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SUMMARY

Purpose: Hippocampal sclerosis, a common cause of refractory focal epilepsy, requires
hippocampal volumetry for accurate diagnosis and surgical planning. Manual segmen-
tation is time-consuming and subject to interrater/intrarater variability. Automated
algorithms perform poorly in patients with temporal lobe epilepsy. We validate and
make freely available online a novel automated method.

Methods: Manual hippocampal segmentation was performed on 876, 3T MRl scans and
202, 1.5T scans. A template database of 400 high-quality manual segmentations was
used to perform automated segmentation of all scans with a multi-atlas-based seg-
mentation propagation method adapted to perform label fusion based on local similar-
ity to ensure accurate segmentation regardless of pathology. Agreement between
manual and automated segmentations was assessed by degree of overlap (Dice coeffi-
cient) and comparison of hippocampal volumes.

Key Findings: The automated segmentation algorithm provided robust delineation of
the hippocampi on 3T scans with no more variability than that seen between different
human raters (Dice coefficients: interrater 0.832, manual vs. automated 0.847). In
addition, the algorithm provided excellent results with the 1.5T scans (Dice coefficient
0.827), and automated segmentation remained accurate even in small sclerotic hippo-
campi. There was a strong correlation between manual and automated hippocampal
volumes (Pearson correlation coefficient 0.929 on the left and 0.941 on the right in 3T
scans).

Significance: We demonstrate reliable identification of hippocampal atrophy in
patients with hippocampal sclerosis, which is crucial for clinical management of epi-
lepsy, particularly if surgical treatment is being contemplated. We provide a free
online Web-based service to enable hippocampal volumetry to be available globally,
with consequent greatly improved evaluation of those with epilepsy.

KEY WORDS: Hippocampal segmentation, Hippocampal sclerosis, Epilepsy surgery,
Magnetic resonance imaging.

The hippocampus is located within the medial temporal
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lobe and plays a key role in learning and episodic, semantic,
and spatial memory. Dysfunction has been reported in neu-
rologic and psychiatric disorders including epilepsy (Wu
et al., 2005), Alzheimer’s disease (Apostolova et al., 2006),
schizophrenia (Tanskanen et al., 2005), and depression
(Bremner et al., 2000).

Temporal lobe epilepsy (TLE) is the most common drug-
resistant focal epilepsy, with seizures frequently arising
from the hippocampus. In surgical series of TLE, the
pathology is often hippocampal sclerosis (HS) comprising
neuronal loss and gliosis and marked by atrophy and signal
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change on magnetic resonance imaging (Van Paesschen,
2004). Atrophy of the hippocampus through HS provides a
good biomarker for the laterality of the seizure focus (Ber-
nasconi et al., 2003), and combined with concordant neuro-
physiology and neuropsychological data can be sufficient to
recommend surgery. Hippocampal atrophy is associated
with a favorable surgical outcome (Schramm & Clusmann,
2008).

Visual assessment of hippocampal volumes is unreliable,
as it may be compromised by head position and primarily
detects hippocampal asymmetry rather than volume loss,
making bilateral atrophy difficult to identify. Hippocampal
segmentation and volumetry are thus important for diagno-
sis and surgical planning (Watson et al., 1997). The gold
standard for hippocampal segmentation is manual delinea-
tion by trained raters. This is accurate, reproducible, and
sensitive but is time-consuming, requires anatomic knowl-
edge, and is subject to interrater and intrarater variability.
The hippocampus is challenging to delineate as it is small
and highly variable with ill-defined margins. Many proto-
cols exist for manual segmentation depending on which
structures are included and the boundary definition (Konrad
et al., 2009).

Automated segmentation techniques aim to ensure opera-
tor independence, high reproducibility, and reduced demand
for human time and expertise. The strongest drive for auto-
mation has come from researchers working with large
cohorts of patients with Alzheimer’s disease patients.
Hippocampal volumes are an early marker for the disease,
are related to cognitive status, and may reflect disease
progression in clinical trials (Frisoni & Jack, 2011).

In atlas-based segmentation approaches, a template and
associated manual labels are registered (matched) to the
new image (Carmichael et al., 2005). Commonly used
methods, including FreeSurfer (Fischl et al., 2002), rely on
a single template so that subjects that differ significantly
from the template, for example HS, are poorly segmented.
Segmentation of hippocampi that are sclerotic is more
challenging than segmenting hippocampi in Alzheimer’s
disease, as the latter is associated with more prominent cere-
brospinal fluid (CSF)-hippocampal boundaries, whereas
the former is associated with signal change.

The use of an atlas with multiple template images is more
effective than a single template (Heckemann et al., 2006)
and depends on the quality of registration and template
selection strategy. Most previous atlas-based segmentation
studies used small template databases of healthy subjects.
Results obtained in TLE are significantly worse than in
healthy subjects or Alzheimer’s disease (Kim et al., 2012),
as aside from atrophy, approximately 40% of patients with
TLE demonstrate an atypical shape or position of the hippo-
campus (Bernasconi et al., 2005).

In this study, we adapted our published method devel-
oped for use in Alzheimer’s disease (Cardoso et al., 2013)
to a large cohort of adult patients with epilepsy by employ-

ing accurate nonlinear registration (Modat et al., 2010) and
a large template database that encompasses the range of
pathology observed in epilepsy at a tertiary referral center.
Manual segmentations of the most similar images from the
template database are combined using a label fusion strat-
egy based on local similarity to ensure accurate segmenta-
tion regardless of pathology. We demonstrate that this
technique achieves reliable segmentation with no more vari-
ability than that seen between different expert raters. The
algorithm is made freely available via an online Web-based
service (https://hipposeg.cs.ucl.ac.uk). In addition, the soft-
ware, scripts, and an anonymized version of the template
database are available from this website.

METHODS

Subjects

The Epilepsy Society MRI Unit opened in 1995 with a
1.5T General Electric Horizon EchoSpeed scanner (General
Electric, Waukesha, WI, U.S.A.), and upgraded to a 3T
General Electric Signa Excite HDx scanner (General Elec-
tric) in 2004. A dedicated epilepsy protocol magnetic reso-
nance imaging (MRI) acquisition was used throughout.

In clinical practice, manual hippocampal volumetry is
performed according to a standardized protocol. All clinical
scans acquired on the 3T scanner between July 2004 and
April 2012 with bilateral manual segmentations performed
with this protocol were retrieved (n = 884). Three scans
were excluded due to a nonstandard acquisition, and five
scans were excluded due to temporal lobe surgery involving
the hippocampus.

To validate the method using scans from a different scan-
ner and field strength, all clinical scans acquired on the 1.5T
scanner between May 2001 (when the manual segmentation
protocol was introduced) and June 2004 with bilateral man-
ual hippocampal segmentations were retrieved (n = 205).
Three scans were excluded due to surgery involving the hip-
pocampus.

Fifty healthy controls underwent scans on the 3T scanner,
and a subset of these (18 subjects) was segmented twice by
each of the two raters over a period of 3 months to assess
interrater and intrarater reliability of manual segmentation.

This study was approved by the local research ethics
committee. Because the study involved processing of anon-
ymized data that had been acquired previously, individual
patient consent was not required. All healthy controls pro-
vided written informed consent.

Image acquisition

MRI studies performed on the 3T GE scanner used stan-
dard imaging gradients (maximum strength of 40 mT/m,
slew rate 150 T/m/s), a body-coil for transmission, and an
8-channel phased-array coil for reception. Standard clinical
sequences included a coronal T;-weighted volumetric fast
spoiled gradient echo (SPGR) acquisition (170 contiguous
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1.1 mm thick slices, matrix 256 x 256, field-of-view
24 cm, in-plane resolution 0.9375 x 0.9375 mm, acquisi-
tion time 7 min 30 s). Six scans were acquired with thicker
1.5 mm slices and six were acquired with in-plane resolu-
tion 1.0938 x 1.0938 mm. These were included in the
analysis, as they represent standard clinical practice but
were not used for the template database.

On the 1.5T GE scanner, data were acquired with stan-
dard imaging gradients (maximum strength of 22 mT/m
and slew rate 120 T/m/s) and a circularly-polarized bird-
cage head-coil for transmission and reception. Clinical
sequences included a T;-weighted volumetric inversion
recovery-prepared spoiled gradient echo (IR-SPGR)
sequence (124 contiguous 1-5 mm thick slices, matrix
256 x 192, field-of-view 24 x 18 cm, in-plane resolution
0.9375 x 0.9375 mm, acquisition time 6 min 56 s).

Manual segmentation

Manual segmentations were performed using MReg, an in-
house software package (Lemieux et al., 2000). Each hippo-
campus was manually outlined on alternate coronal oblique
slices (3T) or every slice (1.5T) viewed at 4x magnification
by an experienced operator (EW/IB). The entire length of
each hippocampus was segmented according to previously
described anatomic landmarks (Cook et al., 1992).

In brief, the posterior limit was the slice in which the
greatest length of fornix was visible whereas the medial
limit was the open end of the hippocampal fissure in the pos-
terior/middle portions and the uncal fissure anteriorly. The
white matter of the temporal stem and/or cerebrospinal fluid
in the temporal horn provided the lateral limit. The head of
the hippocampus was distinguished from the overlying
amygdala by the presence of the alveus or uncal recess. The
alveus, fimbria, and choroid plexus were all included in the
measurement, as exclusion would have been too difficult.

The right hippocampus was measured first followed by
the left. Hippocampal volumes were derived by multiplying
the sum of the cross-sectional area within the traced contour
on each slice by the slice thickness and doubled for 3T data
(only alternate slices were measured). Manual segmentation
of 3T scans took 15 min per hippocampus.

Automated segmentation

Manual segmentation contours were converted to voxel-
based representations, where each voxel was included if the
contour enclosed at least half of it. For 3T data, a double
slick thickness was used to account for alternate slice
segmentation. A template database of high quality 3T scans
and bilateral manual segmentations was created by a neurol-
ogist (GW) and radiographer (EW) reviewing the scans
sequentially until 400 scans without artifacts (e.g., motion)
and with reliable manual segmentations had been selected.
This is significantly larger than previous template databases
used in Alzheimer’s disease, but was done in order to
encompass a wide range of hippocampal pathologies.
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Segmentation was performed using the STEPS (Similar-
ity and Truth Estimation for Propagated Segmentations)
algorithm (Cardoso et al., 2013). This is a multi-atlas—based
segmentation propagation method based on STAPLE
(simultaneous truth and performance level estimation)
(Warfield et al., 2004) but adapted to use a local ranking
strategy (according to image similarity) for template selec-
tion, thus enabling reliable segmentation of hippocampi
with variable morphologies, as may occur in HS.

First, group wise templates of the anatomic scans and
hippocampal segmentations were created using a previously
described method (Rohlfing et al., 2004). The first iteration
selects one arbitrary individual image as a reference and
registers each of the remaining images to the reference
using an affine transformation. Using these transformations,
an average image is computed. In the second iteration, all
individuals including the initial reference are registered to
the average image by nonrigid transformations. A new aver-
age image is generated using the new transformations and
used as the reference for the following registration iteration.
The procedure is repeated until convergence.

Next, the subject scan to be segmented was nonlinearly
registered to the group template using Fast Free Form
Deformation, and the hippocampal segmentation templates
were each propagated to the subject scan to give an approxi-
mate location for the hippocampus. A region-of-interest
was extracted from the subject scan encompassing this
region.

Each scan in the template database was coarsely regis-
tered to the region-of-interest, and the most representative
75 subjects were selected on the basis of the highest normal-
ized cross-correlation between the subject scan and the reg-
istered template. A finer more accurate registration of these
75 subjects to the region-of-interest was performed, and the
same transformations were applied to the manual hippocam-
pal segmentations for these scans.

The 15 most similar subjects at each spatial location
were selected according to the locally normalized cross-
correlation over a Gaussian kernel with standard devia-
tion of 2 voxels and fused using a probabilistic frame-
work that iteratively estimates the most likely true
segmentation and performance parameters (Fig. 1). Spa-
tial smoothness was enforced using a Markov Random
Field (beta = 0.5).

The entire process, from retrieving the images from the
scanner database to the final hippocampal segmentations
and volumes of each side, took approximately 30 min per
subject using a Linux workstation with a quad-core Intel
Xeon processor (Dell, Round Rock, TX, U.S.A.) running at
3-20 GHz with less than a minute of operator time.

Degree of overlap

The overlap between manual and automated segmenta-
tions was quantified using the Dice coefficient, which
ranges from O (no overlap) to 1 (complete overlap).
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Figure 1.

Automated hippocampal segmentation algorithm. The templates that are the most similar to the new image are selected from the tem-

plate database and fused to produce the new segmentation.
Epilepsia © ILAE

Dice coefficient = [2 X Volume(manual N automated)]/

[Volume(manual) + Volume(automated)]

Because manual segmentations were performed on alter-
nate slices but automated segmentations describe each slice,
the manual segmentations were resampled to the resolution
of the automated segmentations to compute these measures.

Dice coefficients were calculated for the manual segmen-
tations of the 18 healthy controls to assess interrater and
intrarater reliability.

Hippocampal volumes

The automated and manual volumes for the hippocampi
on each side were compared by linear regression in PASW
Statistics v18 (SPSS; Chicago, IL, U.S.A.), and Bland-Alt-
man plots were used to assess the equivalence of these mea-
surements without correction for intracranial volume.

Clinical practice requires correction for intracranial vol-
ume, as hippocampal volumes vary with brain size (Free
et al., 1995). Intracranial volume was estimated by applying
the same algorithm with a template database of brain seg-
mentations. Linear regression was used to determine the
relationship between hippocampal volumes and intracranial
volume in the 100 hippocampi of 50 healthy controls. Hip-
pocampal volumes were corrected by the following formula
where Grad is the gradient of the regression line and ICV is
intracranial volume:

Corrected volume = Measured volume
—Grad(ICV — ICV jean)

Volume classification
A scatter plot of sum of corrected automated volumes
versus difference in corrected automated volumes (left—

right) was used to illustrate the discriminating power of the
volumes between different groups, but all other data are
presented with uncorrected volumes. The discriminating
power was assessed between different clinical classifica-
tions (normal, left hippocampal atrophy, right hippocampal
atrophy, bilateral hippocampal atrophy) as determined by a
neuroradiologist based on visual review, manual hippocam-
pal volumes, and T2 measurements, and secondly between
different pathologic classifications (normal hippocampus,
left HS, right HS) in those patients who had undergone tem-
poral lobe resection.

RESULTS

Template database

The 400 patients (199 male) in the template database had
amedian age of 34 years (interquartile range [IQR] 26-42),
median age of onset of epilepsy 12 years (IQR 7-21), and
median duration of epilepsy 18 years (IQR 10-28).

Degree of overlap (Dice coefficients)

The Dice coefficients for both 3T and 1.5T scans were
comparable to the interrater reproducibility in healthy sub-
jects regardless of the size of the hippocampi (Table 1). Lin-
ear regression demonstrated that for each 1 cm? reduction
in hippocampal volume, the Dice coefficient for 3T scans
fell by only 0.028 (left) or 0.030 (right). This minor drop in
segmentation performance is expected, as the Dice coeffi-
cient is naturally lower for smaller structures. Thus auto-
mated segmentation remained accurate in small sclerotic
hippocampi.

Hippocampal volumes

At 3T, there were strong correlations between manual
and automated volumes for both the left (Pearson correla-
tion coefficient 0.929, one-tailed p < 0.001) and right
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Table I. Overlap between manual and automated hippocampal segmentation
Dice coefficients—mean (SD)
Number Left Right Both

3T patient scans

All scans 876 0.844 (0.043) 0.850 (0.036) 0.847 (0.040)

Subset in template database 400 0.854 (0.032) 0.861 (0.031) 0.857 (0.032)

Subset not in template database 476 0.836 (0.049) 0.840 (0.037) 0.838 (0.043)
1.5T patient scans

All scans 202 0.824 (0.036) 0.830 (0.036) 0.827 (0.036)
3T control scans

Interrater 18 0.824(0.023) 0.840 (0.018) 0.832(0.022)

Intrarater 18 0.893 (0.022) 0.890 (0.025) 0.891 (0.024)

(0.941, p < 0.001) hippocampi (Fig. 2). The outlier for the
left hippocampus reflected inaccurate automated segmenta-
tion owing to poor image registration in a subject with an
extensive childhood stroke resulting in destruction of the
majority of the left hemisphere. On the right, one subject
had a particularly large dysplastic hippocampus, whereas
the single outlier was a patient with subependymal heterot-
opia in whom some of the heterotopic gray matter was mis-
classified as being part of the hippocampus. Bland-Altman
plots confirmed no bias between manual and automated
measurements (Fig. 3). Similar results were obtained with
the 1.5T scans using the 3T template database with correla-
tions of 0.918 (p < 0.001, left) and 0.924 (p < 0.001, right)
(Fig. S1).

Hippocampal volumes and intracranial volumes

Larger hippocampal volumes in healthy controls were
associated with larger intracranial volumes, leading to the
following equation to correct for the intracranial volume:

Corrected volume = Measured volume — 0.000902 x
(ICV — 1560)

The reference range for hippocampal volumes in these
healthy controls based on the mean + 1.96 standard devia-
tions (SD) was 2.42-3.28 cm®.

The corrected hippocampal volumes in patients are
shown split by clinical classification in Fig. 4, with the data
summarized in Table 2. Of the 146 subjects who underwent
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Figure 2.

Manual and automated hippocampal volumes on 3T scans. There is good agreement between the volumes for both the left and right

hippocampi.
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Corrected volumes and asymmetry for subjects in the template
database. Scatterplot of sum of left and right hippocampal volumes
versus difference between these volumes (corrected for intracra-
nial volume) divided into groups by the prior clinical classification.
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temporal lobe resection involving the hippocampus, those
with classical hippocampal sclerosis on histology (n = 95)
had hippocampal volumes of 1.12-3.22 cm® (mean 1.90,
SD 0.391) and those with normal hippocampi (n = 37) had

Table 2. Corrected hippocampal volumes by group
Left hippocampal  Right hippocampal
Group volume (cm®) volume (cm®)
For correction of volumes
Healthy controls (n = 50) 2.84 (0.224) 2.85(0.216)
By clinical classification
Normal (n = 261) 2.79 (0.278) 2.89 (0.267)
Left hippocampal atrophy 1.91 (0.395) 2.92(0.336)
(n=70)
Right hippocampal atrophy 2.79 (0.279) 1.92 (0.309)
(n=57)
Bilateral hippocampal atrophy 1.80 (0.290) 1.89 (0.324)
n=12)
By operative histology
Normal (n = 37) 2.80(0.215) 2.91 (0.254)
Left hippocampal sclerosis 1.90 (0.383) 2.96 (0.287)
(n = 50)
Right hippocampal sclerosis 2.80 (0.278) 1.90 (0.404)
(n = 45)

hippocampal volumes of 2.20-3.39 cm® (mean 2.87, SD
0.255). Fourteen subjects with only end folium gliosis or
sclerosis that may not be associated with volume change
were excluded. Note, however, that in clinical practice,
decisions regarding epilepsy surgery involve many other
data as well as hippocampal volumes.

Di1SCUSSION

Summary of main findings
We demonstrate robust, automated hippocampal segmen-
tation and volumetry in an epilepsy population, giving

Epilepsia, 54(12):2166-2173,2013
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reliable identification of hippocampal atrophy in patients
with HS. This is crucial for clinical management of epi-
lepsy, particularly if surgical treatment is being contem-
plated. In addition to determining the presence of atrophy in
a potentially epileptogenic hippocampus, the integrity of
the contralateral hippocampus can be determined.

A particular feature was a template library of 400 adult
patients with epilepsy including the range of severity of HS,
from unilateral and focal to bilateral and diffuse. This was
created using 3T data and also gave excellent results on data
acquired on a different 1.5T scanner. This suggests that the
algorithm should remain robust across different platforms
with different hardware and pulse sequences.

Online automated segmentation

We provide for the first time a free online web-based
automated hippocampal segmentation algorithm based on
this large template database. Previous databases for hippo-
campal segmentations have been typically small and
include only healthy individuals (Internet Brain Segmenta-
tion Repository, 18 healthy subjects, http://www.cma.mgh.
harvard.edu/ibsr/; LONI Probabilistic Brain Atlas, 40
healthy subjects, http://www.loni.usc.edu/atlases/LPBA40;
Hammers atlas, 20 healthy subjects, http://www.
brain-development.org/). The Alzheimer’s Disease Neuroi-
maging Initiative (ADNI, http://www.adni-info.org) pro-
vides a larger dataset, but segmentations are semi-
automated rather than entirely manual. For epilepsy, there is
a single database of 40 patients with epilepsy and 10 healthy
controls acquired on two different scanners with labels pro-
vided for half of the scans (Jafari-Khouzani et al., 2011).

Previous algorithms for automated hippocampal
segmentation in epilepsy

Several groups have applied automated segmentations in
patients with epilepsy. A common theme is inferior perfor-
mance of automated segmentation in diseased hippocampi.
A single template used in five patients with mesial TLE
achieved a Dice coefficient of 0.83 in healthy hippocampi
but only 0.67 on the sclerotic side (Hogan et al., 2000). A
multi-atlas technique in nine patients with mesial TLE
achieved a Dice coefficient of 0.83 on the healthy side but
0.76 in the diseased hippocampi (Hammers et al., 2007). A
recent entropy-based segmentation algorithm using multi-
ple atlases achieved a Dice coefficient of only 0.72 in 46
subjects with mesial TLE. The atlases for all these studies
were derived from healthy subjects.

A comparison of the automated methods of FreeSurfer
(single atlas) and FMRIB Software Library (FSL) (shape
and appearance-based model) gave Dice coefficient of
0.71-0.73 in controls, but 0.62—0.66 in mesial TLE (Pardoe
et al., 2009). The best results to date have come from a
semi-automated method implemented in the ANTS toolkit
that achieved a Dice coefficient of 0.83 in diseased hippo-
campi (Pluta et al., 2009), and an automated method with

Epilepsia, 54(12):2166-2173,2013
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hybrid constraints that achieved a Dice coefficient of 0.84 in
a mixed group (8 controls, 15 with epilepsy including 8 HS)
(Chupin et al., 2009).

Performance of the present algorithm

In individuals with hippocampal pathology, template
selection is critical (Avants et al., 2010). Our technique uses
a large template database to encompass a variety of hippo-
campal pathologies. This is critical when around 40% of
patients with TLE have an atypical shape or position of the
hippocampus (Bernasconi et al., 2005). The templates for
the most similar scans within this database are used to pro-
duce a segmentation of a new scan, thus allowing accuracy
to be maintained regardless of pathology.

The Dice coefficient of the automated method equals
(1.5T, 0.827) or exceeds (3T, 0.844) the interrater Dice coef-
ficient (0.832). Therefore the automated segmentation intro-
duces no more variability than that seen between different
raters when applied to scans from two different scanners and
field strengths. Unlike previous methods, the Dice coeffi-
cient does not markedly decline with small sclerotic hippo-
campi. The method was robust with only three poor results
among over 1,000 scans at different field strengths. How-
ever, it remains important to review any automated results
obtained to ensure that they are reasonable. The automated
protocol has the further great advantage that the possibilities
of human error and inconsistency are avoided.

Limitations

Assessment of the Dice coefficient requires segmenta-
tions in the same format, so it was necessary to convert the
manual contour-based representations to voxel-based seg-
mentations first. These differences may explain the slight
offset of the regression lines between manual and automated
volumes and demonstrate that it is necessary to produce
new reference ranges for the automated volumes, with cor-
rection for intracranial volume.

Manual segmentations of 3T scans were performed on
alternate slices, which may reduce the maximum Dice coef-
ficient that can be achieved. Although this limits the resolu-
tion of the template database, this effect should be mitigated
by the merging of multiple segmentations to produce a new
automated segmentation. The technique presented relies
solely on volume-based analysis, but some recent
approaches suggest there may be merit in including shape-
based analysis (Coupe et al., 2012).

Future application

We have made the algorithm available freely online so
that individual T;-weighted MRI scans may be subject to
automated hippocampal volumetry for the diagnosis of uni-
lateral and bilateral hippocampal atrophy in those with epi-
lepsy. This will result in reliable hippocampal volumetry
being available globally, with consequent greatly improved
evaluation of those with epilepsy. Finally, with an
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appropriate template library, our hippocampal volumetry
technique can be extended to other populations, such as
patients with dementia or a pediatric population.
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