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The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of 
advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful 
applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. 
Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into 
a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among 
multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of 
DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. 
Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application 
purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation 
models.  
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Introduction

The aim of radiation therapy (RT) is to deliver clinically 
effective dose to the target while minimizing dose to the 
surrounding normal tissues. Diverse advanced techniques have 
been introduced into the field of radiation oncology during the 
last two decades in order to get closer to this goal. One of the 
most impactful advancements is a sophisticated beam delivery 
method with intensity modulation (i.e., intensity-modulated 
radiation therapy and volumetric modulated arc therapy). 
Another instrumental advancement is combining imaging 
into treatment, such as on-line imaging and integrating 
multi-modality images. Modulated beams generate more 
conformal dose distribution to a target while sparing nearby 
normal structures even when those normal structures are 

located at the concave region of the target [1]. However, the 
conformal dose distribution is only achieved on the planning 
image set which is a snapshot of patient anatomy during a 
long treatment period. Inter- and/or intra-factional anatomy 
changes from the planning image set may deteriorate the 
dose conformality in actual delivered dose distribution. The 
use of more frequent on-line imaging, such as cone beam 
computerized tomography (CBCT) [2], CT on the rail [3], and 
integrated magnetic resonance imaging (MRI) [4], can detect 
these anatomic changes and aid in correcting or minimizing 
the effect of such changes. Multimodality images like positron 
emission tomography (PET) and MRI are used to define the 
target more accurately and can help reduce the clinical 
target volume margin [5,6]. As a consequence, the number of 
imaging data sets taken during the treatment has increased 
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significantly in advanced radiation therapy.  
The increased amount of imaging data allows for analysis 

of the relationship between a target response and delivered 
dose and/or a target shape/position change depending on the 
condition of nearby normal organs (e.g., whether the bladder 
and/or rectum is filled or empty). However, this is only possible 
when proper image registration is achievable. The imaging 
data may be taken within different timeframes (i.e., multi-
temporal), from different imaging devices (i.e., multi-modality), 
and/or of certain populations of patients (i.e., multi-subject). 
By way of explanation, while two image sets are aligned on 
a reference coordinate, a pixel/voxel on the same coordinate 
may not necessarily represent the same anatomical structure. 
Methods used in image registration aim to resolve this issue.

Image registration can simply be described as a way to find 
the spatial correspondence between two or among multiple 
sets of images [7,8]. Consider two sets of images, a fixed one,   
F(x) and a moving one, M(x'). Image registration tries to find 
the best transform, T(x') that minimizes the difference between   
F(x) and M(T(x')). Transform is the sum of the local position 
vector in the moving image, x', and the displacement vector, 
u(x'). Thus, an ideal image registration between two image sets 
can be expressed as: 

	 F (x)=M(T(x'))=M(x'+u(x'))	 (1)

Image registration can be categorized into two groups: 
rigid and non-rigid. Non-rigid image registration is also 
known as deformable image registration (DIR). In rigid image 
registration (RIR), all pixels move and/or rotate uniformly so 
that every pixel-to-pixel relationship remains the same before 
and after transformation. In DIR, however, those pixel-to-pixel 
relationships change (Fig. 1). 

RIR has long been used in radiation therapy (e.g., CT-to-
MR information fusion). It is widely recognized that RIR is 
very effective in cases when no anatomic change is expected. 
Sometimes, however, patients do experience anatomical 
structure changes due to weight loss, tumor shrinkage, and/
or physiological organ shape variation, which often cannot 
be handled by RIR at all. In comparison to RIR, DIR has a 
significantly greater number of degrees of freedom (DOF). 
Therefore, DIR can manage local distortion between two 
image sets (i.e, anatomical structure changes). A DIR algorithm 
consists of 3 core parts: objective function, optimization 
method, and deformation model. Thus, it can be categorized 
depending on the method used in each core part.

DIR has been studied since the early 1980s and its early 

clinical applications can be found in the field of brain surgery 
and neuroscience [9]. DIR had not been widely studied in RT 
until the late 1990s mainly due to limited computing power 
and the lack of interest. The size of a typical volumetric 
image in RT was much larger than that in brain surgery or 
neuroscience thus, required higher computing power to 
handle images in larger sizes. Up until the mid-1990s, the 
most common treatment techniques were 2D planning or 
3D conformal radiation therapy. The dose distribution inside 
a field was assumed to be homogeneous so no complicated 
algorithm was needed to calculate the delivered dose. Patients 
often had only one or two volumetric image sets.  

A new RT concept, adaptive radiation therapy (ART), was 
proposed in the late 1990s [10]. A key feature of ART was 
to update/modify a treatment plan based on the systematic 
feedback of measurements [11]. The systematic feedback could 

A B
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Fig. 1. Two image sets, a fixed image (A) and a moving image 
(B), were registered using image registration algorithms. Rigid 
image registration could not register the four sharp corners of 
the rectangle in the moving image into the rounded boundary in 
the fixed image. Deformable image registration locally deformed 
the four sharp corners with a different amount of deformation 
(or displacement). (C) The 2D deformation vector field (DVF) 
was displayed as blue arrows with the edge of the moving 
image object. The size and direction of the arrows represent the 
magnitude and direction of DVF. The magnitude of deformation 
is the largest at the corners and gradually decreases. (D) The 
deformed results with DVF.  
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be an accumulated dose distribution delivered through a 
certain number of fractions during a multi-fraction treatment 
course [12] and/or the predicted patient anatomy at a certain 
point during the course of treatment [13].  Yan et al. [12] 
introduced a dose accumulation method based on a DIR. 
Shortly thereafter, the concept of DIR began to gradually adapt 
into RT. It has since been widely studied by virtue of advances 
in computing power, modulated beam delivery techniques, and 
on-line imaging.  

In this review article, DIR techniques are discussed in terms 
of clinical application, validation and algorithm. The majority of 
articles reviewed were from major radiation therapy journals, 
while a few critical articles published in other fields (e.g., 
computer science and medical imaging) were also included. 
Because this article is mainly intended for clinicians, technical 
descriptions were simplified and the section of algorithm, the 
most technical part, was intentionally placed close to the end 
of the article not to discourage readers reading this article. 
Note a few of inevitable mathematical expressions were 
included for better understanding in explaining the types of 
DIR algorithms.

Application

Although there is no boundary to implement DIR in the field of 
RT, the application of DIR could be categorized into four major 
fields: dose accumulation, mathematical modeling, automatic 
segmentation, and functional imaging. As stated above, the 
main role of DIR is to define spatial correspondence between 
two considered image sets. The only difference among these 
four applications is how the generated correspondence 
information is used. Dose accumulation uses the information 
to map a dose distribution from updated images to a reference 
image. Mathematical modeling uses the information itself 
to find the statistic of motion or deformation in considered 
organs. Automatic segmentation uses the information to map 
a contour from a reference image to updated images. Finally, 
functional imaging uses the information to evaluate the 
functional capability of a certain organ (e.g., ventilation ability 
in a lung). 

1. Dose accumulation
Dose accumulation [12,14-16] was the first application of DIR 
in radiation therapy, and was used in order to better estimate 
the actual delivered dose. The planning dose on a planning 
image is not the real delivered dose during treatment due to 
inter- and intra-fractional motion/anatomy changes. Yan et 

al. [12] considered the dose accumulation during a course of 
treatment and attempted to assess inter-fractional deviations. 
The displacement vector field (DVF) was calculated from the 
planning image set (i.e., moving image) to each daily image 
set (i.e., fixed image) using a biomechanical model based 
on the finite element method (FEM). The dose distribution 
of a region of interest (ROI) was estimated using the DVF 
and the planning dose distribution. Christensen et al. [14] 
proposed a method of dose accumulation between two 
different treatment modalities, external radiation therapy and 
intracavitary brachytherapy for cervix cancer patients. The 
DVF to be used for combining dose between external beam 
therapy and brachytherapy was calculated from the planning 
image set of the external beam therapy to each brachytherapy 
image set using the volumetric fluid registration (or viscous 
fluid flow). Schaly et al. [15] presented a dose accumulation 
procedure during external radiation therapy for prostate using 
the thin-plate splines (TPS). The dose difference was up to 29% 
between the planned dose and the accumulated one. Velec 
et al. [16] investigated the effect of breathing motion (intra-
fractional deviations) on dose accumulation by using an FEM-
based DIR algorithm. They calculated the DVF from the end-of-
exhale (EOE) phase to the end-of-inhale (EOI) phase. The DVF 
was then utilized to estimate inter-phase dose distributions 
based on weighted interpolation between the EOE and EOI 
dose distributions.   

Commonly, a dose accumulation method deforms dose 
grid points based on the calculated DVF from DIR and then 
simply adds up the deformed doses of a number of fractions 
on reference grids. One of challenging problems of the current 
dose accumulation process is the lack of a clear description 
about mass change during treatment periods. The cumulative 
deposited energy estimated on the reference image set may 
not be consistent with the sum of actual deposited energy on 
each image set. Note that ‘energy’ is different from ‘dose’ and 
it is ‘dose’ times ‘mass’ (i.e., E = D × M). 

2. Mathematical modeling
Mathematical modeling is similar to a process of obtaining 
a probability density function for an object in 3D space. 
By defining inter- and intra-patient correspondence from 
multiple imaging data sets using DIR, a mathematical model of 
organ motion and deformation [13,17-19] could be generated 
and used for ART. Sohn et al. [13] proposed a method of 
modelling inter-fractional organ motion and deformation 
using repeated CT images of a prostate cancer patient. They 
defined the correspondences among CT images using the FEM 
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based DIR. The organ motion was simulated using the principal 
component analysis (PCA). To eliminate the dependency of 
manual segmentation on segmenting subjects and improve 
segmentation efficiency, Nguyen et al. [17] introduced a 
population liver motion model using the FEM based DIR. 
They considered the summation of the involved patients’ 
liver structures as a population liver model. The population 
liver model was rigidly registered to the liver structure of 
each individual patient based on PCA in the EOE first, then 
non-rigidly registered using the FEM based DIR program to 
obtain the population liver model at EOE. The population 
liver model at EOE was rigidly registered to the liver structure 
of the patient at EOI based on center-of-mass. Then it was 
deformed to finally obtain the population liver motion model. 
The authors claimed that the model could be used in online 
motion assessment. Budiarto et al. [18] built a population 
prostate motion and deformation model using CT scans of 
prostate patients in order to describe the patient-specific 
local probability distributions of motions. The correspondence 
between inter- and intra-patient prostates was found using 
DIR based on thin-plate-spline robust-point-matching (TPS-
RPM). The population model was described using a limited 
number of eigenmodes obtained from PCA. Oh et al. [19] 
proposed a method to model spatial and temporal geometric 
changes using weekly MR images of cervix canter patients. 
They defined the inter- and intra-patient correspondences 
through a common coordinate using a 3D surface DIR 
algorithm based on a parametric active contour. A population 
based anisotropic margin model was generated based on the 
calculated correspondences. 

3. Automatic segmentation
Automatic segmentation [20-24] is also proposed as an 
application of DIR and has used pre-defined reference segment 
data and correspondence data based on DIR. Shekhar et al. 
[20] proposed the automatic segmentation methods using the 
B-spline based free-form deformation (i.e., DIR). They tested 
their method using 4D CT images of lung and abdomen cancer 
patients. In the automatic segmentation procedure discussed 
by another group [21-24], contours in a reference image were 
deformed to CT image sets obtained during treatment course 
by DVF defined by the ‘Demons’ DIR algorithm or the fact free-
form DIR algorithm via calculus of variations. They evaluated 
their method on head and neck cancer patients [21,22]; head 
and neck, prostate, and lung cancer patients [23]; and breast 
cancer patients [24]. 

4. Functional imaging
The functional imaging technique had been proposed using 
the volume changes of each voxel in 4D images [25-27]. 
Guerrero et al. [25] proposed a method to simulate ventilation 
image using 4D CT images and DIR algorithm based on 
optical flow. The volume change of each voxel between the 
exhale image and inhale image was calculated based on the 
correspondence information from a DIR algorithm. Yaremko 
et al. [26] expanded the idea to 4D CT images and proposed 
intensity-modulated radiation therapy optimization using a 
lung functional image set generated based on 4D CT and DIR. 
A similar approach was tested by Yamamoto et al. [27].  

In these approaches, DIR was applied to multiple anatomic 
image sets and the outcome of such process was functional 
information. Thus, it is termed with ‘functional imaging’ but 
different from typical functional imaging based on a functional 
imaging modality (e.g., PET or MRI unit).   

Validation of DIR Algorithm

The result of deformable image registration is a deformation 
vector field which describes the correspondence between 
the fixed and moving images. The known correspondence 
information between the two image sets is essential for 
validating DIR algorithms. To define the correspondence 
information as a ground truth, there are three commonly used 
methods: (1) based on anatomical landmarks, (2) physical 
phantoms, and (3) digital phantoms. 

1. Anatomical landmarks
Anatomical landmarks based validation is the most intuitive 
thus, considered the best approach. The performance of DIR 
algorithms can be directly estimated and compared by using 
anatomical landmarks in actual patient images. However, the 
anatomical landmarks are not enough to cover whole image 
areas. DIR is a rather local registration than global one in 
contrast to RIR. It is impossible to measure the accuracy of 
registration where the landmarks do not exist. It is difficult 
to define anatomical landmarks in certain organs, such as the 
rectum, small bowel, uterus, bladder, etc. Some researchers 
injected lipiodol markers [28] and used implanted stents or 
seeds [29]. The deformation results may be different with and 
without these markers, especially for DIR algorithms using 
image intensity similarity metrics, because these markers have 
different image intensity from surrounding tissues. Some 
researchers made attempts to collect patient image sets with 
manually identified anatomical landmarks information and 
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then shared that information publically [30]. 
Brock and Deformable Registration Accuracy Consortium 

[31] published results of a multi-institution DIR accuracy 
comparison using lung, liver, and prostate patient images based 
on anatomical structures localized by radiation oncologists. In 
this paper, a total of 21 institutions sent deformation results 
using their own DIR algorithms and the authors analyzed 
the accuracy of deformation results based on the anatomical 
structures. They considered slice thickness of 4D CT data (2.5 
mm) as a performance criterion. For lung 4D CT image sets, all 
replied 21 algorithms satisfied the criterion along all directions 
by the virtue of the consistent contrast between the two 
image sets. However, the maximum errors were up to 12 mm. 
For liver 4D CT, 7 out of 20 algorithms satisfied the criterion 
along three directions. The maximum errors were up to 13 mm. 
For the liver MRI-CT image sets, only 3 institutions sent the 
deformation results and the mean absolute error ranged from 
1.1 to 5.0 mm. The prostate MRI image sets were found to be 
very challenging due to artifacts caused by gas in the rectum 
along with substantial deformation of the prostate. There were 
3 investigators who did submit their prostate results.  

Kadoya et al. [32] published a multi-institutional comparison 
study using 10 thoracic cancer patients with manually 
defined anatomical landmarks. Each institution reported DIR 
results of 10 patients’ data using commercial DIR softwares—
RayStation (RaySearch Laboratories, Stockholm, Sweden), MIM 
Software (Cleveland, OH, USA), and Velocity (Varian Medical 
Systems, Palo Alto, CA, USA). The institution number which 
reported the results using RayStation, MIM software, and 
Velocity was 4, 5, and 3, respectively. In RayStation group, the 
institution used a hybrid DIR with ‘focus ROI’ option showed 
the highest accuracy.  The results from 5 institutions of MIM 
group showed similar accuracies from each other within the 
group, and it was likely because there were few parameter 
settings that could be changed by the users. One institution 
manually applied rigid registration before applying deformable 
registration and obtained the best accuracy among the 5 MIM 
institutions. Velocity group exhibited relatively lower accuracy 
than RayStation and MIM at least with the given tested cases. 
The longest calculation time was reported by one of Velocity 
group but, it was still in the order of 3 minutes. 

2. Physical phantom
The use of physical phantoms was proposed to evaluate DIR 
algorithms by generating known deformation [33]. Using a 
phantom, two or more sets of images were obtained with 
different statuses of deformation. The DVF was calculated 

based on the phantom correspondence information and 
was considered the ground truth. Next, a DIR algorithm was 
evaluated using the phantom image sets and the DVF from 
the DIR algorithm was compared with the ground truth. 
The distribution and density of the known correspondence 
information could be modified and optimized by changing 
the phantom design. The drawbacks of the phantom were its 
insufficient anatomical structures and unrealistic deformation.  

Kashani et al. [34] compared the accuracy of DIR algorithms 
using image sets of a physical phantom proposed in [33]. 
They obtained inhale and exhale image sets using their 
anthropomorphic thoracic phantom which included a chest 
wall, skeleton, and compressible section. The phantom had 48 
small, manually localized plastic markers. They tested 8 DIR 
algorithms from 6 institutions. All tested algorithms used an 
image intensity based similarity metric. One interesting finding 
was that while some methods showed relatively uniform 
accuracy throughout the whole phantom, others exhibited 
local dependency.   

3. Digital phantom
The approach of digital phantoms is similar to that of physical 
phantoms. One image set is considered as a reference image 
set. Another image set is synthesized using a pre-defined DVF 
and considered a deformed image set. Then, a DIR algorithm is 
used to deform the reference image set to the deformed image 
set. The digital phantom gives the densest DVF information. 
Unlike the anatomical landmark or physical phantom 
approaches, however, the pre-defined DVF may be physically 
inappropriate. Pukala et al. [35] compared five commercialized 
DIR software programs using the digital phantom approach 
with 10 head and neck patient cases. 

4. Application purpose
Another validation method is based on the purpose of the DIR 
application, like contour propagation and dose accumulation. 
Hardcastle et al. [36] used the physician-drawn contours as a 
validation metric to evaluate DIR algorithms. They propagated 
the gross tumor volume and OAR ROIs from a planning CT 
to a treatment CT for 22 patients based on the DVF from DIR 
algorithms. The quality of the propagated ROI was evaluated 
based on the Dice volume overlap score. Yeo et al. [37] developed 
a tissue-equivalent, deformable gel phantom. They obtained an 
initial CT image along with 3 deformed CT images and calculated 
the accumulated dose based on the DVF from 11 DIR algorithms. 
The accuracy of the dose accumulation was evaluated with the 
measured dose distribution based on the gamma index. 
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Types of DIR Algorithms

The process of image registration was concisely explained 
before reviewing the types of DIR algorithms. The goal of 
image registration is to identify the best transformation vector, 
T(x') where x' is a position vector (i.e., pixels) in a moving 
image, M, which maximizes the similarity between M(T(x')) 
and F(x) where F is a fixed image. Before starting the DIR 
process, the moving image is globally aligned with the fixed 
image based on a rigid body registration (6 DOFs: translation 
and rotation along x-, y-, and z-axis) or affine translation (12 
DOFs: translation, rotation, scale, and shear along x-, y-, and 
z-axis). Next, the local area of the moving image is registered 
to the fixed image using DIR algorithms. The DIR process 
starts iteratively with respect to the optimization algorithms. 
In an iteration process, the DVF is generated according to a 
transformation model and the deformed moving image is 
generated. The objective function is also updated with the 
deformed moving image. The optimization algorithms attempt 
to locate local/global minima. Fig. 2 shows the flow chart of 
the process. DIR algorithms can be categorized based on three 
main parts; objective function, transformation model, and 
optimization algorithm. 

As mentioned earlier, the medical application of image 
registration had been studied in the field of brain surgery and 
neurosciences since the early 1980s [9]. Since then, a vast 

amount of image registration methods have been proposed. 
Review articles have been published in the following different 
fields; computing science [38], medical image [8], and radiation 
oncology [7,39]. Zitova and Flusser [38] reviewed the image 
registration algorithms in terms of objective functions (the 
feature- and area-based method). Sotiras et al. [8] meticulously 
reviewed many DIR algorithms based on transformation 
models describing deformation, matching criteria (objective 
functions), and optimization methods. Kaus and Brock [39] 
also categorized the DIR algorithms in terms of a similarity 
metric (objective functions) and transformation models. In this 
section, the DIR algorithms are briefly reviewed with respect to 
objective functions and transformation models. 

1. Objective functions 
An objective function in DIR methods depends on how to 
define the similarity between two image sets. Objective 
functions are commonly characterized into 2–3 categories: 
intensity-based (area-based or iconic), feature-based (contour-
based or geometric), and combing of two objective functions. 

1) Intensity-based objective function     
The intensity-based objective function calculates the degree 

of similarity using image intensity. The assumption of this 
similarity index is that the pixel values (image intensity) of 
the same anatomical area are similar among image sets. This 

Fixed image

Iteration
process

Deformed
moving image

Deformation
vector fieldMoving image

Objective func.
(similarity index)

Optimization
algorithm

Transformation
model

Fig. 2. Flow chart of deformable image registration process. The similarity index is calculated with given a fixed image and a moving 
image. The optimization algorithm tries to maximize the similarity index by changing deformation vector field (DVF) and the moving 
image is deformed based on the DVF. The similarity index is recalculated with the deformed moving image and the fixed image. This 
optimization process is done iteratively until the improvement of the similarity index reaches its target.
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is a sound assumption with single-modality images. Several 
intensity-based objective functions have been proposed as a 
similarity index [7]; sum of squared difference (SSD) of image 
intensity, correlation coefficient (CC), and mutual information 
(MI). 

Consider the image intensity of a fixed image and a 
deformed moving image, IF(x) and IM'(x'), respectively. The 
simplest objective function using image intensity is the SSD of 
image intensity between two images;

                 

(2)SSD = ∑ [IF (x)-IM'(x')]2

x' Ω

1
N

where Ω is the overlapped area of a fixed image and a 
deformed moving image and N is the number of voxels in 
Ω. SSD is sensitive to image intensity and works well with 
noiseless images from the same modality. It is possible to 
implement the optimization with fast convergence by virtue of 
the least-square form of the SSD.

CC between two images is less sensitive to noise in images 
than SSD and can be defined as such:

(3)CC = 
∑ [IF (x)-IF(x)]2·∑ [IM' (x')-IM'(x')]2

∑ [IF (x)-IF(x)]2·[IM' (x')-IM'(x')]

x' Ω

x' Ω

x' Ω

where IF and IM' is the mean intensity in the fixed image and 
the deformed moving image, respectively.

CC can be implemented in an efficient computation because 
of its least-square form. 

The concept of MI is from the information theory. The image 
registration is considered as a process to maximize the amount 
of shared information in two images. Hill et al. [7] thoroughly 
explained the concept of MI from the information theory. 
The MI between the fixed image, F and the deformed moving 
image, M’ can be calculated as such:

MI(F, M')=H(F)+H(M')-H(F, M')

∑  ∑ PFM'(x, x')·log
x' Ω x' Ω

PFM'(x, x')
PF(x)·PM'(x')

where H(F) and H(M') are defined as entropy of the fixed 
and the deformed moving images, respectively. H(F, M') is 
joint entropy between two images. PF(x) and PF(x') are the 
probabilities of intensity values at voxel x and x’ in two images, 
respectively. PFM'(x, x') is the joint probability of intensity values 
at voxel x and x’ occurring together. 

MI is considered the standard intensity-based objective 
function for DIR algorithms with multimodality images [39].

2) Feature-based objective function
One of the advantages of the feature-based objective 

function is that the feature does not depend on the image 
intensity. This objective function is suitable for multimodality 
image registration. However, a significant drawback is that 
defining features in images can be quite difficult. Manually 
defined pairs of points of interest (POIs) or contours of ROIs 
are considered as the features to calculate objective functions. 
The manual definition of image features introduces inter- and 
intra-observer dependency.

The easiest way to implement the feature-based objective 
function is to calculate the squares of the distances between 
paired POIs in the fixed image and the moving images. Yan et 
al. [12] used the difference between squares of the distances of 
adjacent elements; ||dXij, M||2-||dXij, F||

2 where ||dXij, M|| and ||dXij, F|| 
is the distance from i-th volume element of the meshed organ 
to its one of adjacent j-th volume element in the moving and 
fixed image, respectively. For calculating this, they assumed 
that the meshed organ in the moving image set had the same 
volume as the corresponding organ in the fixed image set. 

Brock et al. [40] used surface projection from the surface 
of a moving ROI to the surface of a fixed ROI. The projection 
was primarily perpendicular to the moving surface and the 
projection data was used as a boundary condition of their DIR 
algorithm. Oh et al. [19] applied a gradient vector flow field 
as an external force field. The surface meshes of ROIs had a 
minimum energy at the surface of target ROIs (contours).  

3) Hybrid objective function
Some researchers proposed a hybrid objective function in 

order to solve the limitations of image-intensity based and 
feature-based objective functions. Weistrand and Svensson 
[41] proposed a DIR algorithm of which objective function 
was a linear combination of four terms: image similarity, grid 
regularization, shape based regularization, and penalty. Among 
these four terms, the first and last are similarity terms and the 
second and third are regulating terms to prevent physically 
unreasonable deformation. The image similarity terms are 
based on CC between a fixed image and a deformed image. 
The penalty term is the distance between predefined features 
in the moving and fixed image sets. The predefined features 
can be POIs and ROIs. The term is the sum of two distances. 
The first is the Euclidean distance between a vertex in the 
deformed triangular mesh and a signed distance from a fixed 
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ROI contour. The second is the distance between corresponding 
POIs. The grid regularization term aimed to prevent physically 
unreasonable deformation by minimizing Dirichlet energy. The 
shape based regularization term is based on the triangular 
meshes of predefined contours. Because of the shape based 
regularization term, their algorithm worked well even with 
noisy images such as CBCT.

2. Transformation model  
The correspondences of POIs or ROIs between two images are 
updated based on the transformation model to maximize the 
similarity index. If the transformation model can consider only 
several motion parameters, such as translation and rotation, 
the updated POIs or ROIs can only be changed globally. A 
deformation model requires significantly large number of 
motion parameters to achieve local transformation. With 
such large number of parameters, a DIR algorithm needs 
huge amount of memory and computation time for POIs/ROIs 
update. 

The model can be categorized into two; a parametric model 
and a non-parametric model. A parametric model generates 
fine DVF as a linear combination of their basis functions. 
Typical parametric transformation models are a group of 
spline models. One of the advantages of the parametric model 
is that the local change of a point can be made by nearby 
points within a certain distance. This property significantly 
reduces computation time and memory required. In contrast, 
non-parametric models calculate transformation vectors of 
all points thus, require longer computation time and larger 
memory than parametric models do. 

The deformation vector of a position vector x' in a moving 
image, u can be expressed as uk(x') after k-th iterations. The 
deformation vector transforms x' into x in the fixed image.

The B-splines methods model the deformation as a linear 
combination of basis-splines [20]. The moving image with the 
size of Nx×Ny×Nz is deformed by interpolating the displacement 
vector (φ) of control points on a rectangular grid, Cx×Cy×Cz. 
The deformation vector at a pixel on the moving image can be 
expressed as such:

	 	 (5)

where u, v, and w are the distances from x' to the nearest 
control points, (i, j, k), respectively. Bj represents the l-th basis 
of B-spline.

A multiresolution approach is possible by changing the grid 

spacing of control points.
TPS modeled the bending of a thin metal sheet by 

orthogonal directional forces. The control points are 
represented by the forcing area and the force represents the 
displacements from control points in the moving image and 
their corresponding control points in the fixed image. The 
control points are manually or automatically selected in the 
fixed and moving images [34]. The deformation vector at a 
pixel on the moving image can be expressed as such:

uk(x')=Ax'+B+∑wi·U(||pi-x'||)
i=1

2
(6)

where coefficient matrix A and B, and the weighting factor,  
are calculated based on the n-pairs of matched control points, 
and U is a basis function to measure the distance from x' to 
i-th control points in pi in the moving image. The deformation 
quality of B-spline and TPS depends on the accuracy of the 
control point’s correspondence.  

The original ‘Demons’ algorithm used gradient information 
of a static fixed image ( IF(x)) in order to generate the Demons 
force that deformed the moving images [42]. Unlike the spline 
models which interpolated or smoothed the displacement 
vectors of a certain amount of control points, the Demons 
algorithm generated the local Demons force at each voxel 
and generated DVF at each voxel. The DVF at a position in the 
moving image is expressed as such:

uk(x') = 
| IF (xk)|

2+(IMk' (x')-IF(xk))
2

(IMk' (x')-IF(xk))· IF (xk)

where IF(xk) is the gradient of the fixed image at a position xk 
which is k-th corresponding position in the fixed image with x' 
in the moving image and IMk'

(x')-IF(xk) is the intensity difference 
as external force. A limitation of the original Demons 
algorithm is that the force may not be strong to deform the 
moving images in the low gradient region.

The viscous fluid flow model considers the image 
deformation as viscous fluid [8]. This model allows the ROI in 
the moving image to be deformed to the ROI in the fixed image 
while maintaining the topology of the deforming structures, 
even during large nonlinear deformations such as the insertion 
of tandem and ovoid [14]. The deformations of viscous fluid 
flow are continuous, one-to-one, and differentiable. The model 
is governed by a Navier-Stokes equation and the displacement 
vector at a time, t and location, x' in the moving image can be 
described as such:
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u(x', t+δ)=u(x', t)+δv(x, t)-δv(x, t)
∂u(x', t)

∂x

where δ is the time increment and v(x, t) is the deformation 
velocity. In the viscous fluid flow model, the force that deforms 
the moving image is proportional to the deformation velocity. 

The force in the linear elastic model is proportional to the 
deformation itself, much like a spring. The linear elastic model 
is governed by Hooke’s law of elasticity, f = -kx , where f is the 
restoring force, k is the spring constant, and x is the change 
of spring length. If one voxel/pixel is deformed in the moving 
image, that deformation introduces the force and the other 
voxels are also deformed until forces archive equilibrium. This 
force and displacement relationship among all voxels in the 
moving image can be expressed as such: 

 	 Ku = F	 (9)

where K is a stiffness matrix, u is displacement matrix of all 
considered element, and F is an elastic force matrix [43]. 

Challenges and Future Directions

A brief survey of the up-to-date DIR technology was provided 
in this article. The main focus was on its clinical applications; 
however, validation methods and major algorithms were also 
reviewed. In addition, a concise summary was provided in Table 1.

It is generally accepted that DIR has the potential to greatly 
improve the current radiation therapy process and accelerate 
the realization of personalized medicine in radiotherapy. To 

reach this desired outcome, however, there are still several 
aspects that pose challenges to overcome: (1) automatic 
image registration; (2) more rigorous validation methodology; 
(3) robust planning taking DIR uncertainty into account; and 
(4) ultimate automatization of critical processes in treatment 
workflow

DIR must deal with tasks such as complex non-linear 
and local distortion management, multi-modality image 
registration and multi-dimensional image registration, all 
of which make automatic image registration particularly 
challenging. Thus, algorithm development for automatic image 
registration has been a critical topic for many researchers, 
especially imaging scientists and computer software engineers. 
Another interesting issue in medical imaging is that organ 
deformation can be due to not only deformation itself but also 
actual mass change. Mass variation may not be a significant 
problem in the deformation process itself; however, it can 
cause extreme difficulty in mapping voxel-to-voxel radiation 
doses. The authors believe this is the most challenging obstacle 
to overcome in DIR application for radiation therapy.

Although significant attention has been given to DIR 
validation, establishing more rigorous validation methods still 
remains an open problem. One solution may be to construct 
an ideal benchmark phantom that can be voxel-by-voxel 
deformed, mas-variated and imaged in multi-modalities (e.g., 
CT, MR, and PET). To our best knowledge, there has not been 
such a phantom reported.

While DIR can bring opportunities of response evaluation 
and cumulative dose estimation, even during the treatment 
course, non-negligible uncertainties still exist. Considering 

Table 1. Summary of reviewed DIR application

Study Transformation model Application Site

Yan et al. [12]
Christensen et al. [14]
Schaly et al. [15]
Velec et al. [16]
Sohn et al. [13]
Nguyen et al. [17]
Budiarto et al. [18]
Oh et al. [19]
Shekhar et al. [20]
Chao et al. [21]
Lee et al. [22]
Wang et al. [23]
Reed et al. [24]
Guerrero et al. [25]
Yaremko et al. [26]
Yamamoto et al. [27]

FEM-based linear elastic
Viscous fluid flow
Thin-plate splines
FEM-based linear elastic
FEM-based linear elastic
FEM-based linear elastic
Thin-plate splines
Parametric active contour
B-splines
Demons algorithm
Calculus of variance
Commercial algorithm (Pinnacle) 
Demons algorithm
Optical flow
Optical flow
Calculus of variance

Dose accumulation
Dose accumulation
Dose accumulation
Dose accumulation
Mathematical modeling
Mathematical modeling
Mathematical modeling
Mathematical modeling
Automatic segmentation
Automatic segmentation
Automatic segmentation
Automatic segmentation
Automatic segmentation
Functional imaging
Functional imaging
Functional imaging

Prostate cancer 
Cervix cancer
Prostate cancer
Lung cancer
Prostate cancer
Liver cancer
Prostate cancer
Cervix cancer
Lung cancer and abdomen cancer
Head and neck cancer
Head and neck cancer
Head and neck, prostate, and lung cancer
Breast cancer
Breath hold CT of lung
4D CT lung 
4D CT lung

DIR, deformable image registration; FEM, finite element method; CT, computed tomography.
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that some treatment parameters could change based on such 
information in ART, it is necessary to analyze the reliability of 
the ART approach based on DIR. Robust planning mechanisms 
that do account for such DIR uncertainties can increase the 
confidence of ART practice.

Regardless of how impressive a new technology may be, the 
excessive time and effort put forth into implementing it will 
often prevents from being commonly adopted. Optimization 
of workflow is as critical as the effectiveness of the 
technology itself. Therefore, the authors believe that properly 
automatizing/integrating DIR applications into an overall 
workflow is of upmost importance.
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