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Abstract

Recent advances in recording technology have allowed neuroscientists to monitor
activity from thousands of neurons simultaneously. Latent variable models are
increasingly valuable for distilling these recordings into compact and interpretable
representations. Here we propose a new approach to neural data analysis that
leverages advances in conditional generative modeling to enable the unsupervised
inference of disentangled behavioral variables from recorded neural activity. Our
approach builds on InfoDiffusion, which augments diffusion models with a set of
latent variables that capture important factors of variation in the data. We apply our
model, called Generating Neural Observations Conditioned on Codes with High
Information (GNOCCHI), to time series neural data and test its application to syn-
thetic and biological recordings of neural activity during reaching. In comparison
to a VAE-based sequential autoencoder, GNOCCHI learns higher-quality latent
spaces that are more clearly structured and more disentangled with respect to key
behavioral variables. These properties enable accurate generation of novel samples
(unseen behavioral conditions) through simple linear traversal of the latent spaces
produced by GNOCCHI. Our work demonstrates the potential of unsupervised,
information-based models for the discovery of interpretable latent spaces from
neural data, enabling researchers to generate high-quality samples from unseen
conditions.

1 Introduction
New neural interfaces enable the simultaneous recording of hundreds to thousands of neurons [4, 26].
Interpreting the resulting high-dimensional datasets is a major challenge, as neural activity may have
non-linear and time-varying relationships to many variables of interest. Thus neuroscientists have
begun to rely on latent variable models to distill high-D recordings of neural population activity into
compact and more easily interpretable representations. Of particular interest are generative latent
variable models, which allow neuroscientists to map back from the latent variables to the high-D
population activity itself to study how variables of interest are geometrically encoded within neural
activity.

Brains can produce a rich behavioral repertoire, making it challenging to know what variables are
encoded by a particular brain region or neural sub-population. Traditionally, neuroscientists assess
how variables are encoded in a brain region by designing experiments that constrain behavior to a
small set of predetermined variables of interest. An alternative approach uses latent variable models
to discover which variables are encoded in a neural circuit and how those variables are encoded
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at the level of individual neurons. While auxiliary variables (observed behavior) may be used to
structure latent spaces [23, 31], such approaches are not possible when key variables are unobserved
or unknown. To promote more general discovery of latent structure, models would ideally have the
following properties: unsupervised application to complex and diverse time-series data, structured
latent spaces that are disentangled with respect to behavioral variables of interest, and queryable,
conditional generation of high-quality samples for unseen behavioral conditions.

We propose a new approach to neural data analysis that builds on advances in conditional generative
models to enable the unsupervised inference of disentangled behavioral variables from recorded
neural activity. Our approach uses InfoDiffusion [36], which augments diffusion models with a set
of latent variables (here termed “codes”) that capture important factors of variation in the data. By
maximizing the mutual information between the observed and latent variables, InfoDiffusion has
been shown to learn disentangled representations of human-interpretable latent factors.

We extend InfoDiffusion to sequential data and test its performance on synthetic and biological
datasets from neural circuits performing a motor task. We compare our approach, Generating
Neural Observations Conditioned on Codes with High Information (GNOCCHI), to an alternative
unsupervised generative latent variable model for neural time-series data, latent factor analysis via
dynamical systems (LFADS). While both models achieve high-quality generation of neural data,
GNOCCHI achieves higher-quality latent spaces that are more clearly structured with respect to
behavioral variables. Moreover, the latent spaces produced by GNOCCHI are more disentangled than
those produced by LFADS, such that simple linear traversal of the latent space along identified paths
produces novel samples with isolated changes in their relationship to behavior. Finally, we show that
these properties enable high-quality conditional generation of neural activity for unseen behavioral
conditions.

2 Related Work
Generative models have frequently been used to uncover latent, low-dimensional descriptions of
neural population activity, including models based on Gaussian processes [2, 21, 13, 12], variational
autoencoders (VAEs) [7, 8] including those using self-supervised learning [25], neural ordinary
differential equations [24, 32, 34], and recent diffusion-based approaches[35]. In this work we chose
a sequential autoencoder, latent factor analysis via dynamical systems (LFADS [8]), as our point
of comparison, as it reduces time series neural data to a latent representation whose structure is
determined by a standard VAE objective [28]. LFADS allows samples to be generated for novel
conditions through a simple interpolation approach we detail in Section 3.5. We note an alternate point
of comparison could be SwapVAE [25], which decomposes its latent space into qualitatively different
latents for “style” and “content”; in this case we chose LFADS due to its frequent applications to
neural time series data [11, 27, 29].

Prior work in interpretable deep generative models explicitly conditions generation on behavioral
labels [23, 37]. These approaches may allow identifiable and interpretable recovery of latent structure
for observed variables, but are not applicable when key variables are unobserved or unknown.

Generative models have been used in other domains to produce samples from outside of the training
set without access to the underlying variables of interest. This has been achieved with success
on image datasets through modifying the generative cost of VAEs [9]. Another popular class of
approaches has been to regularize the mutual information between the observed data and the latent
space of the generator [15, 36]. Through interpolation and extrapolation in the latent space, these
models can generate samples that reflect an interpretable transition between variables of interest.
However, to our knowledge these information-based deep generative models – which do not rely on
behavioral labels – have not previously been applied to neuroscientific datasets.

3 Methods
3.1 Artificial neural datasets
To generate realistic neural activity on which to test our models, we trained an RNN (128-hidden
unit GRU), to perform planar reaching tasks using a 2-link, 6 muscle arm model [30, 38]. The
RNN model received a 17-dimensional input: endpoint coordinates (2D), muscle lengths (6D) and
velocities (6D), target coordinates (2D) and a go cue input (1D). The loss function of this model was
to minimize the mean-squared error between the effector endpoint and the target, while minimizing

2



the weighted squared muscle activation. This training paradigm produced a biologically plausible set
of neural activations with associated task parameters that can be used as a benchmark for evaluating
the latents/codes produced by the different methods. More details on the inputs and outputs of the
RNN are shown in Figure 2A, with full training details given in Section B of the Appendix.

We consider a random target task, where the RNN must control the set of 6 muscles to manipulate the
effector endpoint from a start location to a target location, both of which are randomly selected from
a 6× 6 grid. At a random time during the trial, a target was presented, followed by a delayed go cue
that instructed the RNN to initiate movement towards the presented target.

To create a training dataset for our generative models, we generated 1000 total trials of RNN activity
from each task. We then aligned to a window around the go cue time, producing trials of length 0.4
seconds (40 bins). When assessing the generalization of the representations learned by the generative
models, we would remove trials that had specific target locations. For the random target task, we held
out trials corresponding to target locations on the middle square of grid points (see Figure 3A). These
trials were used as a "held-out" dataset to quantify how well our models could generate data from
conditions that were not in their training set. Additional details can be found in Tables 1 and 2.

3.2 Biological neural datasets
To assess whether our approach works for biological neural recordings, we used previously published
recordings from a multi-electrode array [1] implanted in monkey primary motor cortex (M1) during
a self-paced random target reaching task [10]. Voltage signals from each of the 96 electrodes were
converted into threshold crossings, binned at 20 ms, and aligned to a window [-200, 500] ms around
movement onset. When assessing the generalization capability of the generative models, we held-out
reaches to targets in the upper-right quadrant (∼14% of the trials, see Fig. 4). We analyze the
generation quality of these data when testing the ability of our models to generate accurate examples
of neural activity from outside its training set. For modeling this dataset, we used spiking activity
with LFADS, and smoothed spiking activity with GNOCCHI (see Section D.2 for more details).

3.3 Model Architectures
3.3.1 Generating Neural Observations Conditioned on Codes with High Information

Our model is an adaptation of InfoDiffusion [36] that operates on time-series data. The model consists
of two networks: the auxiliary variable encoder, and the noise prediction network. The architecture of
both the auxiliary encoder and the noise predictor is a bidirectional GRU with a linear readout to the
desired output dimensionality. The auxiliary variable encoder is passed a window of neural activity
{nt}Tt=1 ∈ RT×N as input, and outputs the latent representation vector, or code, c ∈ RL. The code is
penalized against a standard normal prior using Maximum Mean Discrepancy (MMD) [5]. This code
c is used to condition a diffusion process, wherein the noise prediction network is trained to predict
the noise that is added to the data during the forward process for any step sampled randomly from
the sequence of steps in the total diffusion process, consistent with the score matching objective and
training procedure described in [20]. The forward process is defined by Equation 1:

x̃i =
√
ᾱix0 +

√
1− ᾱiϵ ; ϵ ∼ N (0, 1) (1)

Where x0 is a window of neural activity, x̃i is the noised neural data sample at step i of the forward
process, ᾱi is the cumulative product of the coefficients αi = 1− βi up to diffusion step i, where the
parameters βi ∈ [0.001, 0.01] are fixed and define a linear noising schedule of the forward process.
In addition to the MMD and score matching costs, there is a cost on the fidelity of the reconstructed
neural data sample x̂0 computed using the output of the noise predictor ϵ̃ and the noised neural data
sample x̃i. In total, the relevant quantities for training the model are given by Equations 2-4 :

c = AuxEncoder({nt}Tt=1) (2)
ϵ̃i = NoisePredictor(x̃i, i, c) (3)

x̂0 =
1√
ᾱi

(
x̃i −

√
1− ᾱiϵ̃i

)
(4)

Note that Equation 4 is simply a rearrangement of Equation 1 with the reconstructed neural data
sample x̂0 used instead of the original neural data sample x0 and the predicted noise ϵ̃ used in place
of the sampled noise ϵ. In total, the loss terms computed based on these quantities are given by
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Figure 1: GNOCCHI model overview. A) Codes are inferred from neural activity and used for
conditional generation. Using the noise predicted by the denoiser, the neural activity is reconstructed
and penalized against the original neural activity (Mean Squared Error). During inference, Gaussian
white noise is iteratively transformed into a sample using the inferred code and the denoiser. B) A
schematic of how a movement in code space corresponds to a change in target position. C) Low-
dimensional visualizations of the generated neural activity during conditional (left) and unconditional
(right) generation.

Equations 5-7:

Lscore = E
[
||ϵi − ϵ̃i||22

]
(5)

Lrecon = E
[
||x0 − x̂0||22

]
(6)

LMMD = Ecprior∼N (0,1) [k(cprior, cprior)] + Ec∼AuxEnc [k(c, c)]− 2Ecprior∼N(0,1),c∼AuxEnc [k(cprior, c)]
(7)

Where k(·, ·) : RL × RL → R is the Gaussian radial basis function kernel.

In total, the loss function is the weighted sum of LMMD,Lscore and Lrecon. The weightings of these
terms as well as the rest of the hyperparameters used for the experiments are given in Section C.
The weighting and implementation of the MMD term is computed analogously to the InfoVAE
implementation of [22]. Additional details on the model architecture and hyperparameter selection
are also in Section C. A model schematic showing the training and inference pipelines for GNOCCHI
is shown in Figure 1, as well as low-dimensional visualizations of generated neural activity when
conditioning on the codes, versus sampling from the code prior (Fig. 1C).

3.4 Latent Factor Analysis via Dynamical Systems (LFADS)

LFADS[8, 33] is a sequential adaptation of the variational autoencoder (VAE) [28] that incorporates
inductive biases from the dynamical systems perspective [6] into an end-to-end latent dynamics
model of neural activity. LFADS utilizes recurrent neural networks (RNNs) to read over neural
activity and produce a summarizing vector representation, which is used as the initial condition of a
dynamical system that is learned and unrolled by another RNN. The resulting architecture is capable
of learning variational parameters that can be used to encode a dynamics-based representation
of the neural recordings, expressed using a lower-dimensional set of latent variables. We trained
LFADS models with the initial condition representation matched to the same dimensionality as the
representations used with GNOCCHI. Additionally, we turned off the LFADS controller, since the
appropriate strategy for taking time-varying inputs into account when performing latent navigation
(see Section 3.5) is unclear. More details on the training, architecture choices and hyperparameters
used with LFADS can be found in Section D.
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3.5 Generating neural activity reflecting unseen conditions via Latent Navigation
To generate condition-specific samples from the latent space learned by the generative models, we
developed a simple method to find locations in the latent space that corresponded to trials with
specific behavioral features (e.g., for the random target tasks, starting location and desired target
location.) This method, termed latent navigation, consists of fitting a linear regression from the
latent representations learned by the generative model, c ∈ RL to each behavioral feature. We then
obtain new samples related to each behavioral feature by using latents obtained by stepping along the
directions learned by the linear mapping, starting from a reference point in the latent space, referred
to as an “anchor latent". This process is summarized by Equations 8 and 9:

min
W,b

||s − Wc + b||22 (8)

c̃(i)j = canchor ± i · δc · wj (9)

Where s ∈ RK is the set of behavioral features, W ∈ RK×L is the matrix fit by linear regression
with bias b ∈ RK , wj is the jth row of W, i indicates how many steps are being taken away from the
anchor latent, and δc ∈ R is the step size in latent space. In this work, we considered j corresponding
to the horizontal and vertical target coordinates. For the artificial random target task, we used
δc = 1.0.

3.6 Behavioral Decoding
To assess the nature of behavior that can be produced by conditionally generating neural activity,
we decode behavior from the generated neural activity for both seen and unseen conditions. For the
artificial neural datasets, we predicted the hand endpoint position. The position decoder f : RN → R2

is given by Equation 10:

xt = f(nt) (10)

Where xt is the endpoint position at time t, nt is the neural activity at time t. For f , we use ridge
regression [3].

The position decoders for the artificial neural response experiments are fit on the ground truth neural
responses and behaviors, and we use these decoders to assess the responses produced by the generative
models. The ridge regularization parameter of the position decoders are set to 1.0 to mitigate noise
differences between the model-produced neural activity and the ground truth RNN hidden states used
to train the decoders.

4 Results
4.1 GNOCCHI learns well-structured codes that reflect task variables

We aimed to validate three features of the GNOCCHI model: 1) unsupervised discovery of structured
codes, 2) that those codes should be disentangled, and 3) that the model would generate more accurate
samples for unseen behavioral conditions than alternative models.

We began by applying GNOCCHI to a complex, biologically-plausible synthetic dataset with known
ground-truth activity. We generated this dataset by training an RNN to perform a Random Target
reaching task by controlling a 2 DoF manipulandum in a simulation environment (Fig. 2A). After
training, individual RNN units had complex, time-varying activity patterns that were well-modulated
by task parameters (Fig 2B, top row, traces colored by angle of reach) and qualitatively resembled
typical response patterns of motor cortical neurons. We fit GNOCCHI and LFADS models to this
synthetic neural activity and found both models were able to accurately reconstruct single unit
activities (Fig. 2B, lower rows).

We then examined the latent representations inferred by each model and found that while both sets of
latents had clear structure related to the target position, GNOCCHI’s codes appeared more tightly
organized than LFADS (Fig. 2C). To quantify how tightly the codes were clustered for a particular
reach condition, we computed a signal-to-noise ratio (SNR) metric, the ratio of the total variance
to the mean intra-condition variance. The SNR of GNOCCHI codes was substantially higher than
for LFADS (Fig. 2D), suggesting that GNOCCHI learned more structured code representations that
better reflected the underlying behavior.
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Figure 2: Validating GNOCCHI on realistic synthetic neural activity. A) RNN task training
overview. We trained an RNN to control a biomechanical effector to manipulate the endpoint to
acquire targets on a grid. The RNN received task inputs indicating the target location and the go
cue time, as well as sensory feedback inputs related the effector endpoint, as well as muscle lengths
and velocities. The RNN produced activations of a set of muscles to control the arm based on these
inputs. B) Visualizing neural responses colored by the relative angle of the reach. Both generative
models produced unit responses that closely resemble both the timecourse and behavioral structure of
the ground truth data. C) Top 3 principal components of the codes. Codes exhibited organization
according to several behavioral variables; here they are colored by the target x and y locations of
individual trials. D) Code signal-to-noise ratio. The codes learned by GNOCCHI had a substantially
higher SNR for target position than those learned by LFADS, indicating a closer relationship to
behavior. E) Additionally, computing the R2 between the ground truth and generated unit activity
quantifies that GNOCCHI-generated activity matched the ground truth with comparable accuracy to
LFADS.

4.2 GNOCCHI learns disentangled codes that allow for targeted data generation

A disentangled code space allows a generative model to produce new samples in which the relevant
task variables encoded by the data change independently from one another. To test whether GNOCCHI
learns a disentangled code space, we trained GNOCCHI and LFADS models on a subset of the
previous Random Target task data, only including conditions in the middle or on the edges of the
workspace (Fig. 3A).

Using our latent navigation procedure, we isolated the “Target-tuned” axes of code space, generated
artificial neural data with codes associated with changing a single task-variable, and used a position
decoder to transform these artificial neural signals into a predicted hand position over the course of a
trial. When we generated activity by moving along the target-tuned dimensions of the latent space
learned by GNOCCHI, the decoded position varied for the behavioral variable of interest largely
in isolation, e.g. with minimal change in the start position when varying along the target location
directions of code space (Fig 3B, left, right, respectively).

In contrast, moving along both the X and Y target-tuned dimensions of the LFADS latent space
resulted in generated activity for which the decoded start position varied substantially for both target
dimensions (Fig. 3C, left: Target X, right: Target Y), indicating an entangled representation for start
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Figure 3: Controllable generation of neural activity for novel behavioral conditions. A) Target-
tuned subspaces. Each model contained code subspaces with a close correspondence to target location.
Codes for the held-in conditions are colored by the target x location, and the held-out codes are black.
Code organization matched the target grid for seen and unseen conditions for both models. B, C)
Behavior decoded from trials produced by latent navigation. When we generate new samples by
navigating along the target x (left) and target y (right) dimensions of code space, the trajectories
produced by GNOCCHI vary in the direction of interest and largely isolate the intended variable
(endpoint location), while for LFADS there is coupling with other variables such as the start location
of the reach. D) Unintended movement and the orthogonality of behavioral dimensions in code space.
We quantified unwanted variation in the decoded behavior as the total absolute deviation of each of the
variables that should remain fixed during latent navigation of a single variable (green). Consistent with
the decoding visualization (B and C), unwanted movements produced by LFADS were substantially
higher than those produced by GNOCCHI. Additionally, we compute the normalized dot product
between the vectors that define each behavioral direction during latent navigation (blue), and found
that the directions in the code space of LFADS are less orthogonal / more strongly coupled than for
GNOCCHI. E, F) Heldout predicted target position from inferred codes. Passing the heldout trials
through each trained model, we find that both GNOCCHI and LFADS are capable of representing
trials with structure that generalizes well to the task.

and target locations in the LFADS model. Additionally, interpolating novel samples within the range
of heldout targets resulted in decoded trajectories that ended far outside the intended boundary for
LFADS, while decoding samples that were generated through GNOCCHI produced trajectories that
were largely confined to the intended range.

We quantified these observations in two ways. First, we indirectly measured disentanglement by
calculating the pair-wise normalized dot products between the axes of the linear mapping used
for latent navigation. When these values are close to zero, the learned representations are nearly
orthogonal in the code space. The average projection magnitude was significantly larger for LFADS
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compared to GNOCCHI (Fig. 3D, paired t-test across 10-fold cross validation,.p-val < 2.8e-34).
For reference, we include a horizontal line indicating the average magnitude of the normalized dot
product for vectors of the same dimension as the target-tuned axes, whose entries were drawn from
a standard normal distribution. Second, we calculated the effect of moving along one target-tuned
dimension on the other variables. Using our decoders, we quantified how much unintended movement
in non-queried variables was observed as we changed the target-tuned code. We found that the
unintended movement was substantially larger for LFADS than for GNOCCHI (Fig. 3D, paired
t-test across 10 different reach interpolations,.p-val < 8.6e-14). Together, these results suggest that
GNOCCHI learns a more disentangled representation of task variables than LFADS.

Last, a desired feature of generative models is to obtain high quality generated samples both within
the domain of the training and to generalize outside of the training set. To test the ability of our
models to generalize, we used neural activity from the held-out conditions to infer codes with the
LFADS and GNOCCHI code encoders (Fig. 3E). We found that the codes inferred by GNOCCHI
were generally closer to the correct location in code space, suggesting that GNOCCHI can generate
higher quality samples from unseen conditions than the alternative model (Fig. 3F).

4.3 Biological Neural Data

We applied GNOCCHI and LFADS to neural data from the motor cortex of a monkey performing
a similar random-target reaching task as our synthetic dataset (Fig. 4A). Both models were able to
capture significant features of single trial neural responses (Fig. 4B, single trial neural activity color-
coded by reach angle) and inferred codes that had significant structure that reflected the underlying
task (Fig. 4C, codes color-coded by Target X position).
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Figure 4: GNOCCHI generates realistic neural activity and captures held-out conditions in a
biological dataset. A) Task schematic. Recordings from primary motor cortex of a monkey (top)
while performing a random-target reaching task (bottom). B) Single neuron responses from two
example neurons (columns) in the window [-200, 500] aligned to movement onset, colored by reach
direction. Top: Smoothed single trial activity. Middle, Bottom: Predicted single trial activity from
LFADS/GNOCCHI, respectively. C) Visualization of top 3 PCs of the code space for GNOCCHI
(left) and LFADS (right), color coded by Target X position. D) R2 for predicted activity of individual
neurons across validation trials for LFADS (x-axis) and GNOCCHI (y-axis). Points above the unity
line denote neurons in which GNOCCHI predicted activity that more closely resembled the smoothed
firing rates. E) Diagram of heldout generalization experiment. Heldin (heldout) trial target locations
indicated with filled (unfilled) circles. Predicted target location from inferred codes indicated by
colored ×s (LFADS: red, GNOCCHI: blue). F) Scatter plot of error between actual target location
and predicted target location (from E) for GNOCCHI (x-axis) and LFADS (y-axis). Points below the
unity line indicate trials where the GNOCCHI prediction was closer to the true target than LFADS.
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We first wanted to compare the ability of GNOCCHI to model the neural activity compared to the
LFADS; higher predictive performance would reflect a more structured code space. We compared the
R2 values of LFADS to GNOCCHI, and found that on average GNOCCHI made better predictions
of the smoothed single trial neural activity across neurons (Fig 4D, paired t-test across neurons,.p-val
< 1e-4). We also tested whether the representations learned by GNOCCHI were disentangled, using
the same methods as applied to the synthetic data (Fig 4B, E).

We next tested the ability of GNOCCHI to generalize to unseen conditions. We trained new GNOC-
CHI and LFADS models on a subset of target locations, leaving a quadrant of the target locations
out of the training set (Fig 4E, Heldin, filled circles, Heldout unfilled circles). We then used the
neural activity from the heldout conditions to infer codes for each model. When we passed the
inferred codes through a decoder trained to predict held-in target position from heldin codes, we
found that GNOCCHI codes predicted reaches that extended much further into the heldout targets
than did the LFADS codes (Fig 4E, blue (top), red (bottom) ×s, respectively). We quantified this
boost in generalization performance by the distance between the target predicted by the code to the
true target of each trial. We found that GNOCCHI codes were more predictive of the true target than
LFADS for almost all of the heldout trials (Fig 4F, points below unity line were closer for GNOCCHI
than LFADS), demonstrating the utility of GNOCCHI for generating out-of-training neural activity
relative to LFADS.

5 Limitations

Aside from some of the comparative advantages and disadvantages of each model, there are some lim-
itations to GNOCCHI as proposed here. One limitation of this work is that the models we considered
only generate neural activity, and not also behavior. Without generating behavior and neural activity
concurrently, we cannot augment datasets for training neural decoders without making additional
assumptions on how the generated neural responses relate to behavior. However, GNOCCHI may
be appropriate for decoding applications (e.g., brain-computer interfaces; BCIs) as-is. Typically, in
clinical applications with paralyzed individuals, behavior is not directly observed; rather, decoders
are trained by making assumptions about the relationship between neural activity and behavior, and
those same assumptions could be applied to samples generated by GNOCCHI. However, integrating
GNOCCHI with methods that can jointly generate neural activity and behavior from a shared latent
representation [37] presents a promising next step for this work, though the matter of overcoming
the lack of ground truth behavior in clinical settings would remain a challenge. Additionally, the
data in this work are aligned to a stimulus (go cue) or movement onset. Achieving interpretable
representations that support latent navigation when modeling continuous time-series data (without
pre-specified alignment) would enable application to a broader range of behaviors, and validating the
efficacy of GNOCCHI in such settings is an important improvement for future work.

This work demonstrates an exciting opportunity for increasing both the generative capability and
representational interpretability of neural population models. Such improvements could enable
higher-performing BCIs, which are used in rehabilitation settings to enable increased autonomy and
quality of life for those with neurological conditions. Given the potential impact of this work on
BCI, we encourage appropriate consideration to preserving personal privacy and equity in any such
downstream applications.

6 Discussion

GNOCCHI leverages advances from InfoDiffusion to learn structured, disentangled, and generalizable
code spaces without requiring behavioral labels. GNOCCHI builds upon previous advances in
generative modeling, which have provided powerful new lenses into neural population activity.
Such advances will be critical as neuroscientists gain access to high-dimensional neural population
recordings from a variety of brain areas during increasingly complex and unconstrained behaviors.
The ability of methods like GNOCCHI to interpolate or even extrapolate neural data samples along
interpretable latent axes may provide the opportunity to probe high dimensional behaviors with
greater sampling efficiency, leading to a deeper understanding of the structure and geometry of neural
activity during complex behaviors.
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Appendix

A General dataset information

Table 1: Full trial counts for each dataset

Dataset Train Valid

Random Target Task (artif.) 666 166
Random Target Task (bio.) 543 136

Table 2: Held-in and held-out trial counts for each dataset

Dataset Train Valid Heldout

Random Target Task (artif.) 447 100 285
Random Target Task (bio.) 462 124 93

B Artificial neural activity from task-trained RNNs

B.1 Task training details

The architecture of the RNN was a Gated Recurrent Unit (GRU). The RNNs were trained for 1000
epochs with learning rate 1× 10−3 and no weight decay. The loss function was defined in terms of a
weighted combination of the L1 norm of the effector endpoint distance to the target, and an L2 norm
of the total activation of the muscles during behavior. Together with the variable timing of the go
cue and a limited number of steps within a trial (see Section B.2), these loss terms incentivize timely
completion of the task with minimal energy expenditure. The loss in total is given by Equation 11:

Ltask =
1

2

∑
i

||xi − xtarget||1 +
1

2

∑
i

||ai||22 (11)

Where x ∈ R2 is the position of the effector endpoint, xtarget ∈ R2 is the target location, and a ∈ R6

are the muscle activations. Additionally, a small (10−3) amount of normally distributed noise was
added to the outputs of the RNN to simulate motor noise.

B.2 Data sizes, alignment, and trial information

In each task, there were 1000 trials, split 800/200 between training and validation. The RNN has 128
hidden units, and each trial has a duration of 200 time steps. In order to analyze the neural activity of
the reaching behavior, we aligned the data to a window of [−10, 30] time steps around the go cue.
Since the go cue is given at a random time during the trial, any trials for which the go cue placement
conflicted with the alignment window were discarded. The resulting number of trials for each task are
given in Tables 1 and 2. The resulting datasets used for modeling had trials consisting of 40 timesteps
of activity across the 128 dimensions of the RNN during the window around the go cue.
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C Generating Neural Observations Conditioned on Codes with High
Information (GNOCCHI)

C.1 Hyperparameter selection

To select hyperparameters for GNOCCHI, we searched for hyperparameters using a simplified task-
trained RNN neural dataset, consisting of a single ring task in which the RNN produced reaches to a
set of radially distributed targets starting from a common center point for each reach. We first ran
a random search of 200 models, selecting hyper-parameters according to the ranges and sampling
procedures given in Table 3, with final parameters given in Table 4. After this search, we selected
the best model according to an even consideration of the MMD and score losses. To select the
diffusion-based hyperparameters, we ran a grid search over the ranges given in Table 4, with all other
parameters fixed. For each grid search, we also searched over 3 random seeds, and the parameter
selected was the one for which the model performance was the best, with consideration given to
the consistency across seeds. For the final hyperparameters, most of the choices were shared across
all the datasets, only varying the number of diffusion steps or the latent dimensionality as needed
(e.g. the code dimensionality for the random target task and biological random target task were 5
and 15 respectively, as shown by the bracketed values in Table 4). For the biological neural data,
we analyzed the trends in MMD and score loss to assess whether the parameters chosen from the
synthetic sweeps were effective. We found that increased code dimensionality and a larger number of
diffusion steps led to models with better score loss, settling on 15 and 500 for the code dimensionality
and number of diffusion steps respectively for modeling the biological neural data.

Table 3: Hyperparameter search: GNOCCHI

Parameter Search Type Search Range

Latent Dimensionality grid [1, 30]
αMMD grid [−0.9, 0]
λMMD grid [1, 1000]
score loss weight grid [0.1, 1]
recon loss weight grid [0.1, 1]
# of diffusion steps grid [25, 1500]
β range grid [(0.00001, 0.001), (0.01, 0.06)]

Auxiliary Encoder Hidden Size random choice [64, 128, 256, 512]
Auxiliary Encoder Dropout uniform random [0.0, 0.1]
Auxiliary Encoder Learning Rate random choice [0.000005, 0.00005, 0.0005]
Auxiliary Encoder Weight Decay random choice [0.0, 0.000001, 0.0001]
Noise Predictor Hidden Size random choice [1024, 2048, 4096]
Noise Predictor Dropout uniform random [0.0, 0.1]
Noise Predictor Learning Rate random choice [0.000005, 0.00005, 0.0005]
Noise Predictor Weight Decay random choice [0.0, 0.000001, 0.0001]
Noise Predictor Positional Embedding Size random choice [1, 5, 9, 13, 17, 21, 25, 29]

13



Table 4: Hyperparameters: GNOCCHI

Parameter Value

Latent Dimensionality {5, 15}
αMMD −0.5
λMMD 100
score loss weight 0.7
recon loss weight 0.3
# of diffusion steps {200, 500}
β range [0.001, 0.01]

Auxiliary Encoder Hidden Size 64
Auxiliary Encoder Dropout 0.09
Auxiliary Encoder Learning Rate 0.0005
Auxiliary Encoder Weight Decay 0.000001
Noise Predictor Hidden Size 4096
Noise Predictor Dropout 0.03
Noise Predictor Learning Rate 0.0005
Noise Predictor Weight Decay 0.0
Noise Predictor Positional Embedding Size 5

D LFADS

D.1 Model architecture and training details

For the artificial neural response experiments, LFADS was trained to minimize the mean-squared error
between the model output and the RNN hidden states, with KL regularization against a multivariate
normal prior with scaling given in Table 6. For the biological neural data experiment, LFADS was
trained to minimize the Poisson negative log-likelihood of the spiking activity, given the model output,
regularized by KL with scaling also given in Table 6. For each experiment, LFADS was applied using
the same set of hyperparameters, with the initial condition dimensionality for the artificial random
target task and biological random target task given in this order inside brackets in Table 6.

D.2 Smoothing the input to GNOCCHI

For the biological neural data experiments, we used the smoothed spiking activity from an LFADS
model as the input to the GNOCCHI-based model. This was due to the GNOCCHI-based model only
currently having been validated for MSE-based reconstructions. The hyperparameters of the LFADS
model are given in Table 5. These hyperparameters were selected according to Binary tournament
population-based training [33], as in the AutoLFADS framework [27]. As a control on whether the
held-out generalization results shown in Figure 4E are dependent on the method of smoothing for the
input to GNOCCHI, we compare to a GNOCCHI model trained on spikes smoothed with a Gaussian
kernel (s.d. 4 bins or 80ms). The results shown in Figure 5 demonstrate that held-out prediction of
target location is comparable between smoothing approaches.

D.3 Hyperparameter selection

The default parameters specified in [33] were used initially, and we found that these parameters
work well across each dataset. As a result, we have continued with these parameters, changing
only the initial condition dimensionality and turning off use of the controller network to ensure
comparable usage to GNOCCHI when doing latent navigation. To select the KL penalty, we did a
sweep across 4 values spanning the range [1× 10−8, 1× 10−4] across 5 random seeds, choosing the
top performing model according to validation set reconstruction performance. The parameters used
in each experiment are summarized in Table 6.
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(AutoLFADS Smoothing)
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Figure 5: Smoothing input to GNOCCHI with AutoLFADS vs. Gaussian kernel. We show
empirically that the prediction of held-out targets from GNOCCHI codes is not affected by whether
the data are smoothed using AutoLFADS or a Gaussian kernel.

Table 5: Hyperparameters: LFADS for smoothing GNOCCHI input

Parameter Value

Initial Condition Encoder Dimensionality 100
Initial Condition Dimensionality 100
Controller Input Encoder Dimensionality 80
Controller Input Lag 1
Controller Dimensionality 80
Controller Output Dimensionality 4
Generator Dimensionality 100
Factor Dimensionality 40
Coordinated Dropout [17] Rate 0.39
Initial Condition Prior Multivariate Normal
Initial Condition Prior Mean 0
Initial Condition Prior Variance 0.1
Controller Output Prior Auto-Regressive Multivariate Normal
Controller Output Prior τ 10
Controller Output Prior Variance 0.1
Dropout 0.061
RNN cell clip 5.0
Learning Rate 2.1× 10−3

Adam β1 0.9
Adam β2 0.999
Weight Decay 0.0
KL on initial conditions 2.8× 10−6

KL on controller output 5.6× 10−7

L2 penalty weight on generator 0.45
L2 penalty weight on controller 0.076

.
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Table 6: Hyperparameters: LFADS

Parameter Value

Initial Condition Encoder Dimensionality 100
Initial Condition Dimensionality {5, 15}
Generator Dimensionality 100
Factor Dimensionality 40
Coordinated Dropout [17] Rate 0.3
Initial Condition Prior Multivariate Normal
Initial Condition Prior Mean 0
Initial Condition Prior Variance 0.1
Dropout 0.02
RNN cell clip 5.0
Learning Rate 1.0× 10−2

Adam β1 0.9
Adam β2 0.999
Weight Decay 0.0
KL on initial conditions {1× 10−8, 1× 10−5}
L2 penalty weight on generator 0.0
L2 penalty weight on controller 0.0

E Compute resources

We used an internal computing cluster consisting of a combination of NVIDIA GeForce 2080 RTX Ti
and A40 GPUs. The single model runtime for GNOCCHI and LFADS is approximately 30 minutes
wall time, and the model parameter file sizes are roughly 450 MB and 0.66 MB, respectively.

F Open source packages used

• torch [18] (BSD license)
• pytorch-lightning [16] (Apache 2.0 license)
• ray.tune [14] (Apache 2.0 license)
• scikit-learn [3] (BSD license)
• lfads-torch [33] (Apache 2.0 license)
• PyTorch-VAE [22] (Apache 2.0 license)
• hydra [19] (MIT License)
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