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Abstract 

Background: Metastasis accounts for ninety percent of breast cancer (BrCa) mortality. Cortactin, Ras homologous 
gene family member A (RhoA), and Rho‑associated kinase (ROCK) raise cellular motility in favor of metastasis. Claudins 
(CLDN) belong to tight junction integrity and are dysregulated in BrCa. Thus far, epidemiologic evidence regarding 
the association of different pro‑metastatic genes with pathological phenotypes of BrCa is largely inconsistent. This 
study aimed to determine the possible transcriptional models of pro‑metastatic genes incorporate in holding the 
integrity of epithelial cell–cell junctions (CTTN, RhoA, ROCK, CLDN-1, CLDN-2, and CLDN-4), for the first time, in associa‑
tion with clinicopathological features of primary BrCa.

Methods: In a consecutive case‑series design, 206 newly diagnosed non‑metastatic eligible BrCa patients with his‑
topathological confirmation (30–65 years) were recruited in Tabriz, Iran (2015–2017). Real‑time RT‑PCR was used. Then 
fold changes in the expression of target genes were measured.

Results: ROCK amplification was associated with the involvement of axillary lymph node metastasis (ALNM; 
 ORadj. = 3.05, 95%CI 1.01–9.18). Consistently, inter‑correlations of CTTN‑ROCK (β = 0.226, P < 0.05) and RhoA‑
ROCK (β = 0.311, P < 0.01) were determined among patients diagnosed with  ALNM+ BrCa. In addition, the overexpres‑
sion of CLDN‑4 was frequently observed in tumors identified by  ALNM+ or grade III (P < 0.05). The overexpression 
of CTTN, CLDN‑1, and CLDN‑4 genes was correlated positively with the extent of tumor size. CTTN overexpression was 
associated with the increased chance of luminal‑A positivity vs. non‑luminal‑A  (ORadj. = 1.96, 95%CI 1.02–3.77). 
ROCK was also expressed in luminal‑B BrCa tumors (P < 0.05). The estrogen receptor‑dependent transcriptions were 
extended to the inter‑correlations of RhoA‑ROCK (β = 0.280, P < 0.01), ROCK‑CLDN‑2 (β = 0.267, P < 0.05), and CLDN‑1‑
CLDN‑4 (β = 0.451, P < 0.001).

Conclusions: For the first time, our findings suggested that the inter‑correlations of CTTN‑ROCK and RhoA‑ROCK were 
significant transcriptional profiles determined in association with ALNM involvement; therefore the overexpression of 
ROCK may serve as a potential molecular marker for lymphatic metastasis. The provided binary transcriptional profiles 
need more approvals in different clinical features of BrCa metastasis.
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Background
Breast cancer (BrCa) is globally the most common malig-
nancy in women. BrCa is a heterogeneous disease with 
incident rate of 46.3 per 100,000 and mortality rate of 
13.0 per 100,000 in 2018 worldwide, according to GLO-
BOCAN [1]. BrCa incidence in developing countries is 
increased due to cultural transition toward a sedentary 
lifestyle, Western diet, and increased rate of smoking, 
urbanization, and air pollutions [2–4]. It is accepted that 
estrogen leads to BrCa progression. Estrogen signaling 
is a therapeutic target for BrCa [5]; identifying pro-met-
astatic gene expression in different molecular subtypes 
(hormone receptors)  with unique prognostic features 
may help elucidating  new more personalized  therapies. 
Furthermore, some important studies have documented 
evidence about preclinical diagnostic markers from pre-
disposing mutations to raise the risk of BrCa [6], and the 
effect of some interventions on molecular targets have 
been assessed in solid tumors [7–10]. These could sup-
port lacking a consensus to support pro-metastatic genes 
in association with advanced features. Metastasis is con-
sidered for 90% of BrCa mortality which involves a com-
plex multi-stage process, initially breaking away of tumor 
cells from primary tumor (dissociation step), degrading 
the proteins incorporate in the integrity of extracellu-
lar matrix (invasion step), transmigrate through vascu-
lar and/or lymph vessel (intravasation and extravasation 
steps), and cell-to-cell and cell–matrix adhesions with 
certain affinity to make organ-specific target metastasis 
(organotropism) [11].

Cortactin regulates actin cytoskeleton arrangement–a 
prerequisite for metastasis progressions—by binding to 
actin-related protein complex and facilitating releasing 
activated Wiskott Aldrich syndrome proteins [12]. Cort-
actin is an important regulator of cancer cell motility and 
mesenchymal movement [13]. Invadopodia, forming cel-
lular actin-based protrusions, is mediated by cortactin 
activation and accompanies the invasion of cancer cells to 
the mesenchymal layer [14]. The overexpression of CTTN 
was associated with lymph node metastasis [15–19], 
advanced histologic grades [16, 20, 21], and larger tumor 
size [15, 16] in various cancers suggesting that cortactin 
might have prognostic impacts on different cancers but 
less paid attention to BrCa. One study reported a signifi-
cant correlation between the protein expression of cort-
actin and lymphatic metastasis of breast tumors   [22]. 
Therefore, the CTTN expression in association with his-
tologic grade and tumor size of BrCa is largely missing. 
Of the few earlier reports on cortactin expression in BrCa 
regarding molecular subtypes [23, 24], a meta-cohort of 

primary BrCa reported CTTN overexpression in hor-
mone receptor-positive samples [24].

There is a bifunctional activity between cortactin and 
Ras homologous gene family member A/Rho-associated 
kinase (RhoA/ROCK) complex in integration for enhanc-
ing actin stress fiber formation [12, 25]. RhoA belongs 
to the  small GTPase family [25]. It triggers cell motility 
and amoeboid movement via the extensive formation of 
actin stress fiber and actomyosin contractility regula-
tion [25]. ROCK activity—a  major downstream effector 
of RhoA—is to stabilize actin filament and phosphoryl-
ate myosin light chain to eventually raise reforming rates 
of actomyosin contractility [26]. RhoA or ROCK over-
expression predicts shorter survival rates of BrCa [27, 
28]. RhoA overexpression was observed in advanced 
histologic grade [29], larger tumor size [27], and stages 
II-III of BrCa [30]. ROCK overexpression was correlated 
with  nodal involvement and advanced histologic grade 
of BrCa [28, 31]. Significant results were not reported 
regarding the association of RhoA and ROCK expres-
sion with lymphatic metastasis and tumor size of BrCa, 
respectively. Studies could rarely provide evidence to 
show the association of molecular subtype of BrCa and 
the expression of RhoA or ROCK.

Claudins (CLDNs)—membrane transport proteins—
have critical functions in forming and maintaining cell-
to-cell adhesion complexes, so-called tight junctions 
[32]. CLDNs generally connect to actin cytoskeleton, and 
their functions may be regulated by Rho/ROCK pathway 
[33]. CLDNs dysregulation is documented in epithelial-
derived cancers [32]. Different isoforms of CLDNs pre-
sent in a tissue-specific manner. Their various functions 
highly depend on cell’s microenvironment [34].  The 
protein expression of CLDN-1 was reported to be asso-
ciated with poor prognosis [35], larger tumor size [36], 
and advanced histologic grade of BrCa [36, 37]. However, 
positive or negative protein  expression of CLDN-1 was 
reported to be correlated to the lymph node metastasis 
of BrCa [36, 38]. While the positive protein  expression 
of CLDN-2 was associated with poor prognosis [38, 39], 
its loss of expression was related to nodal involvement 
of BrCa [34]. No study reported a significant correlation 
between CLDN-2 expression and histologic grade and 
tumor size of BrCa patients. Several reports indicated 
a positive  protein expression of CLDN-4 connected to 
poor prognosis [37, 40], advanced grade [37, 40–43], and 
lymphatic metastasis [19, 41] of BrCa. However, positive 
or negative protein expression of CLDN-4 was reported 
to be correlated to a  larger tumor size of BrCa [37, 43]. 
CLDNs expression was dependent on the molecular 
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subtypes of breast tumors [35–38, 40, 41, 43, 44]. The 
data on the association of CLDNs expression and clinico-
pathological parameters remains inconclusive.

Sufficient information is not available to interpret pro-
metastatic genes interaction in association with patho-
logic features in non-metastatic conditions. Therefore, 
this study aimed (i) to assess the correlation of pro-met-
astatic genes ‒ CTTN, RhoA, ROCK, CLDN-1, CLDN-
2, and CLDN-4 ‒ with clinicopathological parameters, 
(ii) to determine the inter-correlation of pro-metastatic 
genes in primary BrCa.

Methods
Study population
This study is a part of ongoing large  prospective cohort 
of consecutive case-series of BrCa patients-Breast Cancer 
Risk and Lifestyle (BCRL)- who were histopathologically 
diagnosed with primary malignancy. The BCRL is a mul-
ticenter study designed to assess lifestyle-related factors in 
association with BrCa risk prevention, regional to North-
western Iran. The present study is a part of this cohort 
with ongoing recruitment began in May 2009. Partici-
pants with newly diagnosed and histologically confirmed 
BrCa (N = 206), who were admitted to the surgical wards 
of Nour-Nejat Hospital, Shams Hospital, Shahid Ghazi 
Educational-Oncology Hospital, and several oncology clin-
ics located in Tabriz, Iran from May 2015 to January 2017. 
These are referral hospitals for oncologic surgeries with 
patients from different Northwestern Iran provinces (East 
and West Azerbaijan, Ardabil, Hamadan, and Zanjan). 
Participants were recruited from BrCa candidates before 
mastectomy surgery. The participants were 30-65 years old 
at the time of BrCa diagnosis. Eligible participants were 
mostly recruited from pre-menopausal women who had 
lymph node(s) positivity, invasive ductal carcinoma (IDC), 
and stages I-III. Other inclusion criteria mainly consisted 
of a completed written informed consent form and no sub-
jective medical history, including benign breast diseases, 
other malignancy, and any oncologic surgery. Exclusion 
criteria were reported in our previous reports [3, 4, 45, 
46] which were depicted in Fig. 1. Family history of breast 
and other cancers in first- and second-degree relatives 
were asked to lay out related pedigree analysis. Anthropo-
metric measurements were examined as well.

Pathologic data
Histopathologic data, including tumor size, histologi-
cal subtype (IDC  and non-ductal  carcinoma), axillary 
lymph node metastasis (ALNM), and histological tumor 
grade, were obtained from objective medical records. The 
tumor size was considered the greatest diameter of tumor 
[47] Evaluating the histologic grades was determined by 
reviewing the stained microtones of paraffin-embedded 

tumor samples according to the Nottingham combined 
grading system to detect grades based on tubule forma-
tion, nuclear grade, and mitotic activity [47]. Immunohis-
tochemical staining was carried out for human epidermal 
growth factor receptor-2 (HER2), estrogen receptor (ER), 
and progesterone receptor (PR) (Fig. 2). For HER2 posi-
tivity, the membrane and cytoplasmic staining ≥ 10% of 
breast tumor cells were considered weak or high inten-
sity [47]. Immunohistochemistry results obtained by 
nuclear antibody staining when accounted for above 1% 
of tumor cells indicated the positivity of ER and PR stain-
ing [48]. Molecular subtypes were classified based on the 
protocol summarized by Wu et  al. [47]. Clinical staging 
was defined according to the American Joint Committee 
on Cancer; 8th BC staging guidelines [49]. Neither BrCa 
patients with contralateral ALNM classified as distant 
metastases (M1) nor BrCa patients with distant metasta-
sis (M1; stage IV) were recruited [49]. Some pathological 
data were not available due to missing.

Quantitative real‑time reverse transcriptase‑polymerase 
chain reaction (qRT‑PCR)
Before mastectomy surgery, fresh frozen tumor tis-
sue and normal adjacent tissue were collected. Surgi-
cal tumor tissue section (core biopsy) consisted of 85% 
tumor cells with microscopic examinations [50]. QIAzol 
(Qiagen, USA) was applied to extract total mRNA and 
then evaluated using NanoDrop 2000 (Thermo Scientific, 
Germany), accounting for the absorbance at 260/280 nm. 
Total mRNA was converted into cDNA using Quanti-
Tect reverse transcriptase (Qiagen, USA), based on the 
manufacturer’s protocol. The expression levels of tar-
get genes were determined by qRT-PCR, using Light-
Cycler 480II (Roche, Germany). Materials used for PCR 
were composed of 12.5 μl from 10 × SYBER Green Mas-
ter Mix (Nanohelix, South Korea), each primer solu-
tion (~ 10  pmol/μl), template cDNA (~ 100–200  ng/μl), 
and DEPC-treated water. PCR steps included an initial 
denaturation (15 min at 95 °C), followed by 40 cycles of 
denaturation (24 s at 95 °C) and annealing (35 s at 62 °C). 
Each sample was amplified in duplicate reactions. The 
amplification of hypoxanthine–guanine phosphoribosyl-
transferase was as an internal control (Additional file  1: 
Figure S1). Fold changes in the expression of target genes 
(CTTN, RhoA, ROCK, CLDN-1, CLDN-2, and CLDN-4) 
were calculated using a  2−ΔΔct formula [51]. PCR prim-
ers for relevant genes were listed in Additional file  2: 
Table S1.

Statistical analysis
A sample size including 158 subjects was calculated 
based on information provided by Dales et  al. [52] 
regarding type I error (alpha) at 0.05 and the power of 
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Invitation at surgery ward
(n= 614)

Participants responded to 
invitation (n= 532)

Eligible participants
(n= 231)

Excluded:

Pregnant (n= 14)
Breastfeeding (n= 15)
Morbid obesity (n= 7)
Excluding medicine (n= 19)
Stage IV (n= 114)

Excluded:

History of chemotherapy (n= 32)
History of other malignancies (n= 20)
History of oncologic surgeries (n= 37)
History of benign tumors (n= 43)

Excluded:
Histopathological
disconfirmation of BC (n= 25)

Gene expression analyzed 
(n=206)

Fig. 1 Flow chart diagram for the selection of study participants

Fig. 2 Immunohistochemical protein expression of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone 
receptor (PR). The original magnification was X400
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analysis (1 − β) at 90%. Outlier data were detected using 
the box plots. Kolmogorov–Smirnov test and histogram 
plot were carried out to assess the normal distribution of 
continuous variables. After using Chi square test, the cor-
relation between two sets of categorical variables was 
interpreted. Fold change  in the expression of gene  was 
compared among sub-categories of clinicopathological 
(molecular subtypes, histologic grades, tumor size, and 
ALNM) by conducting the  one-way analysis of covari-
ance (ANCOVA) set at posthoc  Bonferroni  method, 
and the results were represented by bar diagram. Linear 
regression analysis was performed to present standard-
ized β-coefficients (β) among genes in certain clinical 
stages (I and II-III) and binary status of hormone recep-
tors, and ALNM features. Also, scatter plots were  illus-
trated to show the correlations between targeted genes 
and tumor size. Standardized β out of linear regression 
analysis was accompanied by scatter plots in crude (β) 
and adjusted models (βadj.). Fold changes in the  expres-
sion  of genes were dichotomized using (1) median val-
ues, and (2) cutoff points determined by plotting receiver 
operating characteristic (ROC) curve based on ALNM 
status (as reference). Odds ratio (OR) and 95% confi-
dence interval (95% CI) were obtained by logistic regres-
sion analysis to explore interesting genes as independent 
determinants of clinicopathological outcomes. The pri-
mary criteria for selecting a confounder in a model were 
identifying  a significant univariate analysis concerning 
dependent variable. A certain model was identified for 
each gene using multivariate logistic regression analysis. 
The adjusted confounding factors were listed in Addi-
tional file 3: Table S2. Statistical analyses were performed 
using SPSS software, version 16 (SPSS Inc., USA). All 
two-tailed P-values < 0.05 were considered significant.

Results
The clinicopathological characteristics of 206 patients 
were summarized in Table  1. The mean age in diag-
nosing these patients was 46.65 ± 8.61  years. Patients 
were frequently younger than 24  years at first preg-
nancy (60.6%, P < 0.01) and were older than 13  years at 
menarche (80.1%, P < 0.001). They were pre-menopause 
(66.5%) and histopathologically identified with  IDC 
(92.0%), ER + (87.3%), PR + (85.1%), and HER2- (79.6%) 
in the total study population (P < 0.001). Histologi-
cally, the most frequent dimension of the tumor was T2 
(2 cm < size ≤ 5 cm) (61.3%, P < 0.001). Stage II BrCa was 
more frequent among the participants (65.7%). Histologic 
grade II tumors (67.4%) and ALNM involvement (65.2%) 
were the most observed histological features (P < 0.001). 
A significant agreement existed between BrCa frequency 
diagnosed with ALNM and lymphatic invasion status 

(P < 0.001), indicating the acceptable accuracy of data 
represented as ALNM status (Additional file 4: Table S3).

Figure  3 illustrates bar diagrams comparing the fold 
changes in the expression of  relevant genes among cat-
egorical dependent factors including tumor size (≤ 2, 
and > 2 cm), ALNM (+/-), histologic grades (I, II, and III), 
and molecular subtypes. Larger tumor size (> 2  cm) 
showed higher expression levels of CTTN, CLDN-1, and 
CLDN-4 than those in smaller tumors (P < 0.05).  Over-
expressions of ROCK and CLDN-4 were observed in 
ALNM + tumors more than BrCa counterparts lack-
ing ALNM (P < 0.05). The expression levels of CTTN 
among the patients with grade II were higher than grade 
I (P < 0.05). There was an increasing trend in CLDN-4 
expression level among rising grades (P < 0.05). Of lumi-
nal A tumors, the fold change in  the expression level of 
ROCK was found out less than those in luminal B and 
triple-negative tumors (P < 0.01).

The scatter plots indicating the correlations among the 
genes of interest and tumor size were shown in Fig.  4. 
CTTN overexpression (βadj. = 0.253, P < 0.05), CLDN-1 
(βadj. = 0.345, P < 0.01), and CLDN-4 (βadj. = 0.338, P < 0.01) 
were significantly correlated to the larger tumor dimension 
in the models adjusted for potential covariates.

OR and 95% CI estimated to represent the associations 
between the expression levels of genes and ALNM status 
(Table  2) and tumor grades (Table  3) using unadjusted 
(crude) and multivariate-adjusted models. According to 
high expression levels of ROCK in lymph node-positive 
(Fig.  3), ROCK overexpression was significantly asso-
ciated with ALNM + after adjustments for potential 
covariates (OR Median-based cutoff = 3.05, 95%CI 1.01–9.18) 
(Table 2). The overexpressions of CTTN (OR ROC-based cut-

off = 4.33, 95%CI 1.64–11.43) and ROCK (OR ROC-based cut-

off = 2.92, 95%CI 1.18-7.24) were associated with developed 
grade II breast carcinoma (Table 3). Multivariate adjusted 
models showed positive associations between CTTN (OR 
ROC-based cutoff = 5.08, 95%CI 1.75–14.69), ROCK (OR ROC-

based cutoff = 2.86, 95%CI 1.14–7.14), and grade II tumors 
vs. considering grade I as reference (Table  3). Moreover, 
the overexpressions of CTTN and ROCK were associated 
with grade III in crude (CTTN: OR ROC-based cutoff = 3.90, 
95%CI 1.10–13.81; ROCK: OR ROC-based cutoff = 4.40, 95%CI 
1.33–14.48) and adjusted (CTTN: OR ROC-based cutoff = 5.08, 
95%CI 1.32–19.44; ROCK: OR ROC-based cutoff = 4.22, 95%CI 
1.26–14.07) models (Table 3). 

Since luminal A was the predominant sub-class of 
molecular subtypes in the present study, CTTN over-
expression was significantly associated with luminal 
A vs. other molecular subtypes after adjustment for 
related confounders (OR Median-based cutoff = 1.96, 95%CI 
1.02–3.77) (Table  4). Tumors characterized by lumi-
nal B (vs. non-luminal B) was remarkable in tumors 
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Table 1 Clinicopathological characteristics of patients with invasive BrCa (N = 206)

Variable Total patients (n) The relative frequency (%) P-value*

Age at diagnosis (year)

 Mean ± S.D. 46.65 ± 8.61

 < 48 117 56.8 0.051

 ≥ 48 89 43.2

Age at first pregnancy (year)

 Mean ± S.D. 22.11 ± 4.86

 < 24 120 60.6 0.003

 ≥ 24 78 39.4

Age at menopause (year)

 Mean ± S.D. 47.86 ± 4.73

 Post‑menopause 69 33.5 <0.001

 Pre‑menopause 137 66.5

Age at menarche (year)

 Mean ± S.D. 13.52 ± 1.36

 < 13 40 19.9 <0.001

 ≥ 13 161 80.1

Tumor type

 IDC 172 92.0 <0.001

 Others 15 8.0

Tumor size (cm)

 Mean ± S.D. 2.96 ± 1.35

 T1 (size ≤ 2) 59 31.7 <0.001

 T2 (2 < size ≤ 5) 114 61.3

 T3 (size > 5) 13 7.0

Histologic grade

 I 39 20.9 <0.001

 II 126 67.4

 III 22 11.7

Axillary lymph node metastasis

 Negative 64 34.8 <0.001

 Positive 120 65.2

Tumor stage

 I 55 30.4 <0.001

 II 119 65.7

 III 7 3.9

ER

 Negative 23 12.7 <0.001

 Positive 158 87.3

PR

 Negative 27 14.9 <0.001

 Positive 154 85.1

HER2

 Negative 144 79.6 <0.001

 Positive 37 20.4

Molecular subtype

 Luminal A (ER ± , PR ± , and HER2‑) 135 74.6 <0.001

 Luminal B (ER ± , PR ± , and HER2 +) 23 12.7

 HER2 rich (ER‑, PR‑, and HER2 +) 14 7.7

 Triple‑negative (ER‑, PR‑, and HER2‑) 9 5.0

The statistically significant finding was shown in italics (P < 0.05)

N number, S.D. standard deviation, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, IDC invasive ductal carcinoma

*The P-value was obtained by the Chi square test.

Some missing existed in demographic and clinicopathologic data
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Fig. 3 Comparing fold changes in the expression of studied genes (mean ± S.E.) across different histo‑pathological features of non‑metastatic 
primary BrCa patients. P‑values were obtained using ANCOVA (post hoc Bonferroni method). CTTN cortactin, RhoA ras homolog gene family 
member A, ROCK rho‑associated kinase, CLDN claudin, S.E. standard error, ALNM axillary lymph node metastasis, HER2 human epidermal growth 
factor receptor 2. aAdjusted for pregnancy (number), lactation (number), surgical treatment (number), x‑ray exposure (number), BMI (kg/m2), waist circumference 

(cm), waist to hip ratio, and physical activity (MET‑h/week); 
bAdjusted for age at menarche (year), surgical treatment (number), waist circumference (cm), 

and physical activity (MET‑h/week); 
cAdjusted for age at diagnosis (year), duration of oral contraceptive usage (month), lactation (number), BMI (kg/m2), hip 

circumference (cm), and waist to hip ratio; dAdjusted for the weight (kg) and the age at menarche (year). A significant result was indicated by *P < 0.05 or 
#P < 0.01

overexpressed ROCK (OR ROC-based cutoff = 2.76, 95%CI 
1.07–7.11). ROCK expression levels were also associ-
ated with triple-negative status compared to non-tri-
ple negative subtypes (OR ROC-based cutoff = 6.29, 95% CI 
1.27–31.11) (Table 4).

Linear regression analysis was performed to obtain 
correlation coefficients (β) among the genes of interest 
and subgroup analyses due to hormonal receptor sta-
tus, ALNM feature, and clinical staging, and presented 
in Table 5. For the total study population, findings indi-
cated positive associations among the expression lev-
els of ROCK and RhoA (β = 0.246, P < 0.001, CTTN 
(β = 0.170, P < 0.05), and CLDN-2 (β = 0.237, P < 0.05) as 
dependent variables (Table  5). CLDN-1 expression lev-
els was strongly correlated to CLDN-4 as well (β = 0.411, 
P < 0.001) (Table 5).

In the case of ER + tumors (PR  +/-), ROCK up-reg-
ulation was significantly correlated to RhoA (β = 0.280, 

P < 0.01) and CLDN-2 (β = 0.267, P < 0.05). Of  tumors 
characterized by ER positivity, CLDN-1 was significantly 
associated with CLDN-4 (β = 0.411, P < 0.001) (Table  5). 
In ER-negative patients, the expression levels of CTTN 
and CLDN-2 were strongly intercorrelated (β = 0.655, 
P < 0.05) (Table 5).

ROCK overexpression was significantly associated with 
up-regulation at RhoA (β = 0.311, P < 0.01) and CTTN 
(β = 0.226, P < 0.05) when there was the involvement of 
ALNM. The expression levels of CLDN-1 and CLDN-
4 were inter-correlated in sub-population defined by 
the presence of ALNM  (β = 0.377, P < 0.001) and absent 
ALNM at diagnosis (β = 0.522, P < 0.001) (Table  5). In 
the absence of ALNM  development, ROCK expression 
levels was strongly associated with CLDN-2 (β = 0.733, 
P < 0.001) (Table 5).

Of patients at stage I, ROCK up-regulation was strongly 
correlated to CTTN (β = 0.519, P < 0.01) and CLDN-2 
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Fig. 4 Scatter plots showing linear regression coefficients (standardized β) were depicted to present correlations between fold changes in the 
expression of studied genes and tumor size of BrCa  (n = 186). CTTN cortactin, RhoA ras homolog gene family member A, ROCK rho‑associated 
kinase, CLDN claudin, βadj adjusted β. aAdjusted for abortion (number), pregnancy (number), and hip circumference (cm); 

bAdjusted for age at diagnosis 

(year) and BMI (kg/m2); 
cAdjusted for age at diagnosis (year) and waist to hip ratio; dAdjusted for abortion (number), lactation (number), the age at menarche 

(year), and duration of oral contraceptive usage (month); 
eAdjusted for waist circumference (cm) and age at first pregnancy (year); 

fAdjusted for age at 
menarche (year), BMI (kg/m2), abortion (number), and duration of oral contraceptive usage (month). A significant result was indicated by *P < 0.05
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Table 2 Odds ratios (ORs) and  95% confidence intervals (95%CI) presenting  associations between  fold changes 
in the expression of CTTN, RhoA, ROCK, CLDN-1, CLDN-2, and CLDN-4 genes and axillary lymph node metastasis (ALNM) as 
a dependent pathological variable of primary non-metastatic BrCa-IDC (no distant metastasis) (n = 173)

The statistically significant finding is shown in italic fonts (P < 0.05)

N number, OR odds ratio, CI confidence intervals, ALNM axillary lymph node metastasis, CTTN cortactin, RhoA ras homolog gene family member A, ROCK rho-
associated kinase, CLDN claudin
a Data were expressed as number (%)
b Logistic regression analysis was performed

Adjusted for cEducation status (illiterate/middle school/diploma/bachelor and higher) and waist circumference (< 90 cm/90 ≤ cm); dAge at menarche 
(< 13 year/13 ≤ year) and waist circumference (< 90 cm/90 ≤ cm); eAge at first pregnancy (< 24 year/24 ≤ year) and body mass index (≤ 24.99 kg/m2/25–29.99 kg/
m2/30 ≤ kg/m2); fEducation status (illiterate/middle school/diploma/bachelor and higher) and body mass index (≤ 24.99 kg/m2/25–29.99 kg/m2/30 ≤ kg/m2); 
gEducation status (illiterate/middle school/diploma/bachelor and higher) and number of pregnancy (0-1/2-3/≥ 4); hAge at menarche (< 13 year/13 ≤ year) and number 
of pregnancy (0-1/2-3/≥ 4)
¥ Chi square test was performed

* Fold changes in the expression of studied genes were categorized based on median values

** Fold changes in the expression of studied genes were categorized based on the cutoff identified by Youden’s index

Expression levels 
of gene

ALNM status

Crude OR (95%CI) Adjusted OR (95%CI)

N Negative Positive P‑value¥ Negative Positive Negative Positive

CTTN

 <2.31* 72 22 (30.6)a 50 (69.4) 0.282 1.00 0.77
(0.38–1.52)b

1.00 0.94
(0.46–1.92)c

 ≥2.31 77 28 (36.4) 49 (63.6)

 <4.88** 85 29 (34.1) 56 (65.9) 0.504 1.00 1.06
(0.53–2.11)

1.00 1.28
(0.62–2.64)c

 ≥4.88 64 21 (32.8) 43 (67.2)

RhoA

 <0.69* 86 26 (30.2) 60 (69.8) 0.182 1.00 0.70
(0.37–1.33)

1.00 0.74
(0.39–1.40)d

 ≥0.69 87 33 (37.9) 54 (62.1)

 <0.73** 87 26 (29.9) 61 (70.1) 0.155 1.00 0.68
(0.36–1.28)

1.00 0.71
(0.37–1.35)d

 ≥0.73 86 33 (38.4) 53 (61.6)

ROCK

 <0.83* 85 31 (36.5) 54 (63.5) 0.353 1.00 1.18
(0.63–2.23)

1.00 3.05
(1.01–9.18)e

 ≥0.83 86 28 (32.6) 58 (67.4)

 <1.09** 104 39 (37.5) 65 (62.5) 0.195 1.00 1.41
(0.73–2.71)

1.00 2.18
(0.75–6.33)e

 ≥1.09 67 20 (29.9) 47 (70.1)

CLDN-1

 <1.06 * 88 35 (39.8) 53 (60.2) 0.135 1.00 1.49
(0.79–2.81)

1.00 1.55
(0.82–2.95)f

 ≥1.06 85 26 (30.6) 59 (69.4)

 <0.75** 37 15 (40.5) 22 (59.5) 0.284 1.00 1.33
(0.63–2.81)

1.00 1.35
(0.63–2.87)f

 ≥0.75 136 46 (33.8) 90 (66.2)

CLDN-2

 <1.15* 45 12 (26.7) 33 (73.3) 0.273 1.00 0.57
(0.23–1.37)

1.00 0.54
(0.21–1.37)g

 ≥1.15 49 19 (38.8) 30 (61.2)

 <1.12 ** 15 6 (40.0) 9 (60.0) 0.363 1.00 1.44
(0.46–4.48)

1.00 1.60
(0.48–5.35)g

 ≥1.12 79 25 (31.6) 54 (68.4)

CLDN-4

 <0.85 * 85 29 (34.1) 56 (65.9) 0.503 1.00 0.95
(0.50–1.78)

1.00 0.99
(0.52–1.87)h

 ≥0.85 88 31 (35.2) 57 (64.8)

 <0.67 ** 67 28 (38.8) 41 (61.2) 0.229 1.00 1.34
(0.70–2.54)

1.00 1.37
(0.72–2.62)h

 ≥0.67 106 34 (32.1) 72 (67.9)
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(β = 0.741, P < 0.001) (Table  5). Moreover, RhoA-ROCK 
inter-correlation was significantly found out in clini-
cal stages II-III (β = 0.308, P < 0.01). The overexpres-
sion of  CLDN-1 was significantly observed concerning 
CLDN-4 among patients diagnosed with disease at stages 
I (β = 0.389, P < 0.01) and II-III (β = 0.429, P < 0.001) 
(Table 5).

Discussion
For the first time, the results of this molecular epidemio-
logic study provided insights about the inter-correlations of 
CTTN-ROCK and RhoA-ROCK  in association with the 
involvement of ALNM. It can substantiate ROCK over-
regulation as a molecular determinant of tumor outgrowth 
and spread to  axillary lymph nodes.  The inter-correla-
tion  of  RhoA-ROCK  was associated with advanced clini-
cal stages of primary BrCa. Moreover,  the overexpression 
of  CTTN,  CLDN-1,  and  CLDN-4  genes was positively 
correlated with the extent of tumor size,  particularly  in 
ER + status. CLDN-4 up-regulation was notable in advanced 
histologic tumor grade and lymph node involvement.

Lymphatic metastasis
A  significant correlation was observed between ROCK 
overexpression and positive axillary lymph node involve-
ment. Similar to our findings, Lane et  al. [28] showed 
that protein and mRNA expression levels of ROCK were 
significantly correlated to nodal involvement. Bottino 
et al. [31] reported ROCK overexpression in breast tissue 
specimens (IDC) of patients who were diagnosed with 
ALNM. ROCK belongs to a family of serine/threonine 
kinases are recognized to promote actomyosin contractil-
ity by direct phosphorylation of myosin light chain [26]. 
Therefore, ROCK can promote the motility and adhesion 
of cancer cells in extravasation, thus might hold tumor 
dissemination possibility in lymphatic metastasis [53].

RhoA  up-regulation was observed in tumors with 
lymph node metastasis in the cervical  [54] and colorectal 
cancers [55, 56]. An earlier study indicated RhoA overex-
pression in clinical stages II and III of BrCa [30]. The co-
transcription of the  RhoA/ROCK  complex was reported 
in human cancers [54, 57]. Here, the co-transcription of 
RhoA-ROCK was observed in patients diagnosed with 
clinical stages II-III. This finding describes  the possible 
contribution of RhoA and ROCK to potentiate tumor 
cells to develop invasive stages of BrCa, including local 
lymph node metastasis [53]. To the best of our knowl-
edge, this is the first study that  indicated RhoA-ROCK 
inter-correlation in association  with ALNM +,  which 
supports  the possible contribution of RhoA expression 
to  its downstream effector molecule,  i.e., the over-reg-
ulation of ROCK, thereby   likely  to evoke the biological 
response related to metastasis [14, 25, 53].Th
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Cortactin can potentially promote the polymerization 
and rearrangement of actin in the cellular cortex, which 
modulates actin cytoskeleton and related dynamics 
[13]. Findings of experimental animal models com-
pared to MCF-7 tumor cells indicated that the mRNA 
level of CTTN might drive tumor cells to disseminate 
into lymphatic vessels and develop lymph node metas-
tasis [58]. One study reported a significant correlation 
between the protein expression of cortactin and lymph 
node metastasis of breast tumors   [22].  The present 
findings provide new evidence showing that inter-cor-
relation of CTTN-ROCK could be significantly corre-
lated to positive lymph node involvement. In addition, 
cortactin effects on actin remodeling and subsequent 
degradation of the extracellular matrix occur in cancer-
ous dissemination might be mediated by GTPase RhoA 
activity [59, 60]. Studies for supporting CTTN-ROCK 
interaction are limited; however, Croucher et  al. [60] 
indicated that cortactin is competent to  induce RhoA 
transcription in a dose-dependent manner in the case 
of CTTN overexpression which is revealed in head and 
neck squamous cells. A considerable dose of cortactin 
may overcome the distorted link between cortactin and 
RhoA by negative co-effectors [60]. Also, cortactin-
related RhoA activity is documented to show cellular 
proliferation in head and neck squamous cell carcinoma 
[60]. GTP-RhoA (active form) interacts with the C-ter-
minal part of coiled-coil domain and activates ROCK 
which is the main downstream target of active RhoA 
[26]. Nevertheless, a few pieces of evidence represented 
a background for cortactin-related RhoA activation, 
regardless of metastatic features, this study suggests 
evidence indicating the association between CTTN and 
ROCK expressions in favor of ALNM development.

The  overexpression of CLDN-4  was observed in 
patients with lymphatic metastasis subgroup which is in 
agreement with previous reports of  BrCa patients [19, 
41].  The CLDN-4-dependent up-regulation of matrix 
metalloproteinase (MMP)-2 and MMP-9 and increased 
invasiveness might be another clue  responsible for lym-
phatic metastasis [61].

Histologic grades and tumor size
This  is the first study to indicate the  higher mRNA 
expression levels of CTTN in significant correlations with 
larger tumor size and histologic grade II of primary 
BrCa. Similarly, the mRNA expression levels of CTTN 
was correlated to a larger tumor size in colon cancer [15] 
and non-small cell lung cancers [16]. Moreover, previ-
ous studies reported that protein expression of cortactin 
could be associated with advanced histologic grades and 
poor differentiation in the cancers of colon [20], pancreas 
[21], and lung [16]. Overexpressed CTTN might induce 

the expression of S-phase kinase-associated protein-2 
(SKP-2) to promote the cellular proliferation of head and 
neck squamous cell carcinoma [60], which was associ-
ated with larger tumor size observed in BrCa patients 
[62, 63].  Besides, cortactin-related SKP-2 signaling and 
subsequent down-regulation of cyclin-dependent kinase 
inhibitors might promote rapid cellular proliferation to 
result in increased tumor size. On the other hand, Clark 
et al. [64, 65] explained that cortactin is a transcriptional 
regulator of MMPs. Insulin-like growth factors and epi-
dermal growth factor are potential tumor growing effec-
tors released by MMP’s proteolytic activities, and likely 
MMPs can enhance cellular proliferation [66]. The find-
ings indicated CTTN expression associated with larger 
tumor size of BrCa could describe cortactin as an effec-
tive variable and call to question its role in advanced his-
tologic grade of breast carcinoma for future studies.

The present findings showed that mRNA expression 
of CLDN-1 was positively correlated to larger tumor 
size in our population of BrCa. Similarly, in  a previ-
ous study, the  overexpression of CLDN-1  was reported 
in association  with a  larger tumor size [36]. CLDN-1 
can interact with the epithelial to mesenchymal transi-
tion (EMT) related markers such as zinc finger protein 
SNAI-1 (Snail-1), zinc finger protein SNAI-2 (Slug), and 
zinc finger E-box binding homeobox-1 (Zeb-1) in human 
BrCa cell lines [44, 67, 68] and therefore can suppress 
E-cadherin which is an essential molecule incorporat-
ing into an active  EMT. CLDN-1 might enhance Zeb-1 
levels through phosphatidylinositol-3 kinase (PI3K)/
protein kinase B (Akt) pathway and Wnt/β-catenin path-
way to suppress E-cadherin-related EMT pathogenesis 
in colon cancer [69]. Furthermore, the overexpression of 
CLDN-1 might be connected to MMP-9/Notch signal-
ing to describe cellular proliferation in colorectal cancer 
[70]. Notch signaling is another aspect that gives rise to 
the  overexpression  of cyclins (A, B, and D) which they 
incorporate in cell cycle progression [71]. Moreover, 
overexpressed CLDN-1 might improve MMP-2-medi-
ated proliferation of vascular smooth muscle cells [72] 
which might enhance angiogenesis to integrate CLDN-1 
to tumorigenesis. Also, the  anti-apoptotic effect of 
CLDN-1 was indicated in tamoxifen-treated MCF-7 
cell lines [73]. Our findings showed a positive correla-
tion between CLDN-4 expression and larger tumor size. 
Likewise, the positive  protein expression of CLDN-4 
was reported in correlation  with larger tumor size of 
BrCa of Egyptian women [43]. CLDN-4 integration into 
tight junctions might be reduced by phosphorylation‒
one of the post-translational modifications of CLDNs 
‒ and therefore leads to gate function loss in various 
cancer cell lines [74, 75]. It might be a possible mecha-
nism for CLDN-4 overexpression in BrCa, as well. An 
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in  vivo assay in nude mice was transplanted by CLDN-
4-silenced MCF-7 cells indicated the regression in breast 
tumor size [42]. A meta-analysis confirmed the elevated 
protein levels of CLDN-4 in larger tumor size in gas-
tric carcinoma [76]. Consistent with earlier studies [37, 
40–43], CLDN-4 overexpression  was associated with 
advanced histologic grade in present BrCa patients. The 
protein  expression of  CLDN-4 was positively correlated 
to Ki-67 labeling index among  BrCa patients [37, 43], 
indicating that CLDN-4 might be contributed to prolif-
erative pathways and cellular differentiation. Therefore, 
further studies in laboratory and epidemiologic outlooks 
are warranted to confirm further the association between 
CLDNs and advanced stages of BrCa.

Hormone receptors
The higher mRNA expression level of CTTN was found 
in luminal A than non-luminal A subtypes. Accordingly, 
a large-scale cohort of primary BrCa patients indicated 
CTTN overexpression in association with BrCa metas-
tasis in ER + samples [24]. Cortactin might increase 
the risk of breast adenocarcinoma metastasis to bone 
marrow mediated by hyaluronan/cluster of differen-
tiation-44 (CD44) signaling in MCF-7 cell lines indicat-
ing that the expression level of CTTN can be positively 
regulated by CD44 [77]. Karamanou and colleagues [78] 
indicated less  expression levels of CD44 and cortactin 
in ERα + MCF-7 than levels observed  in ERβ + MDA-
MB-231 BrCa cells [78]. Magalhaes et  al. [79] reported 
that the tyrosine phosphorylation of cortactin increased 
recruitment of  Na+/H+ exchanger-1 (NHE-1) in MDA-
MB-231 cell lines. The overactivation of NHE-1 ‒ a 
plasma membrane glycoprotein that  controls intracellu-
lar pH ‒ could result in an acidic extracellular microen-
vironment leading to breast tumor cell invasion and the 
development of metastasis [80]. It could collectively sup-
port our findings showing the overexpression of CTTN in 
luminal A subtype of BrCa, particularly when CTTN up-
regulation was evident in pre-menopause BrCa patients.

The hyaluronan/CD44 signaling was also correlated to 
the activation of RhoA/ROCK pathway and subsequent 
the  phosphorylation of NHE-1, leading to breast tumor 
cell invasion [81]. Consistent with Oviedo et  al. [82] 
indicated that the presence of estradiol could result in 
increased protein and mRNA expression levels of RhoA 
in human umbilical vein endothelial cells; our findings 
represented an additional insight expressing the inter-
correlation of RhoA-ROCK in association with ER posi-
tivity. We also demonstrated that the luminal B subtype 
was remarkable in tumors overexpressed ROCK, suggest-
ing that high expression level of ROCK may be affected 
by HER2 expression of breast tumors.  Exposure to 
physiological concentrations of 17β-estradiol in human 
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Table 5 Univariate linear regression analysis (standardized β coefficient) between the studied genes of tumors of study 
population of BrCa (N = 206)

CTTN (n = 174) RhoA (n = 205) ROCK (n = 202) CLDN‑1 (n = 206) CLDN‑2 (n = 110) CLDN‑4 
(n = 206)

Total population

CTTN 1

RhoA 0.065 (0.395)* 1

ROCK 0.170 (0.028) 0.246 (< 0.001) 1

CLDN‑1 − 0.036 (0.646) − 0.007 (0.917) − 0.062 (0.391) 1

CLDN‑2 0.043 (0.686) − 0.017 (0.866) 0.237 (0.014) 0.034 (0.727) 1

CLDN‑4 0.013 (0.868) 0.086 (0.228) − 0.023 (0.752) 0.411 (< 0.001) − 0.102 (0.292) 1

ER‑ and PR ± (n = 23)

CTTN 1

RhoA 0.182 (0.465) 1

ROCK 0.398 (0.091) 0.397 (0.067) 1

CLDN‑1 0.198 (0.415) 0.009 (0.967) − 0.049 (0.832) 1

CLDN‑2 0.655 (0.029) − 0.247 (0.465) − 0.285 (0.396) − 0.316 (0.344) 1

CLDN‑4 − 0.027 (0.914) 0.077 (0.748) 0.007 (0.975) 0.095 (0.691) − 0.366 (0.299) 1

ER + and PR ± (n = 158)

CTTN 1

RhoA 0.074 (0.404) 1

ROCK 0.128 (0.153) 0.280 (0.001) 1

CLDN‑1 ‑0.065 (0.469) − 0.001 (0.994) − 0.066 (0.433) 1

CLDN‑2 0.033 (0.786) − 0.005 (0.965) 0.267 (0.016) 0.020 (0.858) 1

CLDN‑4 0.016 (0.859) 0.086 (0.301) − 0.015 (0.862) 0.451 (< 0.001) − 0.119 (0.284) 1

ALNM– (n = 64)

CTTN 1

RhoA − 0.056 (0.705) 1

ROCK − 0.049 (0.741) 0.233 (0.083) 1

CLDN‑1 0.070 (0.638) 0.011 (0.932) − 0.166 (0.217) 1

CLDN‑2 − 0.041 (0.847) 0.166 (0.382) 0.733 (< 0.001) − 0.045 (0.810) 1

CLDN‑4 0.022 (0.882) 0.103 (0.446) − 0.194 (0.151) 0.522 (< 0.001) − 0.131 (0.490) 1

ALNM + (n = 120)

CTTN 1

RhoA 0.129 (0.204) 1

ROCK 0.226 (0.027) 0.311 (0.001) 1

CLDN‑1 − 0.079 (0.448) − 0.010 (0.921) 0.040 (0.681) 1

CLDN‑2 0.121 (0.384) − 0.160 (0.219) − 0.098 (0.443) 0.004 (0.976) 1

CLDN‑4 0.030 (0.769) 0.068 (0.479) 0.029 (0.763) 0.377 (< 0.001) − 0.028 (0.826) 1

Stage I (n = 55)

CTTN 1

RhoA 0.060 (0.710) 1

ROCK 0.519 (0.001) 0.252 (0.077) 1

CLDN‑1 − 0.025 (0.877) − 0.060 (0.674) − 0.115 (0.422) 1

CLDN‑2 − 0.064 (0.766) 0.204 (0.298) 0.741 (< 0.001) − 0.049 (0.800) 1

CLDN‑4 0.232 (0.144) 0.039 (0.758) 0.002 (0.990) 0.389 (0.004) − 0.136 (0.480) 1

Stages II‑III (n = 126)

CTTN 1

RhoA 0.098 (0.329) 1

ROCK 0.069 (0.496) 0.308 (0.001) 1

CLDN‑1 0.002 (0.980) 0.022 (0.818) 0.002 (0.987) 1

CLDN‑2 0.130 (0.359) − 0.163 (0.213) − 0.130 (0.324) 0.013 (0.923) 1

CLDN‑4 − 0.052 (0.609) 0.085 (0.375) − 0.019 (0.842) 0.429 (< 0.001) − 0.014 (0.917) 1
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umbilical vein endothelial cells resulted in the interac-
tion between ERα and Gα13 (heterotrimeric G protein) 
to induce RhoA/ROCK activity [83]. The RhoA/ROCK 
signaling pathway could be activated by nuclear factor 
erythroid 2-related factor 2 (NRF-2) [84]. The treatment 
with estradiol could activate PI3K/glycogen synthase 
kinase-3 beta pathway to increase the activity of NRF-2 
in MCF-7 cells [85]. A meta-analysis of clinical studies 
reported that NRF2 overexpression was associated with 
a worse clinical outcomes of BrCa patients [86]. Another 
mechanism explains that in the presence of 17β-estradiol, 
ER may interact with c-Src to activate PI3K/Akt/RhoA 
pathway in human T47-D BrCa cells [87]. However, still, 
laboratory studies are insufficient to prove RhoA/ROCK 
bi-functionalities associated with the presence of certain 
molecular subtypes of BrCa.

ROCK may act as an upstream regulator to control 
CLDNs transcription [33]. The present study revealed a 
positive inter-correlation between ROCK-CLDN-2 in the 
case of ER positivity of tumors. In addition, the  inter-
correlation of CLDN-1-CLDN-4 was found abundant 
among the present ER + tumors. CLDN-4 up-regula-
tion was seen in the estrogen-related tissues such as the 
breast and ovaries [88, 89]. Blanchard et al. [44] reported 
protein expression of CLDN-1  in positive association 
with CLDN-4 in basal-like and non-basal breast tumors. 
Akimoto et  al. [90] represented a positive correlation 
between the activity of estrogen-dependent G protein-
coupled receptor 30/Akt-related pathway and CLDN-1 
expression in cervical adenocarcinoma cells [90]. The 
contradictory results from studies which addressed 
CLDNs expression concerning molecular subtypes [35–
38, 40, 41, 43, 44], present findings could add an insight 
focusing on the association of CLDN-1-CLDN-4 and 
ROCK-CLDN-2 connected to breast tumors character-
ized by hormone receptor-positive.

The present  significant correlation between RhoA 
and ROCK among breast tumors would give rise to the 
importance of ROCK transcription in accounting the 
present variation of RhoA expression.  Several previous 
studies have considered ROCK expression as a relia-
ble reference to determine the accuracy of RhoA expres-
sion in Her2-rich breast tissues [30], cervical cancer [54], 
and bladder cancer [57]. Consistent with the present 
findings, the protein expression of  CLDN-1 was previ-
ously suggested as a biomarker to determine the accuracy 
of CLDN-4 expression in BrCa [44].

This study had some limitations. First, the sample size 
was small for subgroup analysis. Second, pathologic data 
were collected prospectively after surgery; therefore, 
data were  not available for some cases. Third, the cor-
rection for multiplicity testing was a statistical approach 
warranted for future studies to provide better clusters 
of genes interdependently associated with the invasive 
pathological features of BrCa. Fourth, this study could 
not provide information about diagnostic accuracy based 
on the area under the curve of ROC, sensitivity, speci-
ficity, likelihood ratio, or other statistical parameters to 
interpret the diagnostic accuracy of pro-metastatic genes 
in detection or predicting BrCa features. Thereafter, we 
could not precisely address the accuracy of  biomarkers 
to predict other disease diagnoses. The present findings 
provided some new evidence; further studies need to 
determine their prognostic impact on pathological char-
acteristics in BrCa using a gold standard as reference. 
Accordingly, evidence should support pro-metastatic 
genes in association with advanced features before con-
ducting any assessment for diagnostic accuracy of bio-
markers. Microarray techniques could be suggested 
for future studies to assess a broader number of genes 
encompasses several pathways such as genes involved 
in controlling antioxidant defense system in association 
with RhoA transcription.

Conclusions
In summary, findings could suggest the binary settings of 
pro-metastatic genes, including CTTN-ROCK and RhoA-
ROCK in association with a breast tumor diagnosed with 
infiltration into axillary lymph nodes which is represent-
ative of local breast metastasis. Findings put emphasize 
on ROCK transcription as a contributor  to ALNM of 
IDC  -BrCa.  The present findings indicated the overex-
pression of CTTN, CLDN-1, and CLDN-4 in association 
with advanced stages of primary non-metastatic  BrCa, 
which is highly evident in   ER + status of breast tumors. 
Endocrine therapy might correlate with ER/PR related 
pro-metastatic  genes that need further  implications 
by  future studies. However, further experimental  stud-
ies are necessary to reveal mechanisms underlying gene-
to-gene interactions in association with the  molecular 
events representative of metastatic hallmarks of BrCa.

Table 5 (continued)
The statistically significant finding is shown in italics (P < 0.05)

N number, CTTN cortactin, RhoA ras homolog gene family member A, ROCK rho-associated kinase, CLDN claudin, ER estrogen receptor, PR progesterone receptor, 
ALNM axillary lymph node metastasis

*Data were expressed as standardized β coefficient (P-value)
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