temperature, followed by addition of 200 ml chloroform and then the samples

were separated by centrifugation. The supernatant was incubated with isopropanol and washed with 75%

ethanol. Finally, the total RNA pellet was dissolved with DNase/RNase-free water and used as template for

cDNA synthesis. The cDNA synthesis was performed with reverse transcription-PCR kit derived from Bio-

Rad, and real-time PCR was performed by standard procedures as previously described (Li et al., 2008;

Lurie et al., 2020). CD274 and IFNGR1 measurements were normalized to GAPDH in the PSC cells and rela-

tive to controls in the overexpression and knockdown comparisons. Primer sequences (5–30):Human CD274

forward TGGCATTTGCTGAACGCATTT reverse TGCAGCCAGGTCTAATTGTTTT, Human IFNGR1 for-

ward AGCAGGAAGTCGATTATGATCCC reverse CTGGCACTGAATCTCGTCACA, Human IFNG forward

TCGGTAACTGACTTGAATGTCCA reverse TCGCTTCCCTGTTTTAGCTGC, Human GAPDH forward

TCGACAGTCAGCCGCATCT reverse CCGTTGACTCCGACCTTCA.
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Immunoblotting assay

Cell lysates were prepared using RIPA lysis buffer (89900) with protease inhibitor cocktail (78410) and phos-

phatase inhibitor cocktail (78420) and quantitated for protein abundance using the Pierce BCA Protein

Assay Kit (23225) from Thermo Fisher Scientific. PVDF membranes were blocked in 5% nonfat dry milk/

TBST solution and incubated at 1:1000 dilution with: PD-L1 mAb, IFNGR1 mAb, and GAPDH mAb. Immu-

nodetection was performed using SuperSignal West Pico (34577) and Femto (34095) Chemiluminescent

Substrate according to the manufacturer’s instructions (Thermo Fisher Scientifc, USA).

QUANTIFICATION AND STATISTICAL ANALYSIS

P values were adjusted for multiple comparisons using the Benjamini & Hochberg method. The qRT-PCR

results were expressed as meanG SD. Experiments were performed at least three times and similar results

were obtained. Differences between the groups were evaluated by ANOVA, followed by the Tukey–Kramer

test for post hoc analysis. A P < 0.05 was considered statistically significant. R 4.0.0 was used for deconvo-

lution and figure generation.
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